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ON EMBEDDING OF SOBOLEV SPACES
OF INFINITE SMOOTHNESS

DINH DUNG

Dedicated to Professor Nguyen Dinh Tri on his stztieth birthday

Abstract. Embedding theorems are traditional for Sobolev spaces of finite smoothness. We
give necessary and sufficient conditions for the non-triviality and ezistence of the embedding of Sobolev
spaces of multivariate functions of infinite smoothness using the Conyez Analysts technique.

1. INTRODUCTION

Let A ¢ R™ x (0,1]. The Sobolev space W3(A) consists of all measurable
functions on R™ for which the seminorm

I flwza):= sup allfO,
(r,a)€EA

is finite, where || - ||, denotes the norm of Lo(R"); r € R™, a € (0,1]; and f(7) is
the Weyl-Liouville fractional derivative of order r (see Section 2 for definition). If
A is unbounded, then fuctions of W3(A) have a common infinite smoothness.

In this paper we study necessary and sufficient conditions of the existence
of the embedding W (A) — W(B) for preassigned A and B, i.e. of the validity of
the inequality

HfHW'.r(B) e MHf“W:(A)s fe W2(A), (1)

with some positive constant M.
Dubinskii [3] considered multidimensional Sobolev spaces of infinite smooth-
ness. We refer to [1,2] for surveys and bibliography on embedding theorems for
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unidimensional Sobolev spaces of infinite order. In particular, a necessary and
sufficient condition for the existence of the embedding the unidimensional Sobolev
space W,(A) into W,(B) was obtained in [1].
Let
Fu(t) := sup alt|”
(r,a)eA

n g . -
where |t|” = [] |¢;|™, t; denotes the j — th coordinate of t € R".
i=1

The purpose of this paper is to show that with certain restrictions on A the
embedding (1) is equivalent to the inequality

Fp(t) < MFa(t), Vt € R" (2)

with the same constant M given in (1).

2.PRELIMINARIES

By a certain reason the fractional derivatives can not be defined for distri-
butions of the Schwarz space S'(R") (cf., e.g., [4]). We give a definition of the
Weyl-Licuville fractional derivative for a special class of distributions, introduced
by Lizorkin [4].

Let X C S(R™) be the space of all test functions ¢ such that

+o00
/ o) dhes O f = oy it o= 0,152, ..

— o0

and let Y = F(X) where ¥ is the Fourier transform. Both spaces X and Y are
non-trivial closed subspaces of $(R™). Let X’ and Y’ be the spaces of distributions
defined as the sets of continuous functionalson X and ¥, respectively. The Fouried
transform 7 : X' — Y’ and its inverse 77! : Y’ — X’ are defined in a way similar
to those for distributions from the Schwarz space. The space Y possesses the
following property: if ¢ belongs to Y, then so does (E,p)(t) := (st)"p(t) for any
n - - . 3
r € R", where (it)" = .Hl(it]-)”, (12;)7 = [t;|"7 exp(‘Fr,signt;). (The space
J:

S(R™) does not possess this property.) This allows us to define the fractional
derivative (") for a distribution f € X’ by putting

f(r) ::7—10E,.03rf

where the operator E, : Y! — Y is defined as follows:
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<E.f,p>=<f,Ecp>, feY' peY.

Note that the space Ly(R") may be considered as a subspace of X’ or Y'or
Y. If f € X’ such that f(7) € Ly(R"), r € R", then we have the Plancherel
equality

15Oz = [ 10717 e » ®

Rn

In what follows, as usual, we identify measurable functions f and ¢ on R™
if the set {:c|f(z)¢g(z)} has zero measure.

To formulate and prove the results we need terminology and some facts from
Convex Analysis. We recall some definitions and refer to the book [5] for more
details. For f : R®™ — [—o00,+00] let epi f := {(z,y) € R**!|f(z) < y}; dom
[ :={z € R*|f(z) < oo}. A function f is called convex if epi f is a convex set in
R"*1. The function

£2(t) = sup(< z,t > —f(z))

n
is called the conjugate function of f, where < z,t >= [] z;t,;. For C C R" denote
J=1
by co C and cl C the convex and closed hull of C, respectively. A vector z € R"
is called receding direction of C if z — mz € C for any r € C and m > 0.

3. NON-TRIVIALITY

First we note the following property of Fy:

F4 is continuous on int domFj,. (4)
Indeed, let
Ga(z):= sup (<r,z> +lna).
(na)eA
Then,
Fu(t) =expGa(injty|,... ,In|t,]|) (5)

and G4 is a convex function. Thus, G4 is continuous on int dom G4 (cf. [5,
Theorem 10.1]). This and (5) imply (4).
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Theorem 1 . For any f € W;(A) the support of ¥ f is almost contained in
dom F, i. e.

meas{supp¥ f\domF,} = 0. (6)
Moreover, the space Wy(A) is non-trivial, i. e. W2(A) # {0} iff

int domF4 # 0.

P r o o f. Since the convex function G4 is closed as the upper bound of
a selection of affine functions, by (5) so is F4 also, and therefore, dom F, is
closed. Assume that there exists a non-zero function f € W5(A) such that meas
{suppF f\domF,} # 0.. Then ¥f is non-zero, too. Thus, there exists a closed
ball V such that V NndomF4 = 0 and

'/|ff|2dt > 0.
\ 4

By (3) we have

11y a) = sup a/|t 7 f2dt
(rayea J.

