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Abstract. The main goal of this paper is to present some explicit formulas for

computing the  Lojasiewicz exponent in the  Lojasiewicz inequality comparing
the rate of growth of two real bivariate analytic function germs.

1. Introduction

The  Lojasiewicz inequalities and their variants play an important role in many
branches of mathematics. For example,  Lojasiewicz inequalities are very useful in
the study of continuous regular functions, see [13, 18] for pioneering works and [19]
for a survey. Also,  Lojasiewicz inequalities, together with Nullstellensätz, are cru-
cial tools for the study of the ring of (bounded) continuous semi-algebraic functions
on a semi-algebraic set, see [10, 11, 12].

Let f, g : (Rn, 0)→ (R, 0) be nonzero real analytic function germs. Assume that
0 ∈ {f = 0} ⊂ {g = 0}. By the classical  Lojasiewicz inequality on comparing the
rate of growth, there exist positive constants C, r and α such that

(1) |f(x)| > C|g(x)|α for |x| 6 r.
The infimum of such α is called the  Lojasiewicz exponent of f w.r.t. g and denoted
by Lg(f).

Note that several versions of the  Lojasiewicz inequality have been studied for a
special case where g is the distance function to the zero set of f, see [4, 5, 6, 7, 8, 9,
16, 17, 20]. Furthermore, the computation or estimation of  Lojasiewicz exponents
in this case has been considered in these works. In [3], the authors provided a
global version of the  Lojasiewicz inequality on comparing the rate of growth of
two polynomial functions in the case the mapping defined by these functions is
(Newton) non-degenerate at infinity. However, no computation or estimation of
 Lojasiewicz exponents has been given.

In this work, we will address partially to this problem by giving some explicit
formulas for computing the  Lojasiewicz exponent Lg(f) in the most general case
when f and g are two arbitrary real bivariate analytic function germs. Moreover,
our proof provides a new algorithm computing the limit of bivariate rational func-
tions (See Corollary 5.1).

The rest of the paper is organized as follows. In Section 2, we recall the notions
of Newton polygon relative to an arc and sliding due to Kuo and Parusiński which
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are crucial in the proof of our formulas for the  Lojasiewicz exponent, which are our
main results (Theorem 3.1 and Theorem 3.2), whose statements, together with the
proofs, will be given in Section 3.

2. The Newton polygon relative to an arc

The technique of Newton polygons plays an important role in this paper. It
is well-known that Newton transformations which arise in a natural way when
applying the Newton algorithm provide a useful tool for calculating invariants of
singularities. For a complete treatment we refer to [1, 2, 24, 25]. In this section we
recall the notion of Newton polygon relative to an arc due to Kuo and Parusiński
[21] (see also, [14] and [15]).

Let K := R or K := C and let f : (K2, 0) → (K, 0) denote a nonzero analytic
function germ with Taylor expansion:

f(x, y) = fm(x, y) + fm+1(x, y) + · · · ,

where fk is a homogeneous polynomial of degree k, and fm 6≡ 0. For the remainder
of the paper, we will assume that f is regular in x of order m in the sense that
fm(1, 0) 6= 0. (This can be achieved by a linear transformation x′ = x, y′ = y + cx,
where c is a generic number). Let φ be an analytic arc in K2, which is not tangent
to the x-axis. Then it can be parametrized by

x = c1t
n1 + c2t

n2 + · · · ∈ K{t} and y = tN

and therefore can be identified with a Puiseux series (denoted also by φ for sim-
plicity of notation)

x = φ(y) = c1y
n1/N + c2y

n2/N + · · · ∈ K{y1/N}

with N ≤ n1 < n2 < · · · being positive integers. The changes of variables X :=
x− φ(y) and Y := y yield

F (X,Y ) := f(X + φ(Y ), Y ) :=
∑

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N), called a Newton dot. The set of
Newton dots is called the Newton diagram. They generate a convex hull, whose
boundary is called the Newton polygon of f relative to φ, to be denoted by P(f, φ).
Note that this is the Newton polygon of F in the usual sense. If φ is a Newton–
Puiseux root of f (i.e., f(φ(y), y) = 0), then there are no Newton dots on X = 0, and
vice versa. Assume that φ is not a Newton–Puiseux root of f , then the exponents
of the series f(φ(y), y) = F (0, Y ) correspond to the Newton dots on the line X = 0.
In particular, ordf(φ(y), y) = h0, where (0, h0) is the lowest Newton dot on X = 0.

The highest Newton edge, denoted by EH (or E1) is defined as follows: If φ
is a Newton–Puiseux root of f , then E1 is the non-compact edge of the polygon
P(f, φ) parallel to the y-axis. If φ is not a Newton–Puiseux root of f , then E1 is
the compact edge of the polygon P(f, φ) with a vertex being the lowest Newton dot
on X = 0. The Newton edges E2, E3, . . . , Es are compact adges of P(f, φ). These
edges and their associated Newton angles θ2, . . . , θs are defined in an obvious way
as illustrated in the following example.

Example 2.1. Take f(x, y) := x3 − y5 + y6 and φ(y) := y5/3. We have

F (X,Y ) := f(X + φ(Y ), Y ) = X3 + 3X2Y 5/3 + 3XY 10/3 + Y 6.
2
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Figure 1.

By definition, the Newton polygon of f relative to φ has three edges E1, E2 with
tan θ1 = 8/3 and tan θ2 = 5/3 (see Figure 1).

