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AN EVOLUTION NONLINEAR
MIXED PROBLEM¥)

LE NGOC LANG and NGO VAN LUOC

Dedicated to the memory of Professor Le Van Thiem

Abstract. The paper is devoted to an evolution nonlinear mized problem. The existence and
uniqueness theorems for the considered problem are proved by the Galerkin method. An appromimate
solution is obtained by an sterative method.

1. INTRODUCTION

The paper deals with an initial boundary problem of the following evolution
nonlinear equation

% —div[\(p)gradp + /L(P)G.] =f(p),

where A, u, f are given functions and  is a given constant vector. This problem
arises, for example, in filtration problem in cracked layers [1]. After the introduc-
tion, in the second section by the Galerkin method we shall show the existence and
uniqueness of the solution for the considered problem. The third section deals with
approximate solution of the problem by an iterrative method. The convergence of
the proposed method is given.

*)This publication is completed with financial support from the National Basic
Research Program in Natural Sciences.
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2. EXISTENCE AND UNIQUENESS THEOREMS

Suppose that G C R" is a finite domain with the enough smooth boundary
T, T,UTl,, I;NT; =0, S = (0,T), where T is given positive number and
Q = G x S. Consider the following mixed problem

r — div{\(p)gradp + u(p (p)6} = f(p) in Q, (2.1)
. B .

p=0onTy, A(p)(5§+u(p)(a,ﬁ)) — 0 on Ty, | (22)

p |t=O: Pa(-”’)a T € Ga (23)

where 7 is the outside normal vector of boundary I'; and p,(z) is given function.
The condition (2.2) shows that T'; is an impervious boundary. Assume that
(I) The function A : R — R is continuous and bounded from upper

A€) £ M, VEE€ R, M = const.

(II) The function X is bounded from below A(§) > m, V¢ € R, m = const
(ITI) The functions p : R — R satisfies the condition [u(¢)| < ¢[¢], V€ € R.
(IV) The function p is Lipschitz continuous

l(€1) — p(€2)| £ clér — &2, V&1,&2 € R.

(V) The function f : R :— R is continuous and |f(£)| < e(|¢] +1) Vé€R.
(VI) The function f is Lipschitz continuous. :

Here and in the sequence let C. denote some constant. We introduce the
Banach space

V:{plpeH‘(G), p.lr,= 0}, H = L*(G)

with the norms

IpllZ = llplf? = / Upl? + |gradp|)dz, lplk = / ip|2ds.
G G

It is easy to see that (see [4]) the space V' is compactly imbedded into H and

lplg < Cllpll © peY.
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Put
Hoe, hjoe /{/\(u)gmd wgrad b+ p(u)d grad hf(u)h}da, Yu,h €Y.
G

In view of the Green formula we can deduce problem (2.1)-(2.3) to the following
problem

{ p'(k) + a(p,h) = 0, (2.4)

p(o) = pa € Hy pe W={p|pe L*(SV), p' € L*(8,V*)},

where V* is the conjugate space of V. We shall call a solution of (2.4) to be a
weak solution of problem (2.1)—(2.3).

Lemma 2.1. Under assumptions (I), (III), (V) the following inequality
holds '

la(p,h)| < C(lIpll + DR[| Vp,heV.

P r o o f. By virtue of Buniakovski inequality with all elements p,h € V we
have

la(p, h)| < ]/{/\(p)gradp'gmdh\ +_u(p)ﬁgradh}dh] - ]/f(p)hdx]

< Cllpll | llh!l+0(/(lpl +1)2dz) 21| < C(|Ip|| + 1) ||

as was to be shown.
In view of Lemma 2.1 we can define the operator A € (V — V*) as follows

a(p,h) = (Ap,h) = Vp,h €V,
from which it follows that problem (2.4) is equivalent to the Cauchy problem

p'+Ap=0, plo) =p, € H, pc W. (2.5)

Lemma 2.2.' Suppose that conditions (I), (III)-(VI) are satisfied. Then
operator A is continuous.

P roof. With p, p, > h € W we see that
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|| Apy — Apl| < C{(/ IA(prn) = A(p)|*|gradp|®dz)/? + |lpn — p|[}.  (2.6)
G

Assume that the sequence {p,}, pn € V converges to the element p in the space
V. Then we can choose a subsequence {pnx} such that

Pk — p(z) a.e. in G.
Using the continuity of function A we get
X(prr(z)) — X(p(z)) a.e.in - G.

Then by virtue of Lebesgue theorem we see that

klirx;o IA(pnk) — A(p)|?|gradp|®dz — O.
g

Since the last equality is valid for all subsequenceces which converge to p(z) inV
we have '

lim | |A(pn) = A(p)|*|gradp|*dz = 0. (2.7)
n—oo
&

From (2.6) and (2.7) we obtain Lemma 2.2. By the Galerkin method (see [5], for
- example) we shall show the existence of a weak solution for problem (2.5). In view
of the separability of the space V there is a countable complete system of linearly
independent elements {k1, hz,...} in the space V (and therefore in the space H).
Suppose that H, (= V) is the linear envelope of the finite system {h1,hoy....hn}.
We shall identify H, with H,. Put X, = L?(S, H,) with the scalar product

ko > = /(f(s),u(s))ds Viu € X,.

S

We introduce the operator A, : X, — X,.
£ Aup > =% Au,v> Y, pE X

Suppose that {pan}, n = 1,2,... is a sequence of elements pan € H,, such that p,n
converges to p, in H. We define f, € X, as follows

ik y i f o> '\/veXn.
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Then the Galerkin equation corresponding to problem (2.5) has the form

Pn' + Appn =0, Pn(O) = Pan, Un € V. (2'8)

Note that we can take p, as follows
n
Pn = Z ani(t)hia
i=1

where the coefficients a,,; depend only on t.