> sup a/|t|2'lff[2dt2 sup ig{/(a2|$|2')/|7f|2dt.
14

(r'la‘)eA v (r,a.)eA z

Note that a?|z|?" are lower semicontinuous on the compact set V. Hence,
by virtue of the relation V N domF,4 = @ it is not hard to verify that

. 4 2r
(riggA Jgrelt‘",(a Iz = 0.

Thus, we obtain || f{lw,(4) = co. This contradiction shows that if f € W2 (A),
then (6) holds.

Now let int dom F4 = 0 and f € W(4). Since the measure of the boundary
of dom F, is zero, from (6) it follows that meas(supp#f) = 0. This means that
only the zero function belongs to W, (A4).

On the contrary, assume that int dom F4 # . Then there exists a closed
ball U C int domF,. Let g = 7~ !xy where xuv 1is the charateristic function of U.
Obviously, ¢ is non-trivial. Using (3) and (4) we have

Hgllw.(a) < Vol U max F4(t),

proving g € Wy(A). O
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4. EMBEDDING THEOREMS

Theorem 2. Let int dom F4 # 0. Then the embedding (1) implies (2).

Proof. Let (1) hold. This is equivalent to the fact that for any (s,b) € B
and f (& W‘Z(A)

b|f2 <M sup af fO,. (7)
(r,a)eA

We first transform this condition into a form more suitable for use. In view
of (3) from (7) we have

b2/|t|2s|.‘r"f|2dt§M2 sup a2/|t|2'|.7f|2dt
Rn.

Rn (r,a)eAa
for any (s,b) € B and f € Wy(A). By replacing = = (In |t1],... ,In|t,]), from the
latter inequality it is easy to verify that
b? / exp < 2s,z > f(z)dz < M? / exp 2GA($)f(z)dz: (8)
R" R"

for any (s,b) € B and for all non-negative functions f for which the right side of
(8) is finite.
In order to prove (2) it suffices to show that for any (s,b) € B

blt|? < MF4(t), Vt € dom Fj,. (9)

Let t° be an arbitrary point of dom F4. Put z° = (In|t3],... ,In|t2|). Then

z° € domF,. Since G4 is a closed convex function, dom G4 is a closed convex

set. Moreover, int dom G4 # 0 because int dom F4 # @. Hence it follows

that there exists a n-dimensional simplex S C domG 4 such that z° € S. Let

Sy = hS + (1 — h)z°, 0 < h < 1. Clearly, z° € S, C domG4. As a closed

convex function G 4 is continuous on every locally simplicial subset of dom G4, in

particular, on S, (cf. [5, Theorem 10.2 ]). Applying the characteristic function of
Sh we have

b%(VolSy)~? /exp < 28,z > dz < M?(VolSy) ™! /exp ZGA(q;)dx.
S Sh

Using the mean value theorem and then, letting h tend to zero in this in-
equality, we obtain

b® exp < 2s,z° >< M?exp 2G 4(z°).
This is equivalent to (9) with arbitrary ¢ = ¢°.0
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Theorem 3 . Let int dom Fy # @ and let co {(r,~Ina) | (r,a) € A} be a
closed set in R"*!, Then. (2) implies the embedding (1).
Proof. Let (2) hold. For the sake of simplicity we put M = lin (2)
Thus, (2) is equivalent to
<s,z2>+Inb< Gu(z), Vz € domG4 (10)
for any (s,b) € B. To prove (1) it is sufficient to check (7). From the definition of
the conjugate function it follows that (10) holds if and only if for any (s, b) € B
(s, —Inb) € epi G. (11)
It is not hard to verify that

epi G, =cl(Q + H) (12)

where Q@ = co{(r,—~Ina) | (r,a) € A} and H={z € R""! | =2, = =z, =
0; Zn4+1 = h, h > 0}. We have cl (Q + H) = cl Q + cl H because H does not have
any recedmg direction opposite to the receding directions of Q (cf. [5, Corollary
9. 1. 2]). Therefore, cl (Q + H) = Q + H because both sets Q and H are closed.
Hence by (11) and (12) we have (s,—Inbd) € Q + H. It means that there exist
elements (r7, @’) € A and non-negative numbers ho,mj, j =1,... ,k, such that

I (13)

s = Zm,-rj, (14)
=1
k .
Inb = Z m;Ina’ — hg. (15)
J=1

Let f € W3(A). By (3), (13) and (14) we have

k .
17918 = [ (IT 1P 1777) ™ ae

Rn j=1

On the other hand, the Holder inequality gives

Hltlz"lffl ""dt<H /|t|2"’|.‘r’flzdt)m’.

Rn J 1 Rn
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Therefore,

173 < H A ]

=il

Hence by (13) - (15) we obtain

; k k il &
b”f(s)nz < exp ( H m; In o — ho) H ||f(rj)||;nj <

J=1 y=1

'
II a’llf('”ll ™5 < llwy (3.0

Combining Theorems 2 and 3 we have finally:

Theorem 4 . Let int dom F, # 0 and let co {(r,—1na) | (r,a) € A} be a
closed set. Then (2) is a necessary and sufficient condition for the existence of the

embedding (1).
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