Take any edge Es. The associated polynomial Es(z) is defined to be Es(z) :=
Es(z, 1), where

Es(X,Y ) :=
∑

(i,j/N)∈Es

cijX
iY j/N .

Next, let us recall the notion of sliding (see [21]). Suppose that φ is not a Newton–
Puiseux root of f. Consider the Newton polygon P(f, φ). Take any nonzero root c
of E1(z) = 0, the polynomial equation associated to the highest Newton edge E1.
We call

φ1 : x = φ(y) + cytan θ1

a sliding of φ along f, where θ1 is the angle associated to E1. A recursive sliding

φ→ φ1 → φ2 → · · ·
produces a limit, denoted by φ∞, which is a Newton–Puiseux root of f . The series
φ∞ will be called a final result of sliding φ along f . Note that φ∞ has the form

φ∞ : x = φ(y) + cytan θ1 + higher order terms,

due to the following technical lemma.

Lemma 2.1. Let φ be a Puiseux series, which is not a Newton–Puiseux root of
f . Let θ1 and E1 be respectively the Newton angle and polynomial associated to the
highest Newton edge E1. Consider a series of the following form

ψ : x = φ(y) + cyρ + higher order terms,

where c ∈ K and ρ ∈ Q, ρ > 0. Then the following statements hold:

(i) If either c or ρ is generic (i.e., arctan ρ is not a Newton angle of P(f, φ); or
arctan ρ is a Newton angle of P(f, φ) but c is not a root of the polynomial
associated to the Newton edge with Newton angle arctan ρ), then

ordf(ψ(y), y) = min{aρ+ b | (a, b) ∈ P(f, φ)}.
Furthermore,

ordf(ψ(y), y) 6 ordf(φ(y), y).
3



In particular, if either tan θH < ρ or tan θH = ρ and EH(c) 6= 0 then P(f, ψ) =
P(f, φ), and therefore

ordf(ψ(y), y) = ordf(φ(y), y).

(ii) If tan θH = ρ and EH(c) = 0 then

ordf(ψ(y), y) > ordf(φ(y), y).

Proof. cf. [1, 2, 24]. For a detailed proof, we refer to [14]. In fact, the special case
where ψ(y) = φ(y) + cytan θ1 was proved in [14, Lemma 2.1]. Then the lemma is
deduced by applying the special case (possibly infinitely) many times. �

Definition 2.1. For each Puiseux series φ(y) =
∑
i aiy

αi and for each positive real
number ρ, the ρ-approximation of φ(y) is defined to be the series

∑
αi<ρ

aiy
αi +cyρ,

where c is a generic real number. We associate to any Puiseux series φ its real
approximation φR(y) defined to be the ρ-approximation of φ, where ρ is the smallest
exponent occurring in φ with non-real coefficient. It is clear that if ϕ is real, i.e.,
all coefficients of ϕ are real, then the real approximation of ϕ is itself. Now, for
f ∈ K{x, y} which is regular in x, let VR(f) be the set of all real approximations of
non-real Newton–Puiseux roots of f .

For any two distinct series φ1, φ2, their approximation, denoted by φ1,2, is defined
to be the ρ-approximation of φ1 where ρ := ord(φ1 − φ2). Let Va(f) be the set of
all approximations of φ1 and φ2 with φ1 6= φ2 being Newton–Puiseux roots of f .
Note that VR(f) ⊂ Va(f) if f ∈ R{x, y}.

The following useful assertion is a direct consequence of Lemma 2.1:

Lemma 2.2. Assume that K = R. Let φ be a Puiseux series and let E1, . . . , Es be
the Newton edges of P(f, φ). Let θi and Ei be the corresponding Newton angle and
polynomial associated to Ei. Then by a permutation of indexes, we have

π/2 > θ1 > θ2 > . . . > θs

and the following statements hold:

(i) If Ei has two distinct roots, there exists ψ ∈ Va(f) being of the form

ψ(y) = φ(y) + cytan θi + higher order terms,

where c is a generic number.
(ii) If θ 6= θ1 is a Newton angle, then there exists ψ ∈ Va(f) being of the form

ψ(y) = φ(y) + cytan θ + higher order terms,

where c is a generic number.
(iii) If Ei has a non-real root, then there exists ψ ∈ VR(f) being of the form

ψ(y) = φ(y) + cytan θi + higher order terms,

where c is a generic number.

3. Formulas for  Lojasiewicz exponents

For the remainder of this section, let f, g : (R2, 0) → (R, 0) be nonzero real
analytic function germs, which are regular in x such that 0 ∈ {f = 0} ⊂ {g = 0}.
By the classical  Lojasiewicz inequality (see, for instance [22]), there exists positive
constants C, r and α such that

|f(x, y)| > C|g(x, y)|α for |x| 6 r.
4



The infimum of such α is called the  Lojasiewicz exponent of f with respect to g and
denoted by Lg(f).

Take any analytic arc φ ∈ R2 at the origin parametrized by (x(t), y(t)). If
g ◦ φ 6≡ 0, then we can define the following positive rational number

`(φ) :=
ordf(φ(t))

ordg(φ(t))
.

