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Abstract. In this Wper ue inaeatigatn. cqzle Dcsdc qre.sHow ol reiewal pnmesses, ind,uezd
by uniform actions ol la;allg compct grr,ups on toplqicd sryes-

INTRODUCTION

Renewal processes on topological groups were studied in depth by many
authors (see, for example, [l], [2]). This article is devoted to the renewal the-
ory on topological spaces with transformation groups. An essential obstacle in
establishing and proving basic results, concerning the finiteness of the renewal
function, is the possible appearance of noncompact stationary subgroups at points
of the space. Generally, the study of random processes on topological spaces with
transformation groups (in particular, on homogeneous spaces) is much more com-
plicated than.on topological groups and some open problems still exist in this area.
For instance, the Loynes dichotomy theorem is not true for induced random walks
on homogeneous spaces in general, although it holds under certain assumptions
([3], [5], [8]). some reasons of this observation were discussed in [s], [o].

In this paper we consider uniform actions of locally compact groups on topo-
logical spaces and investigate some basic questions of renewal processes induced
,by these actions on the corresponding topological spaces.

The paper was written when the author was staying of the Max - planck -
Institut filr Mathematik'in Bonn.

tn

to



Dn Ttong Thi

1. UNIFORM ACTIONS OF GROUPS

Let M be a topological space, G a topological group with the unit element e.

WesaythatGacts(cont inuously)  onM i f  g ivenacont inuousmap I :GxM - ,  M

satisfying the following conditions:
i) For any I € G the map g : M --- M, sending each point r € M to the

point !(g,r), is a homeomorphism. In this case we write gx: f  (g,x).

i i )  gh(r) :  g(Hr\ for any g,h € G and any r e M.
i i i)  ec: c for any s € M. I

For each poirrt n € M the set

H , :  { g  €  G l g n :  r }

is a closed subgroup of G, called the stationary subgroup at the point r. It is easy

to check that i f  Y : gn then If,  :9H,9-r :  {ghg-rlh e H"}.
The set

G , :  { g "  e  M l g  e  G )

is called the orbit of the point c under the action G.G" is a closed subset of M,
homeomorphic to the homogeneous space GlHr.

Definition 1.1. An action of a topological group G on a toplogical space
M is colled. unilorm at o point r € M if for any neighborhod U of r there erists
a n e i g h b o r h o o d U t  o f  r  s u c h t h a t h ( U ' ) c U  l o r  a l l h € H " .  A n a c t i o n G  o n M  i s
called unilorm if it is uniforrn at each point of M.

Proposition 1.2. If an action of a topological groap G on a topolagical
space M is uniform at a point r e M, then it is uniform at each paint of the otbit
Gr .

P r o o f. Assume that x € M is uniform point of the action G, that is for
any neighborhood U of. r there exists a neighborhood [/'of c such that b(U') c U
for every h e Hr. Lett ing A: gr e G, we have Hu: gHrg-r. Suppose now
that V is an arbitrary neighborhood of y. Set U : g-r(y). According to the
assumption one can choose a neighborhogd Ut of z such that Hr(U') c {/. Put
Vt : g(Ul\. We have Hr(V') :  gHeg-t (V') :  sH,(U') c g(U) : V. This
completes the proof.

Corollary 1.3. Suppose the aetion G on M is transitive. Then it is
uniform if ond only if it is uniform ot a point of M.

For any two points E,A € M consider the set

H ( r , y ) :  { s  e  G l g r  :  y } .

Clearly, H(r,A) + 0 if and only if c and y belong to the same orbit. i.e.
G, :  Gr .  Assume that  H(r ,V)  *  0  and V :  gr .  Then h e H(r ,y)  i f  and only
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if hr : gr or g-rhx -- r. This means that g-Lh e H, or h € gUx. Thus,
If(",9) -- gi l , .Similarly, H(r,y): Hvg.From the definit ion i t  fol lows that.

H(' ,v)-r  :  H(u,z)  for  anY n,Y € M'

Now, let U and V be subsets of M and put

( r  .1 )

H(U,V) :  u H@,y).
( z , y ) e U x V

We note that if U is a neighborhood of z ot V is a neighborhood of y, then
H(U,V) is a neighborhood of H(r,y) in G. From (1.1) it follows that

H(U,V)- '  :  H(V,U) for  any U,V c M. (1 .2 )

Theorem 1.4. Let a topological group G act unifarmly on a topological
space Iu[. Then for any x € M and any open subsets V,vt such thatV c Vt and
v is compact, there exists a neighborhood u of x such that H (tl,v) c H(r,v,).

