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RENEWAL PROCESSES ON TOPOLOGICAL
SPACES WITH UNIFORM ACTION GROUPS
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Dedicated to Professor Nguyen Dinh Tri on his siztieth birthday

Abstract. In this paper we investigate some basic questions of renewal processes, induced
by uniform actions of locally compact groups on topological spaces.

INTRODUCTION

Renewal processes on topological groups were studied in depth by many
authors (see, for example, [1], [2]). This article is devoted to the renewal the-
ory on topological spaces with transformation groups. An essential obstacle in
establishing and proving basic results, concerning the finiteness of the renewal
function, is the possible appearance of noncompact stationary subgroups at points
of the space. Generally, the study of random processes on topological spaces with
transformation groups (in particular, on homogeneous spaces) is much more com-
plicated than on topological groups and some open problems still exist in this area.
For instance, the Loynes dichotomy theorem is not true for induced random walks
on homogeneous spaces in general, although it holds under certain assumptions
([3], [5], [8]). Some reasons of this observation were discussed in (8], [9].

In this paper we consider uniform actions of locally compact groups on topo-
logical spaces and investigate some basic questions of renewal processes induced
by these actions on the corresponding topological spaces.

The paper was written when the author was staying at the Maz - Planck -
Institut fir Mathematik sn Bonn.
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1. UNIFORM ACTIONS OF GROUPS

Let M be a topological space, G a topological group with the unit element e.
We say that G acts (continuously) on M if given a continuous map f : GXM — M
satisfying the following conditions:

i) For any g € G the map g : M — M, sending each point z € M to the
point f(g,z), is a homeomorphism. In this case we write gz = f(g, z).

ii) gh(z) = g(Hz) for any g,h € G and any z € M.

ili) ex = z for any z € M. | '

For each point £ € M the set

H, = {g € Glgz = z}

is a closed subgroup of G, called the stationary subgroup at the point z. It is easy
to check that if Y = gz then H, = gH,¢™ ' = {ghg~'lh € H.}.
The set
G, = {9z € M|g € G}

is called the orbit of the point = under the action G.G is a closed subset of M,
homeomorphic to the homogeneous space G/H.

Definition 1.1. An action of a topological group G on a topological space
M s called uniform at a point £ € M if for any neighborhood U of z there exists
a neighborhood U' of = such that h(U') C U for all h € H,. An action G on M 1s
called uniform if it is uniform at each point of M.

Proposition 1.2. If an action of a topological group G on a topological

space M is uniform at a point x € M, then it is uniform at each point of the orbit
G:l

P roof. Assume that £ € M is uniform point of the action G, that is for
any neighborhood U of z there exists a neighborhood U’ of = such that A(U') C U
for every h € H,. Letting y = gz € G, we have H, = gH,¢™'. Suppose now
that V is an arbitrary neighborhood of y. Set U = ¢g~!(V). According to the
assumption one can choose a neighborhood U’ of = such that H,.(U") C U. Put

= g(U'). We have Hy(V') = gH g }(V') = ¢H.(U') C ¢g(U) = V. This

completes the proof.

Corollary 1.3. Suppose the action G on M 1s transitive. Then it is
untform if and only if 1t 1s uniform at a point of M.

For any two points z,y € M consider the set

H(z,y) = {g € Glgz = y}.

Clearly, H(z,y) # 0 if and only if £ and y belong to the same orbit, i.e.
G, = Gy. Assume that H(z,y) # @ and y = gz. Then h € H(z,y) if and only
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if hz = gr or ¢g"'hz = z. This means that ¢g'h € H, or h € gH,. Thus,
H(z,y) = gH,. Similarly, H(z,y) = Hyg. From the definition it follows that

H(z,y)"! = H(y,z) for any z,y € M. (1.1)

Now, let U and V be subsets of M and put

HU V)= |} H(zy)
(z.y)EUXV

We note that if U is a neighborhood of z or V' is a neighborhood of y, then
H(U,V) is a neighborhood of H(z,y) in G. From (1.1) it follows that

H(U,V)~! = H(V,U) for any U,V Cc M. (1.2)

Theorem 1.4. Let a topological group G act uniformly on a  topological
space M. Then for any x € M and any open subsets V,V' such that V c V' and
V' is compact, there exists a neighborhood U of z such that H(U,V) ¢ H(z,V').

From Theorem 1.4 and the equality (1.2) it follows immediately the following

Corollary 1.5.  Given a uniform action of a topological group G on a
topological space M. Then, for any y € M and open subsets U,U’ such that U c U’
15 compact, there exists a neighborhood V of y such that H(U,V)c H(U',y).