By the Curve Selection Lemma (see [23, Lemma 3.1]), it is not hard to show that

Lg(f) = sup
φ
`(φ),(2)

where the supremum is taken over all analytic arcs passing through the origin, which
are not contained in the zero locus of g. Furthermore, since f and g are x-regular,
the supremum in (2) can be taken over all real analytic arcs passing through the
origin not contained in the zero locus of y.

Remark 3.1. Note that the supremum in (2) may not be attained, i.e., it is
possible that there is no analytic arc φ ∈ R2 at the origin such that Lg(f) = `(φ).
The following example is an illustration.

Let

f(x, y) = x2 and g(x, y) = x(x2 + y2).

Then f(x, y) > g2(x, y) for (x, y) closed enough to the origin. So Lg(f) 6 2. On

the other hand, for each positive integer k, let φk(t) = (t, t1/k), then we have

`(φk) =
2

1 + 2
k

→ 2 as k → +∞.

Therefore Lg(f) = 2. Now, for any analytic arc φ(t) = (x(t), y(t)) at the origin, we
have

`(φ) =
2ord x(t)

ord x(t) + 2 min{ord x(t), ord y(t)}
<

2ord x(t)

ord x(t)
= 2,

i.e., Lg(f) is not attained for any analytic arc φ ∈ R2 at the origin.

3.1. First formula for the  Lojasiewicz exponents. Let βj , j = 1, . . . , k be
the common real Newton–Puiseux roots of f and g of multiplicities mj and nj
respectively. Let Va(fg) be the set given by Definition 2.1. For any φ ∈ Va(fg), we
will write `(φ) instead of `((φ(y), y)) for simplicity.

Theorem 3.1. Define

L+
g (f) := max

{
`(φ),

mj

nj

∣∣∣ φ ∈ Va(fg), j = 1, . . . , k

}
and L−g (f) = L+

ḡ (f̄),

where f̄(x, y) := f(x,−y) and ḡ(x, y) := g(x,−y). Then the  Lojasiewicz exponent
of g w.r.t f is given by

Lg(f) = max
{
L+
g (f),L−g (f)

}
.

Proof. We first show that

(3) Lg(f) > max
{
L+
g (f),L−g (f)

}
.

By (2), it is obvious that

Lg(f) > max {`(φ) | φ ∈ Va(fg)} .
5



Therefore we only need to show that

(4) Lg(f) >
mj

nj
for all j = 1, . . . , k.

To do this, fix j ∈ {1, . . . , k} and consider the Newton polygons P(f, βj) of f
and P(g, βj) of g relative to the arc βj . Let A1 = (x1, y1) and A2 = (x2, y2) be
respectively the vertices of P(f, βj) and P(g, βj) being closest to the y-axis. We will
show that

x1 = mj and x2 = nj .

Indeed, in view of Puiseux’s theorem (see, for example [24, page 98]), we can write

(5) f(x, y) = (x− βj(y))mjh(x, y),

where h(βj(y), y) 6= 0 for all j. So

f(X + βj(Y ), Y ) = Xmjh(X + βj(Y )Y ).

This implies x1 = mj and y1 = ord h (βj(y), y)) and similarly x2 = nj .
For each positive integer n, define a new arc

x = φn(y) = βj(y) + yn.

By (5), we have
f(φn(y), y) = ynx1h(φn(y), y).

For n large enough, we have

y1 = ord h (βj(y), y)) = ord h (φn(y), y)) .

So this yields ord f(φn(y), y) = nx1+y1. By the same way, we also have ord g(φn(y), y) =
nx2 + y2. Consequently,

`(φn) =
nx1 + y1

nx2 + y2
.

Note that

lim
n→∞

`(φn) =
x1

x2
=
mj

nj
,

so (4) follows from (2). Therefore, Lg(f) > L+
g (f). Similarly, one has Lg(f) >

L−g (f) and hence the inequality (3) holds. Now we need to show that the inequality
in (3) is actually an equality.

Suppose for contradiction that

Lg(f) > max
{
L+
g (f),L−g (f)

}
.

Then there is a real analytic arc φ passing through the origin and not lying in the
x-axis such that g ◦ φ 6≡ 0 and

`(φ) > max
{
L+
g (f),L−g (f)

}
.

Note that φ can be parametrized by either

(x = φ(t), y = t) or (x = φ(t), y = −t),
where φ(t) is an element in R{t1/N} for some positive integer N with φ(0) = 0.
Without loss of generality we may assume that φ can be parametrized by (x =
φ(t), y = t). Denote by E1 and E2 the highest Newton edges of P(f, φ) and P(g, φ)
respectively. Let Ei and θi be respectively its associated polynomial and Newton
angle.

Claim 3.1. We have tan θ1 = tan θ2.
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Proof. Assume for contradiction that, tan θ1 > tan θ2. Let φ∞ be a final result of
sliding φ along f . Write

φ∞(y) = φ(y) +
∑
i>1

aiy
αi ,

where ai ∈ C \ {0}, tan θ1 = α1 < α2 < · · · . We will show that ai ∈ R for all i > 1.
In fact, if this is not the case, for each n > 0, define the series

φ0(y) := φ(y), φn(y) := φ(y) +

n∑
i=1

aiy
αi for n > 1,

and let n0 be the smallest index such that an0
6∈ R. Then n0 > 1 and

φRn0
(y) = φn0−1(y) + cyαn0 + higher order terms,

where c ∈ R is a generic number. By applying Lemma 2.1, we obtain

ord f(φRn0
(y), y) = ord f(φn0−1(y), y) > · · · > ord f(φ(y), y)

and

ord g(φRn0
(y), y) = ord g(φn0−1(y), y) = · · · = ord g(φ(y), y).