From Theorem 1.4 and the equality (1.2) it follows immediately the following
corollary 1.5. Giuen a unit'orm action ol o toplogical group G on a

topological space M. Then, for any a € M and open subsets (J,(Jt such thatA c u,
is compact, there erists a neighborhoodv of y suchthot H(tt,v) c H(U,,v).

To prove Theorem 1.4 we need the following lemmas:
Lemma 1.6. Let the action G on M be unifarm. suppose r,a € M are

arbitrary points. Then for any neighborhood V of y there erists a neighborhood, IJ
of  t  such that  h(U)  C V for  a l l  h  € H(r ,V) .

P r o o f. If r1(2, y) : 0, then the statement is obvious. Assume that
H(r,A) * 0 andlet gr - gr. As noted above we have H(r,V) : gH". Suppose now
lhat v is a neighborhood of y. we put (J : l-t(y). By definition there exists
a neighborhood U' of s such that H,(U') c U. Hence H(r,y)(U,) :  gH,(Ut) c
g(U) : I/, completing the proof.

Lemma 1.7. Giuen a uniform action G on M. Let x € M be an arbitrary
po in t , v  andv t  be  opensubse ts  i nM such tha tV  cv ,  andv  i s  compac t .  Then
there er is ts  a neighborhoodu of  x  suchthat  h(u)  cv '  for  any h€ H(r ,v) .

P r o o f.  I f  Y n G, : 0, i .e. H(r,V) : 0, then the statement is obvious.
Assume that v ) G, + 0. suppose z € v ) Gr. Each element h € H(r,v)
can be expressed in the form h : gh', where ht e H(r,z), g e H(z,V). From
the continuity of tlte action G on M it follows that'there exists a neightorhood
v' of z in M and a neighborhood K, of the unit e in G such thar g(v") c vl
for any g € K'- choose a neighborhoodw, of z in M such lhatw" c z" and
G,)w' C {g"lg € K"}. By Lemma 1.6 there exists a neighborhood (J. of r
in M such that h(u,) C w" for any h e H(r,z). since V r:G, is compact
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(because 7 is .ompact), one can select a finite covering {W ',) rS;Sx of T t G ,.
k

Set U : ff Urr. We prove thatU is a desired neighborhood of c. Namely, suppose
r : 1

h e n@lV) e n@,V )G"\) and let h e H(a,W,,)..  As noted above, h ha.s the

form /a : ;h i ,where h 'e  H(r ,z ; ) ,g  € K ' , .  Then h(U) :  gh ' (U)  c  ght (U' , )  c

g(W",) c 9(V',) c Vt . The proof is complete.
p r o o f of Theorem 1.4. A neighborhoodU C M is said to be symmetric

at a point n €U if gn € U implies g-tn €U f.ot any g € G. Clearly, for any

neighborhood U of r in .M one can find a neighborhood U' C U, symmetric at r

(such neighborhooils can be obtained from symmetric neighborhoods of the unit

e in the group G).
Now, suppose v,vt are open subsets in M such that v cv c v' and 7 is

compact. According to Lemma 1.7 one can choose a neighborhood U of c such

that h(U) C V' f,or any h e H(r,V). Moreover, by virtue of the above remark
(J can be supposed to be symmetric at the point z. Let y € u,y : gfr. Then

g-rn € t/ .  For any A e H(U,{) *" have f - hg-r, where h e H(n,V). Hence,

Qr :  hg - ln€  h (U)  CV ' ,  i . e .  0  €  H( r , I / ' ) .  Consequen t l y ,  H (U ,y )  c  H ( t ,V t ) .

The proof is complete.

2. THE RENEWAL FUNCTIONS OF THE ACTION

Suppose now that M is a locally compact normal topological space and G is

a locally compact normal topological group, acting uniformly on M. Consider the

o- fields on M and G, consisting of Borel subsets (that is the o- fields generated

by coropact subsets on M and G, respectively).