To prove Theorem 1.4 we need the following lemmas:

Lemma 1.6.  Let the action G on M be uniform. Suppose T,y € M are
arbitrary points. Then for any neighborhood V of y there exists a netghborhood U
of = such that h(U) C V for all h € H(z,y).

Proof If H(z,y) = 0, then the statement is obvious. Assume that
H(z,y) # 0 and let y = gz. As noted above we have H(z,y) = gH.. Suppose now
that V' is a neighborhood of y. We put U = ¢~ (V). By definition there exists
a neighborhood U’ of z such that H,(U') C U. Hence H(z,y)(U') = gH (U') C
g(U) = V, completing the proof.

Lemma 1.7. Given a uniform action G on M. Let £ € M be an arbitrary
point, V and V' be open subsets tn M such that V Cc V! and V 1s compact. Then
there exists a neighborhood U of z such that h(U) C V' for any h € H(z,V).

Proof HVNG:=90,ie H(z,V) =0, then the statement is obvious.
Assume that V. N G, # 0. Suppose z € V N G,. Each element h ¢ H(z,V)
can be expressed in the form h = gh', where A’ ¢ H(z,2), g € H(2,V). From
the continuity of the action G on M it follows that there exists a neighborhood
V. of z in M and a neighborhood K, of the unit e in G such that g(V,) c v/
for any ¢ € K,. Choose a neighborhood W, of z in M such that W, C V, and
G:NW, C {gz|g € K,}. By Lemma 1.6 there exists a neighborhood U, of z
in M such that h(U,) C W, for any h € H(z,z). Since V1 G, is compact
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(because V is compact), one can select a finite covering {W. h<i<k of VNnaG,.

k
Set U = () U,,. We prove that U is a desired neighborhood of z. Namely, suppose
1=1
he H(z,V) (= H(z, V NG,)) and let h € H(z,W,,). As noted above, h has the
form h = gh', where h' € H(z,2),9 € K.,. Then h(U) = gh'(U) C gh'(Uz;) C
g(W2,) € g(Vz,) € V'. The proof is complete.

P r oo f of Theorem 1.4. A neighborhood U C M is said to be symmetric
at a point z € U if gz € U implies g 'z € U for any g € G. Clearly, for any
neighborhood U of z in M one can find a neighborhood U "' ¢ U, symmetric at z
(such neighborhoods can be obtained from symmetric neighborhoods of the unit
e in the group G).

Now, suppose V, V' are open subsets in M such that V C VcViandVis
compact. According to Lemma 1.7 one can choose a neighborhood U of z such
that h(U) c V' for any h € H(z,V). Moreover, by virtue of the above remark
U can be supposed to be symmetric at the point z. Let y € U,y = gz. Then
¢-lz € U. For any § € H(y,V) we have § = hg™!, where h € H(z,V). Hence,
gz = hg 'z € R(U) C V', ie. § € H(z,V'). Consequently, H(U,V) C H(z,V').
The proof is complete.

2. THE RENEWAL FUNCTIONS OF THE ACTION

Suppose now that M is a locally compact normal topological space and G is
a locally compact normal topological group, acting uniformly on M. Consider the
o- fields on M and G, consisting of Borel subsets (that is the o- fields generated
by compact subsets on M and G, respectively).

Let p be a Radon measure on M and ¢ a Randon measure on G. The
convolution of p and ¢ is defined to be a Radon measure p * ¢ on M given by the
formula

pea(X) = [ pla~X)a(do) (2.1

G

for any Borel subset X on M. In particular, if M = G then we have the convolution
of two Radon measures on G. It is easy to verify that

(prxaq1) *q2=p*(q1%q2) (2.2)

for any Radon measure p on M and any Radon measures ¢; and g on G. In
particular, the equality (2.2) makes it possible to define the convolution powers
g" =q*q*...%q (n times) of a Radon measure q on G.
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Now, suppose that ¢ is a normalized positive measure (i.e. probability dis-
tributions). Then so are its convoltion powers ¢**. The sums

o0 n
@3 Yyith,  en@eis DY
1=0 1=0
where ¢*® = 1 denotes the normalized measure concentrated at e, are called the

renewal functions of the action G, associated to q.

Definition 2.1. Suppose z € M. A point £ € M is sasd to be finite with
respect to (z,q) (or simply, (z,q)-finite) if there exzists a neighborhood W, of z in
M such that Q(H (W, z)) < oo.