So

`(φRn0
) = `(φn0−1) > . . . > `(φ) > L+

g (f),

a contradiction, since φRn0
∈ VR(f) ⊂ VR(fg) ⊂ Va(fg). This shows that an ∈ R for

all n > 1. But then this contradicts to the assumption that {f = 0} ⊂ {g = 0} in
R2, hence

tan θ1 6 tan θ2.

Now assume for contradiction that tan θ1 < tan θ2. Note that, θ1 and θ2 are
Newton angles of P(fg, φ). Then by Lemma 2.2(ii), there exists ψ ∈ Va(fg) being
of the form

ψ(y) = φ(y) + cytan θ1 + higher order terms,

where c ∈ R is a generic number. It follows from Lemma 2.1(i) that

ord f (ψ(y), y) = ord f (φ(y), y) and ord g (ψ(y), y) 6 ord g (φ(y), y) ,

and hence `(ψ) > `(φ) > L+
g (f). This contradiction finishes the claim. �

Claim 3.2. The polynomial E1E2 has only one root.

Proof. Assume for contradiction that E1E2 has two distinct roots. By Claim 3.1,
θ1 = θ2, so E1E2 is the Newton polynomial associated to the highest Newton edge of
P(fg, φ) (with Newton angle θ1). Then by Lemma 2.2(i), there exists ψ ∈ Va(fg)
being of the form

ψ(y) = φ(y) + cytan θ1 + higher order terms,

where c ∈ R is a generic number. Then Lemma 2.1(ii) yields

ord f (ψ(y), y) = ord f (φ(y), y) and ord g (ψ(y), y) = ord g (φ(y), y) .

Hence `(φ) = `(ψ) and so `(φ) 6 L+
g (f) which contradicts the assumption `(φ) >

L+
g (f). �
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Let a ∈ R be the unique root of the polynomial E1E2 and let φ̃(y) := φ(y) +

aytan θ1 . We denote by Ẽ1 and Ẽ2 the highest Newton edge of P(f, φ̃) and P(g, φ̃)

respectively. For i = 1, 2, let θ̃i and Ẽi be the Newton angle and the polynomial

associated to Ẽi. Recall that E1 and E2 are respectively the highest Newton edges
of P(f, φ) and P(g, φ). Let Bi = (xi, yi) be the vertex of Ei which is not contained
in the y-axis.

Claim 3.3. If φ̃(y) is not a Newton–Puiseux root of f , then the following properties
hold:

(i) Bi is a vertex of Ẽi, therefore deg Ẽi = xi = deg Ei.
(ii) tan θ̃1 = tan θ̃2.

(iii) The polynomial Ẽ1Ẽ2 has only one root.

(iv) `(φ̃) > `(φ).

Proof. (i) Let us define the function

µ(t) =
tx1 + y1

tx2 + y2
.

We first claim that x1y2 > x2y1. In fact, if this is not the case, i.e., x1y2 < x2y1,
then the function µ is strictly decreasing and y1 > 0. Since f is regular in x,
there exists a Newton edge E of P(f, φ) which is different from E1 and has B1 as a
vertex. Let θ be the Newton angle associated to E. Clearly θ < θ1 = θ2, therefore,
by Lemma 2.2(ii), there exists ψ ∈ Va(f) ⊂ Va(fg) such that

ψ(y) = φ(y) + cytan θ + higher order terms,

where c ∈ R is a generic number. We have

ord f(φ(y), y) = x1 tan θ1+y1 and ord g (φ(y), y) = x2 tan θ2+y2 = x2 tan θ1+y2,

Moreover, by Lemma 2.1(i) and the choice of the edge E,

ord f(ψ(y), y) = x1 tan θ + y1 and ord g (ψ(y), y) 6 x2 tan θ + y2.

Hence

`(φ) = µ tan θ1 < µ tan θ 6 `(ψ) 6 L+
g (f),

which is a contradiction. Hence we must have x1y2 > x2y1, i.e., the function µ is
increasing.

Let Ẽ be the edge of P(f, φ̃) such that B1 is the vertex having larger x-coordinate.

Let θ̃ be the Newton angle associated to Ẽ. Since φ̃(y) is not a Newton–Puiseux

root of f , Ẽ is a compact edge and therefore θ1 < θ̃ < π/2. If Ẽ is not the highest

Newton edge of P(f, φ̃), then by Lemma 2.2(ii), there exists ϕ ∈ Va(f) ⊂ Va(fg)
such that

ϕ(y) = φ̃(y) + cytan θ̃ + higher order terms,

where c ∈ R is a generic number. It follows from Lemma 2.1(i) that

ord f(ϕ(y), y) = x1 tan θ̃ + y1 and ord g (ϕ(y), y) 6 x2 tan θ̃ + y2.

Hence

`(φ) = µ(tan θ1) 6 µ(tan θ̃) 6 `(ϕ) 6 L+
g (f).

This contradiction yields Ẽ ≡ Ẽ1, i.e., B1 is a vertex of Ẽ1. Similarly we can show

that B2 is a vertex of Ẽ2 and hence Item (i) follows.
8



(ii)–(iii) These can be proved by using completely the same argument as in
Claims 3.1 and 3.2.