Let p be a Radon measure on M and g a Randon measure on G. The

convolution of p and q is defined to be a Radon measure p * I on M given by the

formula

p *,s(x)
f

:  I  p(g- 'X)q(ds)
J
G

(2.1)

for any Borel subset X on M. In particular, if M : G then we havg the convolution

of two Radon measures on G. It is easy to verify that

( p * q t )  x { t 2 : p * ( h * q 2 ) (2.2)

for any Radon measure p on M and any Radon measures (1 and Q2 on G. In
particular, the equal\ty (2.2) makes it possible to define the convolution powers

q*n : q * q *. . .  * q (n t imes) of a Radon lnea$ure q on G.
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Now, suppose that g is a normalized positive measure (i.e. probability dis-
tributions). Then so are its convoltion powers g*'. The surls

q:  io - ' ,  en
d:0

where g*0 : I denotes the normalized measure concentrated at e, are called, the
renewal lunctions of the action G, associated to q.

Definition 2.1. suppose z € M. A point n € M is said to be finite with
respect to (z,q) (or sirnply, (z,q)-finite) if there exists a neighbbrhodw. of z in
M' such thot,Q(H(W",r)) < oo.

Remark 2.2. If z # G" then there exists a neighborhood W, of z such that
W'A Gr:0, i .e. H(W,,,*) :  Q. This means that r is (e,q)-ffnite.

Theorem 2.3. If r € M is a (z,q)-finite point, then there exists a neigh-
borhood U of r in M, consisting of (z,q)-finite points.

P r o o f" Assume that n is (2, g)-finite. By definition there exists a neigh-
borhood w of. z such rhat Q(H(w,")) ( oo. choose a neighborhood,wt af z,
W' c I'7 and w' i, compact. According to corollary l.s o$e can find a neighbor-
hood u of z, satisfying the condit ion H(ryt,u) c H(w,z).-For any a € t/  we have
H(rV' ,y)  c  H(W' ,U)  c  H{W,r) .  Consequent ly ,  e(H(W,, i l  S e(H(W,r)  (  oo.
This means that y is a (e, g)-finite point" Thus, the theorem has been proved.

Definition 2"4. suppose z € M. A point n € M is callcd infintte uith
respect to (z,q) (or simply (z,q)-infinite) if it is not (z,q\-finite.

Definit ion 2.5. A (r,q)-f inite point r € M is cal led (z,q)-posit iue i f
Q(H(w,")) > o for any neighborhoodw of the point z. Inthe conueisi ,*r r rc
called (2,q)-tr ivial.

clearly, M spli ts into the (z,q)-posit ive, (z,g)-tr ivial and (z,g)-inf inite
points.

Theorem 2.6. suppose z € IvL A point r € M is (z,q)-trivial if and only
i f  r  (  { r  :  szls e supp(Q)}.

P r o o f. First of all we note that supp(O) i. the closur" or fi s,rpp(q-t).
Sett ing 

t :0

,S ; :  { c :  gz lg  €  Supp(q . r ) }

S : { r - s z l s e S u p p ( Q ) }

we have S : ( f i  Sl). Suppose r € S;, i .e. r :  gz,where g € Supp(q.d). Then
i :0

for any neighborhood I,7 of z the set ff(1,1/, c) contains a neighborhood of g in G and

: f o.',
i :0
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therefore q"i(H(W,")) > 0. consequently, Q(H(W,")) > 0. Suppose r € ^9 and

letw be a neighborhood of z: By force of corollary 1.5, H(w,r) > H(w" u) for a

neighborhood W, of z and a neighborhood U of c. On the other hand, U contains

a point 
"' 

e U S;, saf, n' e S;. Obviously, H(W',U) ) H(W',n')' By using the
i :O

fact proved rLo*'" we have Q(H(W,n) >- Q@(W',r')) > 0. Thus, all the points of

S are not (z,g)-trivial. Suppose no\^t r t' S. There exists a neightorhood U of x'

such that UnS : 0. This means that If  (.z, U)nSupp(Q) : 0, i-e. Q(H(2, U)) : O.

According to Theorem 1.4, H(W,t) C H(z,U) for a neighborhood I'V of a' Hence,

Q@(W,")) : 0. Consequently, n is (z,q)-trivial. The proof is complete'

Remark p.7" It, is easy to see that Supp(Q) coincides with the closed semi-

group in G, generated bY SuPP(q).

Theorem 2.8. Suppose that a point z € M is (z,q)-fr'nite. Then every

point of G" is (z,q)-finite.