Remark 2.2. If 2 ¢ G, then there exists a neighborhood W} of z such that
W.NGz =0,ie H(W,z)=0. This means that z is (2, q)-finite.

Theorem 2.3. If t € M is a (z,q)-ﬁnitel point, then there exists a neigh-
borhood U of « in M, consisting of (z, q)-finite points.

P r oo f. Assume that z is (z,¢)-finite. By definition there exists a neigh-
borhood W of % such that Q(H(W,z)) < oco. Choose a neighborhood W' of z,
W CW and W' is compact. According to Corollary 1.5 one can find a neighbor-
nood U of z, satisfying the condition H(W’,U) C H(W,z). “For any y € U we have
H(W'y) c HW' , U) c H(W,z). Consequently, QHAW',y) < Q(H(W,z) < co.
This means that y is a (z, g)-finite point. Thus, the theorem has been proved.

Definition 2.4. Suppose z € M. A point £ € M 1s called tnfinite with
respect to (z,q) (or simply (z,q)-infinite) if it 1s not (z, q)-finite.

Definition 2.5. A (z,q)-finite point £ € M is called (z, q)-positive if
Q(H(W,z)) > 0 for any neighborhood W of the point z. In the converse case  is
called (z, ¢)-trivial.

Clearly, M splits into the (z,q)-positive, (2,q)-trivial and (z, ¢)-infinite
points.

Theorem 2.6. Suppose z € M. A point z € M is (2, q)-trivial if and only
if z-¢ {z = gz|g € Supp(Q)}.

P roof. First of all we note that Supp(Q) is the closure of fj Supp(g**).
1=0
Setting

S; = {z = gz|g € Supp(¢**)}
S = {z = gz|g € Supp(Q)}

we have § = (U Si). Suppose z € S;, i.e. z = gz, where g € Supp(¢**). Then
for any nelghborhood W of z the set H(W, z) contains a neighborhood of g in G and
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therefore ¢*'(H (W, z)) > 0. Consequently, Q(H (W, z)) > 0. Suppose z € S and
let W be a neighborhood of 2z: By force of Corollary 1.5, H(W,z) > H (W',U) for a
neighborhood W' of z and a neighborhood U of z. On the other hand, U contains

(¢ o]
a point ' € | Si, say, z’' € S;. Obviously, HW',U) > H(W',z'). By using the

t=0
fact proved above we have Q(H(W,z) > Q(H(W’,z')) > 0. Thus, all the points of
S are not (z, g)-trivial. Suppose now z ¢ S. There exists a neighborhood U of z
such that UNS = @. This means that H(z,U)NSupp(Q) = 9, i.e. Q(H(2,U)) = 0.
According to Theorem 1.4, H(W,z) C H(z,U) for a neighborhood W of z. Hence,
Q(H(W,z)) = 0. Consequently, z is (2, g)-trivial. The proof is complete.

Remark 2.7. Tt is easy to see that Supp(Q) coincides with the closed semi-
group in G, generated by Supp(q)-

Theorem 2.8. Suppose that a point z € M is (z,q)-finite. Then every
point of G is (z,q)-finite.

Proof The assumption of the theorem means that Q(H(W,z)) < oo
for a neighborhood W of z. Replacing W by a smaller neighborhood if necessary
one can assume, by virtue of Corollary 1.5, that Q(H(W,W)) < oo. Consider a
symmetric neighborhood U of 2, satisfying the conditions: U c U ¢ W, U is
compact. According to the Urysohn’s Lemma, there exists a continuous function
©(z) on M such that 0 < p(z) < 1, p(z) = 1 on U and p(z) =0 on M\ W.
Consider the functions:

on(z) = /cp(g"l:c)Qn(dg), i =0l

&
We have

on(@) = [ olo~'2)Qulde) + / og712)@n(dg)

J

H(W,z) G\H (W,z)

= / (g™ 'z)Qn(dg) < Qn(H(W,z)).
H(W,z)

Hence, if z € W then

pn(z) < Q.{H(W,W)) < Q(H(W,W)) < co. (2.3)
On the other hand,
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o9 'z)Qn(dg) =

w9~ 'z)q™°(dg) +/<p(g“z)Qn_1 * g(dg)
G

= ola) + [ a7 2)([ @ur(hdg)ala).

Putting s = h~1g, we have g = hs, ¢!

has the form

= 57 'h~1; and the expression above

onlz) = () + [ ([ ols™ (572)@u-1(ds))aldh)

G

=p(z) + [ on-1(h"z)q(dh)

= p(z) + | en_1(97'z)q(dg).