(iv) It follows from Items (ii) and (iii) that

ord f(φ̃(y), y) = x1 tan θ̃1+y1 and ord g(φ̃(y), y) = x2 tan θ̃2+y2 = x2 tan θ̃1+y1,

i.e.,

`(φ̃) = µ(tan θ̃1) > µ(tan θ1) = `(φ).

This implies (iv) and hence the claim follows. �

We are now in position to complete the theorem. Applying Claim 3.3 (possibly
infinitely) many times, we obtain φ∞ as a final result of sliding of φ along f .
This implies that, x = φ∞(y) is a common Newton–Puiseux root of f and g of
multiplicities x1 and x2 respectively. Moreover, from the proof Claim 3.3, x1y2 >
x2y1, it follows that

`(φ) =
x1 tan θ1 + y1

x2 tan θ1 + y2
6
x1

x2
6 L+

g (f).

This contradicts the assumption `(φ) > L+
g (f). The theorem is proved. �

3.2. Second formula for the  Lojasiewicz exponents. Recall that VR(f) is the
set of real approximations of non-real Newton–Puiseux roots of f as defined in
Definition 2.1. Let βj , j = 1, . . . , k, be the common real Newton–Puiseux roots of
f and g of multiplicity mj and nj respectively.

Theorem 3.2. Define

L +
g (f) := max

{
`(γ),

mj

nj

∣∣∣ γ ∈ VR(f), j = 1, . . . , k

}
and L −g (f) = L +

ḡ (f̄),

where f̄(x, y) := f(x,−y) and ḡ(x, y) := g(x,−y). Then the  Lojasiewicz exponent
of g w.r.t f is given by

Lg(f) = max
{
L +
g (f),L −g (f)

}
.

Proof. Since VR(f) ⊂ Va(fg) and VR(f̄) ⊂ Va(f̄ ḡ), by Theorem 3.1,

Lg(f) = max
{
L+
g (f),L−g (f)

}
> max

{
L +
g (f),L −g (f)

}
.

Arguing by contradiction, we assume that

Lg(f) > max
{
L +
g (f),L −g (f)

}
.

It follows from Theorem 3.1 that there is an analytic arc φ passing through the
origin and not lying in the x-axis such that g ◦ φ 6≡ 0 and

Lg(f) = `(φ) > max
{
L +
g (f),L −g (f)

}
.

Note that φ can be parametrized by either

(x = φ(t), y = t) or (x = φ(t), y = −t),
where φ(t) is an element in R{t1/N} for some positive integer number N with
φ(0) = 0. Let Eφ be the polynomial associated to the highest Newton edge of
P(f, φ). With no loss of generality, we can assume that φ has the following property:

For any analytic arc φ̃ passing through the origin not lying in the x-axis and

having the parametrization (x = φ̃(t), y = t) such that g ◦ φ̃ 6≡ 0 and

Lg(f) = `(φ̃) > max
{
L +
g (f),L −g (f)

}
,

9



if Eφ̃ is the polynomial associated to the highest Newton edge of P(f, φ̃), then

deg Eφ̃ > deg Eφ.

Indeed, if there is an analytic arc φ̃ such that this property does not hold, i.e.,

deg Eφ̃ < deg Eφ, then it is enough to replace φ by φ̃ and repeat the process until

the property is satisfied.
Let E1 and E2 be the highest Newton edges of P(f, φ) and P(g, φ) respectively.

For each i = 1, 2, let Ei and θi be the associated polynomial and the Newton angle
of Ei respectively. Let Bi = (xi, yi) be the vertex of Ei which is not contained in
the y-axis. Then the following statement holds.

Claim 3.4. We have tan θ1 = tan θ2.

Proof. Applying the same argument as in the proof of Claim 3.1, we get tan θ1 6
tan θ2. Assume for contradiction that tan θ1 < tan θ2. Let

ψ(y) = φ(y) + cytan θ1

with a generic number c. It follows from Lemma 2.1 that

ord f(ψ(y), y) = x1 tan θ1 + y1 = ord f(φ(y), y)

and

ord g(ψ(y), y) 6 x2 tan θ1 + y2 < x2 tan θ2 + y2 = ord g(φ(y), y).

These imply

`(ψ) > `(φ) = Lg(f),

which is a contradiction. �

Claim 3.5. The polynomial E1 has only real roots.

Proof. Assume for contradiction that a 6∈ R is a root of E1. It follows from Lemma
2.2(iii) that there exists ψ ∈ VR(f) of the form

ψ = φ+ cytan θ1 + higher order terms

with a generic real number c. Applying Lemma 2.1(i) we obtain

ord f(ψ(y), y) = ord f(φ(y), y) and ord g(ψ(y), y) = ord g(φ(y), y).

Therefore

`(ψ) = `(φ) > L +
g (f),

which contradicts the definition of L +
g (f). �

Claim 3.6. We have

(i) x1y2 = x2y1, and therefore `(φ) =
x1

x2
=
tx1 + y1

tx2 + y2
for all t.

(ii) The polynomial E1E2 has only one root.

Proof. (i) First of all, let us prove

(6) x1y2 > x2y1.