P r o o f. The assumption of',the theorem means that Q(I/(!7,2)) < oo

for a neighborhood W of z. ReplacirrgW by a smaller neighborhood if necessary

one can assume, by virtue of Corollary 1.5, that Q(II(W,W)) < oo' Consider a

symmetric neighborhood U of z, satisfying the conditions: U C U C W, U \s

compact. According to the Urysohn's Lemma, there exists a continuous function

, p ( " i o . t M s u c h t h a t 0  < p ( r )  S  1 , p ( s )  : 1 o n D  a n d p ( r )  : 0  o n  M \ w '

Consider the functions:

n : O r l r 2 r . . . .

We have

p" ( r ) p(s- ' " )Q^(dg)

p(g- t  r )Q 
"Us)  

1  Q n( / r (W,  c ) ) .

Hence, if z € I,V then

p " ( r )  <  Q ^ { H ( W , W ) )

On the other hand,

f
p,( r )  :  I  v (o- ' r )Q"(dg) ,

J
G

p(s-t dQ,U'il + f
J

C\ fr i rv'z)

I: l
J

H (W,r)

: t
J

H (W,x)

S q@W,1,7)) < oo. (2.3)
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k- ' {Q^(ds) :

f
(g - t " )s .o (d ,g )  +  I  e (g- '  " )en_r  

r  q (ds)
J
G

9^(t)  :  f  '
J
G

f: J ,
G

: +t(r)

P u t t i n g s : l z - t g , * u
has the form

r f
+  |  v (o - '  " ) (  |  Qn- r (h - t  d ,s )q(dh) ) .

J J
G G

have g - hs, g-r :  s-1h-r; and the expression above

p^(r)  :  p(r)  *  [  t  I  eG- '  (h- '  d)e*-1(d,s))q(d.h)
J J
G G

:  p(x)  + [  v^-r(h-rr)q(dh)
J
G

:  p( r )  +  [  w^-r (g- t  r )q(dg) .
t

In partitular, if r # W then 9r(r) : 0, and we have

f
e"(x)  :  

J  
r " - r (o- t  x )q(dg) .

G

Now we prove by induction that

(2-4)

p 
" (x)  

1  c  :  max{Q(I /  (W,W)) ,  t } . (2.5)

Reallg for n: 0 we have grs(r) : p(") ( r. Assume that (z.s) is true for
n - r .  I f  r €  w  then  p " ( r )  <Q(H(w ,w) )  s  c  by  fo rceo f  (2 .3 ) .  t f  r {  14 /  t hen
from (2.4) and the induction hypothesis it follows that gn(") S c. By that way
(Z.S) is true for n.

Furthermore, for any r € G, we have

f f
e"(x) - 

J wk-'r)Q^(ds) > J 
pk-t")e,(ds)

G E(U ,z )

:  t  e^@g1.
J

H (U, r )

(2.6)



Dao Ttong Thi

From (z.s) and (2.6) it follows that Q(I/(U,')) 3c < oo' Consequentlv' z

is a (2, q)-finite point. The proof is complete'

Theorem 2.9. suppose that a point z € M is (2, g)-in finite' Then every

point of S : {, 
-- grls € Supp(Q)} is (z'q)-infnite'

p r o o f. The assumption of the theorem means that Q(H(W,W)): oo for

any neighborhood W of z. Choose a neighborhood U of z such that Lr CU CW

and U is compact. Consider an Urysohn's function rp defined as in the proof of

Theorem 2'6. We have

p" ( r \

f

H (Lt , r )

Now we construcr a symmetric neighborhood V of z such that H(z,V) c H(U,r)

for any r e v. choose a symmetric neighborhood u1 of. z such that I1'(I/1) c

(.J.(Jrl  G" can be expressed in the.form {g' lg € A}' where A is a symrnetric

neigibo.hood of e in i. Further, take I/ so that V nG": {gzlg € B} for B being

a slmmetric neighborhood of e such that 82 c A. we verify that v satisfies

r t  r  e  V  aG,  and  g  €  H( .2 ,V ) .  We  have

€ B). Therefore, 9 : bzh (h e II") and

z e Uy ConsequentlY, g € H(U'r) '  BY

rborhood V' of z such that H(Vt,V') c

H(z,V). Thus, from (2.7) i t  fol lows that

= 
|  

, k - t t )Qn(ds) :  I  
, t t - " )Q, (dg)  >

G H (w ,x )

f
: p ( r ) +  l p " - t ( s

J
G

(2.7)

p . ( r ) ) Q n ( H ( V ' , , V ' ) )  - ' *  f o r  n € V '