Qe O Q

In partitular, if z ¢ W then p(z) = 0, and we have

son(v;) = / on-1(97 "' z)q(dy). (2.4)

G

Now we prove by induction that

on(z) < ¢ = max{Q(H(W,W)),1}. (2.5)

Really, for n = 0 we have po(z) = p(z) < 1. Assume that (2.5) is true for
n—1. If z €W then p,(z) < Q(H(W,W)) < ¢ by force of (2.3). If z ¢ W then
from (2.4) and the induction hypothesis it follows that ¢, (z) < ¢. By that way
(2.5) is true for n.

Furthermore, for any z € G, we have

on(z) = [ o(o7'2)@u(ds) > | el mea)

H(U,z)

G
= / Qn(dg). (2.6)

H(U,z)
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From (2.5) and (2.6) it follows that Q(H(U,z)) < ¢ < co. Consequently, z
is a (2, q)-finite point. The proof is complete.

Theorem 2.9. Suppose that a point z € M is (z,q)-infinite. Then every
point of S = {z = gz|g € Supp(Q)} is (z, q)-infinite.

P roof. The assumption of the theorem means that Q(H(W,W)) = oo for
any neighborhood W of z. Choose a neighborhood U of z such that U C Ucw
and U is compact. Consider an Urysohn’s function ¢ defined as in the proof of
Theorem 2.6. We have

on(a) = [ (o72)Qn(de) = [ el aan) >

G H(W,z)

(9™ 2)Qn(dg) = Qn(H (U, 2))- (2.7)

vV

H(U,z)

Now we construct a symmetric neighborhood V of z such that H(z,V) € H(U, z)
for any z € V. Choose a symmetric neighborhood Uy of z such that H.(U1) C
U.Uy 0 G, can be expressed in the form {gz|lg € A}, where A is a symmetric
neighborhood of e in G. Further, take V' so that VNG, = {gz|g € B} for B being
a symmetric neighborhood of e such that B2 ¢ A. We verify that V satisfies
our requirement. Indeed, suppose that z € VNG, and g € H(2,V). We have
z = byz (by € B) and gz = bz € V (b2 € B). Therefore, g = boh (h € H.) and
g~'z = h~'b;'byz € U because b; 'byz € Uy. Consequently, g € H(U,z). By
using Theorem 1.4 one can find a neighborhood V' of z such that HWV', V) C
H(z,V). Thus, from (2.7) it follows that

onl(z) > Qu(H(V',V')) 5 00 for zeV. (2.8)
We use the following formula
onlz) = (o) + [ onsla D)alda). (2.9)
G

derived in the proof of Theorem 2.6. For each z € 5, = {z = gz|g € Supp(q)} we
have q(H(V,z)) > 0. Then

pn(z) 2 / Pn_1(97"2)q(dg) = 00 (n — ).
H(V,z)

From (2.9) one can obtain the following formula
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Pn(z) = p() +/90(9_‘$)4(dg) +/‘0"—2(g“z)q*2(dg)- (2.10)
G G

For each z € S = {z = gz|g € Supp(¢*?)} we have q"*(H(V,z)) > 0. Therefore,

ks / n-2(9"'2)0" (dg) — 00 (n — o).

H(V,z)
Similarly, one can prove that p,(z) — oo for any z € S\ =r i =gslge
oC
Supp(¢**)},i =0,1,2,.... Consequently, p,(z) — oo for any z € |J S;.
i=0

On the other hand we have

SN / (4™ 2)Qn(dg) + / (9™ 2)Qn(dg) =

H (W,z) G\H(W,z)
), / o(0712)@n(dg) < Qu(H(W, 2)).
H(W,z)

Thus, for each z € |J S; we have Q,(H(W,z)) - oo for any neighborhood

1=0
W of z. .
Consequently, z is a (2, g)-infinite point. If 1 € § = U S:, then any neigh-

=1
borhood U, of z intersects |J S; at a point z’. THerefore, Q,(H (W, U,)) >
x i=1

@n(H(W,z')) — oo for any neighborhood W of 2. Choosing a suitable neighbor-
hood W' C W we have Q,(H(W,z)) > Qn(H(W',U,)) — oo for any W. Hence
is a (z, ¢)-infinite point.