Indeed, if this is not the case, i.e., x1y2 < x2y1, then the function

µ(t) :=
tx1 + y1

tx2 + y2
10



is strictly decreasing. Let ψ(y) = φ(y) + yρ with 0 < ρ < tan θ1 closed enough to
θ1(= θ2 by Claim 3.4) so that arctan ρ is larger than the other Newton angles of
P(f, φ) and P(g, φ). Then

ord f(ψ(y), y) = x1ρ+ y1 and ord g(ψ(y), y) = x2ρ+ y2.

So we get
`(ψ) = µ(ρ) > µ tan θ1 = `(φ) = Lg(f),

which contradicts the definition of Lg(f). Hence x1y2 > x2y1. Let us now prove
that the equality always holds.

Let cj ∈ R, j = 1, . . . , q, be the roots of E1(z) of multiplicity xj1 with xj1 > 0 and
q > 1. We write

E2(z) = a(z)

q∏
j=1

(z − cj)x
j
2

with xj2 > 0 and a(cj) 6= 0. Observe that

(7)

q∑
j=1

xj1 = deg E1 = x1 and

q∑
j=1

xj2 + deg a(z) = deg E2 = x2.

Let us denote by Aji = (xji , y
j
i ) the intersection of the line {x = xji} with the edge

Ei for each i = 1, 2. Set

µj(t) :=
txj1 + yj1
txj2 + yj2

.

Since Aji ∈ Ei, it follows that

µj tan θ1 = `(φ) and yji = yi + (xi − xji ) tan θ1,(8)

for all i = 1, 2, j = 1 . . . , q. We also notice that Aj1 is a vertex of the Newton

polygon P(f, φ̃j) with φ̃j(y) := φ(y) + cjy
θ1 . We shall show that

(9) xj1y
j
2 6 x

j
2y
j
1 for all j = 1, . . . , q.

In fact, by contradiction, assume that xj1y
j
2 > xj2y

j
1, i.e., the function µj(t) is strictly

increasing. From this and (8), for ρ > tan θ1 sufficiently closed to tan θ1, we have

Lg(f) = `(φ) = µj tan θ1 < µjρ = `
(
φ̃j(y) + cyρ

)
6 Lg(f)

for every non-zero c ∈ R, which is clearly a contradiction. Thus (9) must holds.
Combining (8) and (9) yields

xj1[y2 + tan θ1(x2 − xj2)] 6 xj2[y1 + tan θ1(x1 − xj1)] for all j = 1, . . . , q.

Summing up we obtain

(y2 + x2 tan θ1)

q∑
j=1

xj1 6 (y1 + x1 tan θ1)

q∑
j=1

xj2.

Combining this with (7), we get

(y2 + x2 tan θ1)x1 6 (y1 + x1 tan θ1)(x2 − deg a(z)) 6 (y1 + x1 tan θ1)x2.

Equivalently
x1y2 6 x2y1.

By this and (6), we have x1y2 = x2y1 and Item (i) follows.
11



(ii) By Item (i), it follows that xj1y
j
2 = xj2y

j
1 for all j = 1, . . . , q and deg a(z) = 0.

Hence the function µj(t) is constant. Consider, for each j, the curve ψj(y) = φ̃j+yρ

for some ρ > tan θ1 sufficiently closed to tan θ1. Then

`(ψj) = µj(ρ) = µj tan θ1 = `(φ).

Moreover, it is not hard to check that Aj1 is a vertex of the Newton polygon P(f, ψj).

So deg Eψj
= xj1 where Eψj

is the polynomial associated to the highest Newton edge

of P(f, ψj). Then it follows from the choice of φ that xj1 > x1. This implies q = 1
and therefore, by the fact that deg a(z) = 0, the polynomial E1E2 must have only
one root. The claim is proved. �

Let a ∈ R be the unique root of the polynomial E1E2 and let φ̃(y) := φ(y) +

aytan θ1 . Let P̃1 := P(f, φ̃) and P̃2 := P(g, φ̃). We denote by Ẽi the Newton edge of

P̃i containing Bi as the vertex with the larger x-coordinate. Let θ̃i and Ẽi be the

Newton angle and the polynomial associated to Ẽi respectively.

Claim 3.7. We have tan θ̃1 = tan θ̃2.

Proof. Assume for contradiction that tan θ̃1 > tan θ̃2. Consider the curve

ψ(y) = φ̃+ cytan θ̃1

with a generic number c. Then it follows from Lemma 2.1(i) that, for any (u, v) ∈ Ẽ2

such that (u, v) 6= B2, we have

ord f(ψ(y), y) = x1 tan θ̃1 + y1

and

ord g(ψ(y), y) 6 u tan θ̃1 + v < x2 tan θ̃1 + y2.

Therefore

`(ψ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

=
x1 tan θ1 + y1

x2 tan θ1 + y2
= `(φ) = Lg(f),

where the first equality follows from Claim 3.6(i). This is a contradiction.

Now, by contradiction, suppose that tan θ̃1 < tan θ̃2. Let us show that the

polynomial Ẽ1 has only real root. In fact, if this is not the case, then by Lemma
2.2(iii), there exists ψ ∈ VR(f) of the form

ψ(y) = φ̃+ cytan θ̃1

with a generic number c. It then follows from Lemma 2.1(i) that

ord f(ψ(y), y) = x1 tan θ̃1 + y1 and ord g(ψ(y), y) 6 x2 tan θ̃1 + y2.

Therefore, in view of Claim 3.6(i),

`(ψ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

=
x1 tan θ1 + y1

x2 tan θ1 + y2
= `(φ) = Lg(f),

which is a contradiction, because ψ ∈ VR(f).