We use the following formula

p"( r )
- 'r)q(dg),

derived in the proof of Theorem 2'6' For each s €

have q( f / (V, r ) )  >  0 '  Then

f
p * (x )  2  l  r " - , (g - t  x )q (dg )  - -

a(d,r)

From (Z.O) one can obtain the fol lowing formula

(2.8)

(2.e)

S1 :  { z  :  gz l s  €  Supp(q ) }  we

oo (n - '  oo).
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For each

Similarly, one can prove that 9^(r) --+ oo for any

S"pp(q-d)) ,  r  :  0 ,  1 ,2, . . .  .  Consequent ly ,  p , ( r )  - - -+ oo

43

f f
e.(x)  :  p(n)  + |  vb- ' " )q(dg)  + |  v*_z(s- r " )q- r@g).

J J
G G

r  €  52 -  
{ " :  gz lg  € Snpp(q-r ) }  we have q-r (H(V," ) )  >  0.

f
e"(r)  > |  v.-r(g-t r )q. ' (ds) -  *  ( ,  -  *) .

J
H (V,x,)

f
+ 

J  
pk-  |  r )e  ̂ (dg)  :

c\ I I ( f lc)

< Q"(H(W,x) ) '

I
(W ' ' )

I
(W,x)

(2 .10 )

Therefore,

r e ^ 9 ; : { r : g z l g
oo

fo ranyu €  U ^9 , .
l : O

On the other hand we have

e"( r )  : p(s- t  r )Q"@s)

p(g- t  4Q"@s)

s € U S; we have Q,, (H(W,c)) * oo for any neighborhood
l : 0

H

H

for eachThus,

W o f z .

consequently, c is a (2, q)-infinite point. If c € t : 
ng 

s;, then any neigh-

b o r h o o d [ } , o f r i n t e r s e c t s U ' , a t a p o i n t c , . T h , e r e f o r e , Q ^ ( H ( W , U , ) ) >
.  i : l

9"@(ry,r')) - oo for any neighborhood w of e. choosing a suitable neighbor_
hood IV'C [,7 we have Q,,(H(W,")) > e*(H1W,,U,)) _, oo for any W. Hence c
is a (2, g)- inf inite point.

Now let us sum up the results of this section. It turns out that from The-
orems 2.6 - 2.9 i t  fol lows a complete descript ion of tr ivial,  posit ive and inf inite
points .

Theorem z. t } .  a)  I f  a  po int  z  € M is  (z ,q)_f in i . te  ( i .e .  e(H(W,,W))  < *
for a neighborhoodw of z), then every point x € M is (2,f l-r inir". irq"i"nver, the
poin.$s o{ s : {x : gzlg € supp(Q)} are (z,q)-posit ive and the points of M \ .g
are (z ,q) - t r iv ia l .

b) I f  a point z € M is (z,q)-inf inite (1.e. a@(W,W)): oo for any neigh_
borhoodW of z), then every point of 

.5.: {r:  g"lg € Supp(e)} is (2, qi_infir i t"
and every point of M \,S is (2, q)-tr ivial.
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3. THE RENEWAL FUNCTIONS OF THE SPACE

Let p be a positive measure on M and g a normalized positive measure on
G. Then the mea"sures p*  q" i  ( i :0 ,1,2, . . . )  are pos i t ive.  The sums

p * Q :  I  p * Q * i ,  p * Q n :  I  p * q * i
i :O r :0

are called the renewol functions ol the space M, associated to p and g.
Definition 3.1. A point r € M is soid to be finite with respect to.(p,q)

(or simply (p,q)-fr.nite) if it is (z,q)-finite for ony z € Supp(p). In the conuerse
case n is colled infinite with respect to (p,q) (o, simply (p,q)-infinite).

Remark 3.2. If z Q G" then there exists a neighborhood W, of z such
that 17, nG':0. Con'r:equently, r is (z,g)-f inite. This means, in part icular,
that for a point r e M to be (p, q)-finite it suffices that c is (2, q)-finite for each
z € G , n S u p p ( p ) .

Theorem 3.3. Suppose all the points of G, n Supp(p) are (p,q)-finite.
Then every point of G, is (p, q)-finite.

