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ON EMBEDDING OF SOBOLEV SPACES
OF INFINITtr SMOOTHNESS

DINH DUNG

Dedicated to Professor Nguyen Dinh Tri on h"is sirtietk birthday

Abstract. Emhdding theotems arc huditiond for Sobleu spces of finite srnmthness. We

giue necessary and sufuient conditiorw for the non-triialitg an'd. eristence of the embedding of Soboleo

sptces ol multiua,;dn. lunctioru ol infinite srnoothness uing the Coruten Analgsis teclnique.

1.  INTRODUCTION

Let A C Rn x (0,11. The Sobolev space Wr(A) consists of all measurable

functions on Rn for which the seminorm

l l / l lw,(A) : :  sup ol l / ( ' )  i l '
( r , o ) € A

i s  f in i te ,  where l l  . l l2  denotes the norm of  t r2(R") ;  r  €  Rn,  o € (o,1] ;  and. f ( ' )  i .

the Weyl-Liouville fractional derivative of order r (see Section 2 for definition). If

A is unbounded, then fuctions of W2(A) have a common infinite smoothness.

In this paper we study necessary and srrfficient conditions of the existence

of the embedding Wz@) ,- Wz(B) for preassigned A and B, i.e. of the validity of

the inequality

l l / l l - , rp l  S Ml l f l lw. ' (o,  I  ewz(A) '  (1)

with some positive constant M.

Dubinskii [3] considered multidimensional Sobolev spaces of infinite smooth-

ness. We refer to [f,Z] for surveys and bibliography on embedding theorems for
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unidimensional Sobolev spaces of infinite order. In particular, a necessary and
sufficient condition for the existence of the embedding the unidimensional Sobolev
qlace Wo@) into Wr(B) ** obtained in [l].

Let
Fn( t )  : :  sup a l t l '

( r ,a)eA

where : Il ltil'i , ti denotes the 7 - th coordinate of , € Rn.
j : l

The purpose of this paper is to show that with certain restrictions on ,4, the
embedding (f) is equivalent to the inequality

Fa(t) 1 MFa(r), Vr € R'

with the same constant M given in (t).

(2)

2.PRELIMINARIES

Bv a certain reason the fractional derivatives can not be defined for distri-
butions of the schwarz space S'(R") (cf., e.g., [a]). We give a definition of the
Weyl-Liouville fractional derivative for a special class of distributions, intro,iluced
by Lizorki" [4].

Let X C S (R') be the space of all test functions p such that

t f  v ( t ) d t 1 :  o ,  . l  :  1 , .  . .  , n i  / c  =  o ,  L , 2 , . . .

and let Y : 7(X) where f is the Fourier transform. Both spaces X and y are
non-trivial closed subspaces of S (R"). Let X/ and ltr be the spaces of distributions
defined as the sets of continuous functionals on X and y, respectively. The Fouried
transform 7 : Xt -- Yt and its inverse f 

-r : Y, ---, X, are defined in a way similar
to those for distributions from the Schwarz space. The space Y po.r".res the
following property: if 9r belongs to Y, then so does (.E,.gr)(t) :: (it),p(t) forany
r € R', where (it), : f\@,),,, (it,1,i -- 

ltil,i exp(fr;signrr.). (The space
i = l

S(R") does.not possess this property.) This allows us to define the fractional
derivative .f (') for a distribution / € X' by putting

1 ( r ) ; :  f _ r o E r o f f

where the operator E, : Yt -- y, is defined as follows:

+oo

-oo
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1  E r L < p  ) : 1  f  , E r g  > ,  f  e Y ' ,  p  e Y .

Note that the space Lz(E") may be considered as a'subspace of X'orYtor
Y'. If f e X'such that Ik) e Lz(R"), r € R', then we have the Plancherel
equality

1;1r,)11!:  Ipg,gylrat (s)
J,, 

'
In what follows, as usual, we identify measurable functions / and g on Rn

if tlre set {rlt1r)*c@)} has zeio measure.
To formulate and prove the results we need terminology and some facts from

Convex Analysis. We recall some definitions and refer to the book [5] for more
de ta . i l s .  Fo r  / :  R ' - - - '  [ - * , *m ]  l e t  ep i . f  : :  { ( z , y )  e  R" *n l / ( " ) - i  y } ;  dom

I z: {r € R,'l/(") < @}. A function / is called convex if epi / is a convex set in
Rn+r. The function

. f - ( t )  : :  sup(< r , t  )  - / ( " ) )

is called the conjugate function of f, where I n,t t: ff riti. Fot C c R' denote

by co C and cl C the convex and closed hull of C, rJrit".tively. A vector z €F..n
is called receding direction of C if r - rnz € C for any r€ C and m ) O.