We now take 0 6= a ∈ R such that Ẽ1(a) = 0 and define γ(y) = φ̃+aytan θ̃1 . Then
it follows from Lemma 2.1(i) that

ord f(γ(y), y) > x1 tan θ̃1 + y1 and ord g(γ(y), y) 6 x2 tan θ̃1 + y2.
12



Therefore

`(γ) >
x1 tan θ̃1 + y1

x2 tan θ̃1 + y2

= `(φ) = Lg(f),

a contradiction. Hence tan θ̃1 = tan θ̃2. �

Claim 3.8. If φ̃(y) is not a Newton–Puiseux root of f , then it and the Newton
polygons of f and g relative to it share the following properties with that of φ:

(i) tan θ̃1 = tan θ̃2.

(ii) The polynomial Ẽ1Ẽ2 has only one root. In particular, for each i = 1, 2, Ẽi
is the highest Newton edge of P̃i.

(iii) `(φ̃) =
x1

x2
= `(φ).

Proof. It is clear that Item (i) follows from Claim 3.7. Furthermore, Items (ii)
and (iii) can be proved by using the same argument as in the proof of Claim
3.6. �

We are now in position to complete the theorem. Applying Claim 3.8 (possibly
infinitely) many times, we obtain a final result φ∞ of sliding of φ along f which is
also that of g. This implies that, φ∞ is a common Newton–Puiseux root of f and
g of multiplicities x1 and x2 respectively. Therefore,

`(φ) =
x1

x2
6 L +

g (f).

This contradicts the assumption that `(φ) > L +
g (f). Hence the theorem follows.

�

4. Algorithms

In this section we provide an algorithm verifying whether {f = 0} ⊂ {g = 0}
and computing the Lojasiewicz exponent Lg(f) if it is defined. Let f ∈ R[x, y] be
regular in x and let V(f) be the set of all Newton–Puiseux roots x = γ(y) of f . Let
x = ϕ(y) be a (complex) Puiseux series. The contact order of ϕ and f is defined as

ρ(ϕ, f) := max{ord (ϕ(y)− γ(y)) | ϕ 6= γ ∈ V(f)}.
For each rational number q, the series ϕ is called a Newton–Puiseux root mod q+
of f if there exists γ ∈ V(f) such that ord (ϕ(y)− γ(y)) > q. Assume that

x = γ(y) =
∑

cαy
α

is a Newton–Puiseux root of f , then the series

γ̃(y) =
∑
α≤ρ

cαy
α,

where ρ = ρ(γ, f), is called a truncated Newton–Puiseux root of f . We denote by

Ṽ(f) the set of truncated Newton–Puiseux roots f .

Remark 4.1. It follows from the definition that:

(i) If γ(y) and γ′(y) are distinct Newton–Puiseux roots of f , then γ̃ 6= γ̃′. That

is, the natural map V(f)→ Ṽ(f) is bijective.
(ii) If γ(y) is a Newton–Puiseux root of f then

ord (γ̃(y)− γ(y)) > ρ(γ, f) := max{ord (γ(y)− γ′(y)) | γ 6= γ′ ∈ V(f)}.
13



Theorem 4.1. Let f ∈ R[x, y] be regular in x and let x = γ(y) be a Newton–
Puiseux root of f . Let ρ = ρ(γ, f) the contact order of γ and f . Then

(i) If the truncated Newton–Puiseux root γ̃ of γ is real, then γ is a real Newton–
Puiseux root of f .

(ii) We write

f(X + γ̃(y), Y ) =
∑

cijX
iY j/N .

Then the multiplicity of γ, denoted by multγf , is equal to the minimum of
i such that

iρ+ j/N = ord(f(γ̃ρ(y), y)) and cij 6= 0,(10)

where γ̃ρ is the ρ-approximation of γ̃.
(iii) Let g ∈ R[x, y] be regular in x and let h := gcd(f, g). If γ̃ is a root

mod ρ(γ, f)+ of h then γ(y) is also a root of g.

Proof. (i) Assume for contradiction that γ is not real and write

γ(y) = φ(y) + cyα + higher order terms,

where φ is the sum of terms of order lower than α with real coefficients and c ∈ C\R.
Since f is real, the conjugate

γ̄(y) = φ(y) + c̄yα + higher order terms

is also a Newton–Puiseux root of f. Thus

ρ(γ, f) = max{ord (γ(y)− γ′(y)) | γ 6= γ′ ∈ V(f)}
≥ ord (γ(y)− γ̄(y)) = α.

By definition of truncated Newton–Puiseux root, γ̃ contains the term cyα so it is
not real which is a contradiction. Consequently γ is real.

Let P(f, γ̃) be the Newton polygon of f relative to γ̃ and let E1, . . . , Es be its
Newton edges. Let θi and Ei be the Newton angle and the polynomial associated
to Ei respectively. Consider a progress of recursive slidings

γ̃ → γ̃1 → . . .→ γ̃∞

of γ̃ along f . The following claim is a direct consequence of Lemma 2.1.

Claim 4.1. We have

ord (γ̃(y)− γ̃∞(y)) = max{ord (γ̃(y)− γ′(y)) | γ′ ∈ V(f)} = θ1.

and
ρ = max{ord (γ̃(y)− γ′(y)) | γ 6= γ′ ∈ V(f)} = θ2.