P r o o f .  L e t y  e  G , a n d z  €  G , n S u p p ( p ) .  S i n c e  z i s ( p , g ) - f i n i t e  i t i s ,
in particular, (2, g)-finite. Then by Theorem 2.10 y is (a, g)-finite too. Taking
Remark 3.2 into account we can conclude that y is a (p, q)-finite point. The proof
is complete.

Theorem 3.4. Suppose that G, n Supp(p) contains (p,qj-infinite points.
?ien every point.rf t.he set R : U{g : gzlg € Supp(Q)}, w.here t.he sum runs

t.hrouglr the set {z € G,n Supp(e)l'z fs (r,q) - inf inite},i" (p, q)-in finite. The
points of G, \ R are (p,q)-finite.

P r o o f. According to Theorem 2.10 for each (e, g)-infinite point z €
G, o Supp(p) the points of {r : gzlg € S"pp(Q)} are (e, q)-infinite. Therefore, all
the points of -B are (p, g)-infinite. suppose c t' R. Applying Theorem 2.10 again we
see that x,is (z,g)-trivial for any (z,q)-infinite point z € Supp(p). Consequently,
r is a (p, q)-finite point and that completed the proof.

Note that from the proof of Theorem 3.3 it follolvs the following useful fact
corollary 3.5. All the points of G,n supp(pl are (p,q)'-finite if and onry

if each point z e G,n Supp(p) is (z,q)-finite.

Theorem 3.6. Assume that supp(p) is compact and let n be a (p, q)-finite
point. Then thete exisfs a neighborhood W of Supp(p) and a neighborhood U of
x in M such t.hat Q(H(W,U)) < *.

P r o o f. Assume that r is (p, q)-finite. For each z € supp(p) one can find
a neighborhood w, of z such that Q(f/(W,,r)) < oo. Choose a neighborhood w!

t-__
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of z,W'rCW" aldW|is compact. By Corollary 1.5 there exists a neighborhood
U" of s such that H(Wt,,U") c H(W,,c). Since Supp(p) is compact one can select

a f inite covering {W',|ryi<1 of Supp(p). Sett in gW : [ *:,  and U
t : l

k: I u",,
i :  I

k
we have  H(W,U)  :  U  H(W:  ,U )

r :  I

Q(H(w,u) )  <  DQ(H(w, , , ' ) )  <
i : 1

k k
c  u  H(W," , ,U" , )  C  l )  H(W" , ,x1 .  Hence,

i : L  r =  I
m. The proof is complete.

such
A i s

, k ) .

From Theorem 3.6 it follows immediately the following result.
Corol lary 3.7. Assume that Supp(p) is compact and let r be a (p,q)-f inite

point. Then there erists a neighborhoodU of x, consisting of (p,q)-finite points.

Theorem 3.8. Assume that supp(p) t" compact and let A be a compact
subset of M, consisting of (p,q)-finite points. Then

a) There exists a neighborhood w of supp(p) and a neighborhood u of A
such that  Q(H(W,U))  < * .

b ) p * a @ ) < p * Q ( U )  < o o .

P  r o o f .  B y T h e o r e m 3 . 6 e a c h p o i n t  n €  A  h a s a n e i g h b o r h o o d ( J ,
that Q(f/(W,,U,)) ( oo, where W, is a neighborhood of S"pp(p). Since
compact one can cover it by a finite number of subsets l/, (f : 1,2., , . .

k
Sett ing U :  U

i : l

Q@(w,u))  <
have

K

U,, .and W :  f f  W, ,  we have I I (W,U) C
K

u H(W' , , . ( r , , )  f l t ,nce
i = lt : l

Q(H(W", ,U, , ) )  (  6 ,  p rov ing  the s ta tement  a ) .  F r t r thc r .  we

p *  Q(u)
- 'u)e@g) : p(s- 'u)Q( .ds)

Q@g) :  Q( I / ( supp(p )  ,u )  <  Q(H(w,u ) )  <  * .

Thus, the proof is completed.
Rernar lc  3.9.  I f  G is  a  compact  group then e( I I ( r ,G") ) :  e(G) :  oo for

any z € M. From Theorem 3.8 i t  fol lows immediately that there is no orbit,
intersecting Supp(p) and consisting of (p, q)-finite points.

Theorem 3.1O. If  r is a (p,q)-inf inite point of M, then p * e(U): oo for
any neighborhood U of r.