Now let us sum up the results of this section. It turns out that from The-
orems 2.6 - 2.9 it follows a complete description of trivial, positive and infinite
points,

Theorem 2.10. a) If a point z € M is (2,9)-finite (ie. Q(H(W,W)) < s
for a neighborhood W of z), then every point z € M is (2,9)-finite. Moreover, the
points of S = {z = gz|g € Supp(Q)} are (2,9)-positive and the points of M 1B
are (z, q)-trivial. -

b) If a point z € M is (2, q)-infinite (i.e. Q(H(W,W)) = oo for any neigh-
borhood W of z), then every point of S = {z =gz|g € Supp(Q)} is (2,q)-infinite
and every point of M \ S is (z, q)-trivial.
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3. THE RENEWAL FUNCTIONS OF THE SPACE

Let p be a positive measure on M and ¢q a normalized positive measure on
G. Then the measures p * ¢** (1 =0,1,2,...) are positive. The sums

n
PxQ=) pxq”, pxQ.=) pxg”
1=0 1=0

are called the renewal functions' of the space M, associated to p and gq.

Definition 3.1. A point £ € M s said to be finite with respect to (p,q)
(or simply (p, q)-finite) if it is (z,q)-finite for any z € Supp(p). In the converse
case z is called infinite with respect to (p,q) (or simply (p, q)-infinite).

Remark 3.2. If z ¢ G, then there exists a neighborhood W, of z such
that W, N G, = 0. Consequently, z is (2, ¢)-finite. This means, in particular,
that for a point £ € M to be (p, g)-finite it suffices that z is (z, g)-finite for each
z € Gz N Supp(p).

Theorem 3.3. Suppose all the points of G, N Supp(p) are (p, q)-finite.
Then every point of G is (p, q)-finite.

Proof. Letyée G:and 2z € G, N Supp(p). Since z is (p, g)-finite it is,
in particular, (z, ¢)-finite. Then by Theorem 2.10 y is (2, ¢)-finite too. Taking
Remark 3.2 into account we can conclude that y is a (p, ¢)-finite point. The proof
is complete.

Theorem 3.4. Suppose that G, 0 Supp(p) contains (p, q)-infinite points.
Then every point of the set R = |J{y = gz|g € Supp(Q)}, where the sum runs

z
through the set {z € G. N Supp(p)|z s (z,q) —infinite}, is (p,q)-infinite. The
points of G, \ R are (p, q)-finite.

P roof. According to Theorem 2.10 for each (z,g)-infinite point z €
Gz NSupp(p) the points of {z = gz|g € Supp(Q)} are (z, q)-infinite. Therefore, all
the points of R are (p, ¢)-infinite. Suppose z ¢ R. Applying Theorem 2.10 again we
see that z is (2, g)-trivial for any (2, g)-infinite point z € Supp(p). Consequently,
z is a (p, ¢)-finite point and that completed the proof.

Note that from the proof of Theorem 3.3 it follows the following useful fact

Corollary 3.5.  All the points of G N Supp(p) are (p, q)-finite if and only
if each point z € G, N Supp(p) is (2, q)-finite. '

Theorem 3.6. Assume that Supp(p) is compact and let = be a (p, q)-finite
point. Then there exists a neighborhood W of Supp(p) and a neighborhood U of
z in M such that Q(H(W,U)) < oo.

P roof. Assume that z is (p, g)-finite. For each z € Supp(p) one can find
a neighborhood W, of z such that Q(H (W, z)) < co. Choose a neighborhood W’
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of z, W’z C W, and W'z is compact. By Corollary 1.5 there exists a neighborhood
U, of z such that H(W.,U,) C H(W,,z). Since Supp(p) is compact one can select

k k
a finite covering {W }1<i<k of Supp(p). Setting W = (J W, and U = N U,

=1 gi—21

we have H(W,U) = U HW, ,U) C U BWISU.N c CJ H(W,, ,z). Hence,
1=1 1=1
Q(H(W,U)) < Z ( ( & ,:c)) < 00. The proof is complete.

From Theorem 3.6 it follows immediately the following result.
Corollary 3.7.  Assume that Supp(p) is compact and let z be a (p, q)-finite
point. Then there exists a neighborhood U of z, consisting of (p, q)-finite points.

Theorem 3.8. Assume that Supp(p) is compact and let A be a compact
subset of M, consisting of (p, q)-finite points. Then

a) There exists a neighborhood W of Supp(p) and a neighborhood U of A
such that Q(H(W,U)) < oo

b) px Q(4) < p+ QU) < oo.