3. NON-TRIVIALITY

First we note the following property of Fa:

Fa is continuous on int domFa.

Indeed, let

G a(x)  : :  sup (< , , ,  >  *  ln  o) .
( r , o ) € A

Then,

Fe(t )  :  eXp Ga( ln  l t t  l ,  .  .  .  , ln  l t " l )  (S)

and Ga is a convex function. Thus, Ga is continuous on int dom Ga (cf. [s,
Theorem 10.11). This and (5) imply (a).

(4)

u-
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Theorem I . For any f € Wz(A)
dom Fa i. e.
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the support of 7 f r's a.lmost contained in

mea"s{suppf f\domFn} : O.

Moreover, the spacewz(A) is non-trivial, i. e. Wz(A) + {O) itr

int domFe * 0.

P r o o f. Since the convex function Ga is closed as the upper bound of
a selection of affine functions, bv (s) so is Fa also, and therefore, dom .Fa is
closed. Assume that there exists a non-zero function f e W2($ such that meas
{supp//\domFa} * o. . Then 7l is non-zero, too. Thus, there exists a closed
ball I/ such that I/ n domFa : 0 and

(6)

' l v r ro t>0.
v

BV (e) we have

ll f ll'*,(,{ ) : t"l,lo.^

( r , o )e  A itl,@'l'|") | vrf ot'
v

Itl2'v f 12at

" l
R 4

"I
v

Itf ir ylzat

Note that o'lrl2' are lower semicontinuous on the compact set y. Hence,
by virtue of the relation V n domFa : 0 it is not hard to verify that

(':"j:^ ilr'{"' l"i") : *'

Thus, we obtain l l f  l l*"Ul: oo. This contradict ion shows that i f  f  € W2(A),
then (6) holds.

Norv let int dom Fe:0 and f e Wz(,4). Since the measure of the boundary
of dom .Fa is zero, from (6) it follows that meas(suppf/) : 0. This means that
only the zero function belongs to lV2(,4).

On the contrary, assume that int dom Fa I 0. Then there exists a closed
ball U C int domFn. Let g - 7- lX1, where Xu is the cha.rateristic function of U.
Obviously, g is non-trivial. tlsing (f) and (4) we have

prov ing g €Wz(, { ) .  D

llgll*,(A) < vol t/ %?Ir"(t),
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4. EMBEDDING THEOBEMS

Theorem 2. Let int dom Fe * 0. Then the embedding (1) implies (2).

P r o o f. Let (1) hold. This is equivalent to the fact that for any (s,6) e B
and /  ew2{A)

6l l1t") l lz  3 M sup al l l t ' ) ; ; r .
( r ,a )€A

We first transform this condition into a form more suitable for
of (3) from (7) we have

u'  [  f tP" l f  f  12 dt  <
I "

R,"

l o r a n y ( s , 6 )  e  B a n d  f  e W 2 ( A ) .
latter inequality it is easy to verify

(7)

use. In view

f

Mz sup 
"' I

( r , o )eA  J
R n

B y r e p l a c i n g r : (
that

f
/  " *p 

2Ga(r)dr .
J

S6

h tend to zero in

a2(vots6) -t 
[ "*, 

12s,x ] d.x < M2(volS6)-r
J

Sp

I t f ' f  y12at

l n  l r1 l , .  .  .  , ln  l f  " l ) ,  
f rom the

U' I  u*p 12s,x> f  (x)d,x l  Mz [ "*rzc1,(x]f  
(r)d,r (8)

J I
R N  R N

for any (s,b) € B and for all non-negative functions / for which the right side of
(s) is finite.