This together with Remark 4.1 implies that γ̃∞ = γ. This means that, there is
a unique progress of recursive slidings of γ̃ along f . Write

γ̃∞ = γ̃ + a1y
α1 + a2y

α2 + . . . .

Then for all n ≥ 1,

γ̃n = γ̃ + a1y
α1 + a2y

α2 + . . .+ any
αn .

Since γ̃n is the only sliding of γ̃n−1 along f , the polynomial En−1
H of associated

to the highest Newton edges of P(f, γ̃n−1) has only one root an of multiplicity
deg En−1

H = deg E0
H = deg E1. Then the multiplicity multγf of γ is equal to

deg E1 = ord E2 = min{i | (i, j/N) ∈ E2}.
14



Since

E2 = {(i, j/N) ∈ supp(f) | iθ2 + j/N = ord(f(γ̃ρ(y), y))}
it follows that

multγf = min{i | iρ+ j/N = ord(f(γ̃ρ(y), y)) and cij 6= 0},

which gives (ii). Now, we take a root ξ of h such that ord (ξ(y)− γ̃(y)) > ρ(γ, f).
Then, it follows from the definition of ρ(γ, f) that ξ = γ. This completes (iii). �

As a consequence, we obtain the following algorithm for computing the  Lojasiewicz
exponent Lg(f).

Algorithm BiLojEx.
INPUT: Two polynomials f and g in Q[x, y] of positive orders.
OUTPUT: Decide whether or not {f = 0} ⊂ {g = 0} and compute the  Lojasiewicz

exponent Lg(f).

Step 1. If one of the polynomials f, g is not x-regular, make a linear transformation,
so that the new polynomials f, g are x-regular. Compute h := gcd(f, g).

Step 2. Compute the set Ṽ(f) of truncated roots of f . Compute the sets ṼR(f)

and ṼR(h) of truncated real roots of f and h.

If ] ṼR(f) ≤ ] ṼR(h) then {f = 0} ⊂ {g = 0} and proceed to the next
step. Otherwise, the  Lojasiewicz exponent Lg(f) is not defined and the
algorithm stops.

Step 3. Compute for each γ ∈ ṼR(f) the multiplicies multγf and multγg by For-
mula (10).

Step 4. Compute the set Ṽa(f) of the real approximations of series in Ṽ(f) \ ṼR(f)
and compute

L +
g (f) := max

{
`(γ),

multγf

multγg

∣∣∣ γ ∈ Ṽa(f), γ ∈ ṼR(f)

}
.

Step 5. Set f̃(x, y) := f(x,−y) and g̃(x, y) := g(x,−y) and compute L +
g̃ (f̃).

Step 6. Lg(f) := max{L −g (f),L +
g̃ (f̃)}.

5. Applications

Computing limits of (real) multivariate functions at given points is one of the
basic problems in computational mathematics. Let g

f be a rational function with

f, g real polynomials. It is well known that if the limit lim(x,y)→(0,0)
g(x,y)
f(x,y) exists,

it can be easily computed by evaluating the limit along a ray R through (0, 0).

Therefore, replacing lim(x,y)→(0,0)
g(x,y)
f(x,y) by lim(x,y)→(0,0)

g(x,y)−Lf(x,y)
f(x,y) with L =

limR3(x,y)→(0,0)
g(x,y)
f(x,y) for some ray R, one reduces the problem to studying whether

lim(x,y)→(0,0)
g(x,y)
f(x,y) = 0. The following sufficient condition is straightforward.

Proposition 5.1. (1) If 0 < Lg(f) < 1, then

lim
(x,y)→(0,0)

g(x, y)

f(x, y)
= 0.

(2) If Lg(f) > 1, then the limit lim(x,y)→(0,0)
g(x,y)
f(x,y) does not exist.
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In the case when Lg(f) = 1 the limit lim(x,y)→(0,0)
g(x,y)
f(x,y) may exist or not.

However, we can deduce the following corollary from the proof of our main results
(Theorem 3.2).

Corollary 5.1. Let f ∈ R[x, y] be regular in x and VR(f) be the set of real ap-
proximations of non-real Newton–Puiseux roots of f as defined in Definition 2.1.
Asume that f and g have no common factors, then

lim
(x,y)→(0,0)

g(x, y)

f(x, y)
= 0

if and only if f = 0 has only isolated point (0, 0) and

lim
y→0

g(φ(y), y)

f(φ(y), y)
= 0

for all φ ∈ VR(f).

This provides a new algorithsm, which are easy to implement, to determine

whether the limit lim(x,y)→(0,0)
f(x,y)
g(x,y) exists and compute the limit if it exists.

Acknowledgment. A part of this work was done while the first author and the
third author were visiting at Vietnam Institute for Advanced Study in Mathematics
(VIASM) in the spring of 2022. These authors would like to thank the Institute for
hospitality and support.

Conflict of interest. On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Data availability. Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

References

[1] E. Brieskorn and H. Knörrer. Plane algebraic curves (Translated from the German by John
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[5] S. T. Dinh, H. V. Hà, and N. T. Thao.  Lojasiewicz inequality for polynomial functions on

non compact domains. Internat. J. Math., 23(4):1250033 (28 pages), 2012.
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[16] H. V. Hà. Global Hölderian error bound for non-degenerate polynomials. SIAM J. Optim.,
23(2):917–933, 2013.
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