P r o o f .  A s s u m e c i s  ( p , g ) - i n f i n i t e a n d l e t  z  €  s u p p ( p )  s u c h t h a t  z  i s
(e,q)-inf inite' Suppose [/ is a neighborhood of z. Choose a'neighborhood L/,

h

t
t : l

I
.EI (Supp(p),t-r)

f
:  l P b

J
G

s l
I I  ( s u p p ( p ) , I t )

I
I
L
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of r such that D' c tl. According to Lemma 1.7 one can find a neighborhood
v of z so that g(v) c u for any g €_H(z,U'). since z € supp(p) we have
p(V) > 0.  Further we have p*Q(U):  I  pk-rUla@g) a 

, r ! ,u, rp6. iU)e(dg),
where |(g-ru) > p(v) because v c g-lu for any 9 € H(2,u,). Therefore,
p*Q@) 2 p(V)Q@(",U' , ) )  2 p(V\Q@(W,")) :  6,  where w is a neighborhood
of z, completing the proof.

4. THE RENEWAL EQUATIONS

Let I be a continuous function on M. We define Radon measures Fn on M
by setting

F"(X)

for any Borel subset X C
formula (a.t) as follows

g-t ar]||q"@s1 ( 4 . 1 )

* Q"-r * Q one cin transform the

f f:  JI I  f  k- ' ")p(
G X

M. Since Qn : I

f f f rF.(x) : 
JtJ Ib-")p(g-tax1l1ad * 

J IJ t{o-'")p(g-ra*)lQ* * q(dg)
G X  c X

I rowuq . I ( rc-',)p(s-' d.dx l en-r(h-L d.g)q(d,h)l
X  G X  G

f f f- 
J I@n(dx) + 

JU l@-r,)p(g-rd.,)le._r(h-'dg)q(d.h)|.

Substituting h- tg : r and therefot€ g : h", g-r - s-rrr-l we have

F*(x) : 
I t@r(dn) + 

I, I ( ri-rh-rs)p(s-r dh-"rQn-,(as)lq(dh)
X  G G X

f f: 
J f@)n(dt)+ 

J 
,"-'(h-Ln)q(dh).

G X

Hence, we have the iterative formula
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F"(X) - '4q(/,s).
(4 .2 )

The equation

f fF(x): 
J I@)n(dr)+ I 

, tn- '*)q(dg),
X G

where F is a Radon mea,sure on M and X is any Borel subset
renewal equation with respect to the function /.

From Corollary 3,7 it follows that if S"pp(p) is compact, then the union of
all orbits, consisting of (p, q)-finite points, is an open subset in M. we denote it
by M. .

Theorem 4.1. Assume that supp(p) ir compact and f is a continuous
function, vanishing on M \ M-. Then the measure F, given by setting

4 7

l f:  I  f@)p (d r )+  l F "_ r k
J J
X G

l ' (x) : I t I  f(n-' ,)e(g-tad]g1as1
t " *

for any Borel subset X c M, satislles the equation (l.S).

P r o o f. First of all we note that tr'(X) : F(X a M-)for any Borel subset
X c M, because f : o on M \M-. Therefore, without loss of generality we
may suppose that x c M-. Let x be a compact subset of M-. By Theorem
3.8,_8(f/(w,u)) ( oo for a neighborhood I,y of supp(p) and a neighborhood u of
X. The sequence {Q"(H(w,u))} is non-decreasing and bounded by e(H(w,u)).
Hence, Q"(H(W,U)) - Q(H(W,U)) when n --+ oo. On the other h";d we have

lP(x)  -F" (x) l  :F(x)  _F"(x) - L ar11q@g1

Q"(dg))  <

f f= 
JiJ f k- ' ,)p(s
G X

(4 .3 )

of M, is called the

(4.4)

compact subset

(+.2) we obtain

f f- 
J I  J fb- ' ,)p(s-t d.4)e*(dg) :
G X

f f:  I  t l  fk- ' , )p(s- tdr) l (a@s)-
J J

H(W,U) X

!  c lQ@(w, u))  -  Q^(H(w,u))J *  o,

where c

X. This
r'(X) :

: max
ze supp(p)

means that

I y1x)p1ar1
X

/(r). Consequently, F"(X) -- F'(X) for any

Fn - .F. Now, letting 7a --+ oo in the formula
+ I F(g-,X)q@g), compteting the proof.

G
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