In order to prove (Z) it suffices to show that for any (s, il e n

6lrl" < MFe(t), Vr € dom F'a. (e)
Let t" be an arbitrary point of dom Fa. Put r '  -  ( ln | t i  l ,  .  .  .  , lnlt i l ) .  Then

c" € domF4. Since Ga is a closed convex function, dom Ga is a closed convex
set. Moreover, int dom Gt * 0 because int dom F,q * 0. Hence it follows
that there exists a n-dimensional simplex ,9 C domG4 such that r" € S. Let
Sh : hS + (t - h)r", 0 { h < 1. Clearly, '  ro € S1 C domGa. As a closed
convex function Ga is continuous on evely locally simplicial subset of dom G n, in
particular, on ,S;, (cf. [5, Theorem 10.2 ]). Applying the characteristic function of
^9r. we have

Using the mean value theorem and then, letting
equality, we obtain

62exp 12s, r "  >S M2 exp2Ga(r" ) .

This is equivalent to (9) with arbitrary t:  lo.f l

this in-



Theorem 8 .  Let in tdomFe,*0 andlet  co { ( t , - lna)  |  ( r ,a)  e  A}  bea
clced set in Ro+r . Then. (2) implies the embedding (t).
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P r o o f. Let (2) hold. For the sake of simplicity we put M : L in
Thus, (2) is equivalent to

1 s,t > * ln b 3 Ge(c), Vc € domGa

j : l

Let f €Wz(a). Bv (3), (ts) and (ta) we have

r k
;;1r") 111 : / ( II ltlr,' lf f lr)*, dr.t t '  t t '  

l -  i = L

On the other hand, the Holder inequality gives

(?).

(10)

for any (s,6) e E. To prove (r) it is sufficient to check (7). :From the definition of
the conjugate function it follows that (r0) holds if and only if for any (s, b) e B

(s, - ln b) e epi c|.

It is not hard to verify that

(1r)

epi G\ - 
"t(Q 

+ H)

w h e r e  Q : c o { ( r , - l n " ) l ( r , a )  e  A }  a n d f l : { c €  E ' + r  l " r :  t r z : . . . : n n :
O ;  xn+ t :  h ,h  >  0 ) .  Wehave . l  (Q+ f f ) : "1  Q+c l  I f  because  f f  does  no t  have
any receding direction opposite to the receding directions of Q (cf. [b, Corollary
9. 1. 2l). Therefore,.l (8 + H): Q + r/ because both sets e and i/ rru closed.
Hence by (11) and (f Z) we have (s, - ln b) e Q + H. It means that there exist
elements (r i ,ai1e A and non-negative numbers h6, *i ,  i  -  1,. . . ,k,such that

k
f-

)  m ; : I .
/J

i : L

k
\-1 ;

s : 
)_ffi jr '  ,
j : L

(12)

(13)

(r4)

(15)

k

l n b : L * r l n a i  -  h s .

!. r]!,lrt" r 
r rl')^' dt < 

fr,, lttpn tr 
tpdt)^, .
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fherefore,
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k

l l/(")ll; < II ll/(') ll ',^'.
1 = L

Hence by (ts) - (15) we obtain

k k

6ll/(s) ll, S u*p ( Itr -, ln a' - n.) fl ll/(/ ) llT, s
j = l  i : I

h

< I I  @i17ra) l l r ) - 'S l l / l lw,(A) 'n
j : L

Combining Theorems 2 and 3 we have finally:

Theorem 4 .  Let  in t  dom Fe#6 andlet  co { ( " , - lna)  |  ( r ,a)  e  A)  be a
closed set. ?Jren (2) is a necessary and sufficient condition for the existence of the
embedding (1).

REFERENCES

l. Dinh Dung: On embedding theorems for Sobolev spaces of infinite order, C.
R. de I 'Academie bulgare des Sciences,42, No 3(1989), 33-35.

2. Yu. A. Dubinskii: Sobolev spaces of infinite order and differential equations,
Teubner-Text zur Mathematik, Leipzig, Band 87, 1986.

3. Yu. A. Dubinski i :  Limits of Banach spaces. Embedding Theorems. Appli-
cations to Sobolev spaces of infinite order, Mat. Sb. 110 (1979) , 428-439.

4. P. I. Lizorkin: Generalized Liouville differentiation and functional spaces
L;(8"), Mat. sb. 60(1963), 325-253.

5. R. Tyrrell Rockafellar: Convex Analysis, Princeton Univ. Press, Princeton,
New Jersey, 1970.

Institute of Computer Science
Lieu Giai, Ra Dinh
Hanoi

Receiued December 70, 7990