P roof. By Theorem 3.6 each point z € A has a neighborhood U, such
that Q(H (W,,U,)) < oo, where W, is a neighborhood of Supp(p). Since A4 is
compact one can cover it by a finite number of subsets U,, (1 = 1.2,... k).

k k k
Setting U = |J U,, and W = [} W, we have H(W,U) ¢ |J H(W, U, ) Hence

1=1 g1 11

k
QIH(W,U)) < 3 Q(H(W,,,U,.,)) < oo, proving the statement a). Further. we
i=1

have

P QU) = / Bl @) = / p(g~1U)Q(dg)
G H(Supp(p),U)

< [ Qo) = QH(SwR(R).U) < QUIW, D)) < o

H (Supp(p),U)

Thus, the proof is completed.

Remark 3.9. If G is a compact group then Q(H(z,G,)) = Q(G) = o for
any 2 € M. From Theorem 3.8 it follows immediately that there is no orhit,
intersecting Supp(p) and consisting of (p, ¢)-finite points.

Theorem 3.10. If z is a (p, g)-infinite point of M, then p*Q(U) = oo for
any neighborhood U of .

P roof. Assume z is (p,q)-infinite and let z € Supp(p) such that z is
(2, ¢)-infinite. Suppose U is a neighborhood of z. Choose a neighborhood U’

o e
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of z such that U c U. According to Lemma 1.7 one can find a neighborhood

V of z so that g(V) < U for any g € H(z,U'). Slnce z € Supp(p) we have

p(V) > 0. Further we have p * Q(U fp “W)Qdg) > [ plem'U)Q(dg),
H(z,U")

where p(g~'U) > p(V) because V C g~'U for any ¢ € H(z,U’). Therefore,

p*xQ(U) > p(V)Q(H(2,U")) > p(V)Q(H (W,z)) = 0o, where W is a neighborhood

of z, completing the proof.

4. THE RENEWAL EQUATIONS

Let f be a continuous function on M. We define Radon measures F, on M
by setting

Fo(X) = //f gz g 'dz)|Q,(dg) (4.1)

for any Borel subset X C M. Since Q, = 1 + @n-1 * g one can transform the
formula (4.1) as follows

/[/ flo~)ple ™ dz)]1(dg) + /[/ 7o~ 2)plg ™ d2)|Q@n + q(dg) —

=/f(z),, /[/fg 2)p ldzn/czn 1(h~"dg)q(dh))

/ F(=)p(dz) / / 1(0™ 2)p(g~1dz)]Qn_1 (h~"dg)q(dh).

Substituting h~1g = s and therefore g = hs, g~ = s~ 14~! we have

Hence, we have the iterative formula
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Fo(X) = /f(z)p(dz) +/Fn—1(g—1X)Q(dg). (4.2)
X G

The equation

PO = [ 1(o)pld) + | Pl xa(da), (4.3)
X =

where F is a Radon measure on M and X is any Borel subset of M, 15 called the
renewal equation with respect to the function f.
From Corollary 3.7 it follows that if Supp(p) is compact, then the union of

all orbits, consisting of (p, g)-finite points, is an open subset in M. We denote it
by M.

Theorem 4.1. Assume that Supp(p) is compact and f Iis a continuous
function, vanishing on M \ M*. Then the measure F, given by setting

k0 = [([ a7 2)ple am)l(as) (4.4)
X

for any Borel subset X C M, satisfies the equation (4.3).

Proof. First of all we note that F(X) = F(X N M*) for any Borel subset
X C M, because f = 0 on M \ M~. Therefore, without loss of generality we
may suppose that X C M~. Let X be a compact subset of M*: By Theorem
3.8, Q(H(W,U)) < oo for a neighborhood W of Supp(p) and a neighborhood U of
X. The sequence {Q,(H(W,U))} is non-decreasing and bounded by Q(H(W,U)).
Hence, Q,.(H(W,U)) — Q(H(W,U)) when n — co. On the other hand we have

F(0) = a0 = F(X) = (%) = [1[ 1667 2)p0™ )i (a0)
G X

—/[/ fl9™ z)p(g~ " dz)]Qn (dg) =
G X

= / [/f(g‘lz)P(g"’dx)](Q(dg)—Qn(dg))S

H(W,U) X
< c[QH(W,U)) - Qn(H(W, U))] - o,

where ¢ = max f(z). Consequently, Fo(X) — F(X) for any compact subset
z&Supp(p)

X. This means that F,, — F. Now, letting n — oo in the formula (4.2) we obtain
F(X) = [ f(z)p(dz) + S F(97'X)q(dg), completing the proof.
X G
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