Lemma 2.3. The operator A, : H, — H, is continuous.
P ro of. From [5] with u,v,h € H, we have

(Ant — Anv, k)| < C(n)||Au — Av||.|h],
or

|Apu — Apv| < C(n)||Au — Avll.. (2.9)

Suppose that ux converges to u in H,. Then uj converges to u also in V. Conse-
quently, in view of the continuity of A and (2.9) we get

0 < lim |Apur — Apu| < C(n) lim ||Auk — Aul|. = 0.

The lemma is proved.

Theorem 2.1. Under conditions (II), (III), (V), (VI) there exists a solution
of problem (2.8).

P r oo f By virtue of (2.8°) we can deduce problem (2.8) to system of

differential equation for a,i(t), « = 1,2,...,n. Because of the Peano theorem and

. Lemma 2.3 it is enough to obtain a priori estimation for p,(t). For t € S we see
that

0

/(P'n + APy, P )28
0 S

AV
DO |

’ i t
i
u(®F = 3lpenl? + €1 [ pn(@IPds = C [ [ Upn] + D)paldzas.
0 G

0
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From this it follows that ‘ E
t 1
()2 C) / lipa (6)][2ds < Cz +Cs / [P (5)Pds) (2.10)
0 0

where C;,C5 and C3 are constant, independent of ¢ and n.
Using Gronwall inequality we obtain

12 :
o ()1 S 02 = dopst (2.11)
So Theorem 2.1 is proved. It is easy to show the following

Lemma 2.4. Under the asumptions of Lemma 2.8 we have the following
estimations

lpnllz2(sv) < C, (2.12)
IPllz2(s,v+) < C. (2.13)

Lemma 2.5. Under the assumptions (I)-(VI) the sequence of solutions of
Galerkin equations (2.8) is compact in L*(S,H).
This lemma is an immediate consequence of Lemma 2.4 and the results in
[6]. |

Theorem 2.2. Suppose that the conditions (I)-(VI) are satisfied. then
problem (2.5) has at least one solution. :

P roof. In view of Lemmas 2.4 and 2.5 there are a subsequence {p;} of
the sequence {p,} and an element p € L*(S,V) such that

g = pYin L3S, V), (2.14)
p; — p \in\ L*(S, H). o’ (2.15)

From Lemma 2.1 and 2.5 we have
|ApallL2(s,v+) < Cllpll2(s,v) +1) = C.
Therefore we can choose a subsequence {p;} such that

Api— f in L3(S,V*).
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By virtue of (2.8) with all elements z € UH, and.Lp € D(S) we get
n

0 <5+ Apiser > = (f RO + Ap)dt, ),

([ elmidta) + ([ et apt)at, o)

Because of (2.14) we see that p; converges to p’ in D*(S,V) (see [5], page 109).
By letting ¢ — oo in the last equality we obtain

(p'(0) + f(0), 2) =
In view of the density of UH,, in V we have
p'+ =0 in,- LB V*). (2.16)
From (2.8) and (2.16) we see that

p(0) = pa. (2.17)
Now in view of the definition of operator A we have with all elements h € L2(S,V):

< Ap; b5 = //{[/\(pi)gradpi + p(p:) _]gradh — f(p:)h}dzds. (2.18)
By virtue of the continuity of the functional b(v) = [ [ X(p)gradv gradh dzds we
5G
see that
lim // p)gradp; gradh|dzds = // p)gradp gradh dzds.  (2.19)

Using (2.14) we can choose a subsequence {p;} of the sequence {p;} such that
k s
pir — p(t, z) ae. in S xG@G.
From this and the continuity of the function X it‘follows that

A(pik(t,z)) — A(p(t, z)) amhin S x G.
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In view of Lebesgue theorem we get

hrn //[ (pak). )gradh]zd:cds)l/z—() (2.20)

Since the last equality holds for all subsequences converging to p in the space
L*(S,H), from (2.20) we obtain

lim //[ (pi) p))gradh)?dzds)'/? = 0. - 221

i—»oo
Using (2.20) and (2.21) we have

)
11_1’1{)101 / /[()\(pi) — X(p))gradp gradh)*dzds| = 0. : (2.22A)

Then by virtue of the condition (IV) we get
lim / / u(pi)ﬂﬂgradh dzds = / / u(pi)ﬁ_‘gradh dzds. y (2.23)
1 8 @ ‘
Analogously we can show that

ilirgo//f(p,-)h da;-ds://f(p)h 2 (2.24)
S G

S G

From (2.18)- (2 24) we see that

lim < Ap;,h > = / /[A(p)gradpgradh - u(p)ggradh — f(p)h|dzds

1— 00

=< Ap, > .

This completes the proof.

Theorem 2.3. Assume the hypotheses of Theorem 2,2. In addztzon assume
that there is @ number B1 > N such that for the solution p of the problem (2.5)
the following inequality satisfies '

/[/ \gradp|?* dz]Pi-F ds < +oo. ‘ (2.25)
5 G
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Then the problem (2.5) has a unique solution.

P r o o f. Suppose that p; and p; are two solutions of the problems (2.5)
and p; satisfies the condition (2.25). Then we have

e %11’2(’5) = p1 ()2 + /(Apz — Apy,p2 — p1)ds, | (2.26)

0

where

¢ ¢
/ (Aps — Ap1,p2 — p1)d /
0 0
+

(1(p2) — u(p1))bgrad(ps — p1

{[A(p2)gradps — A(p1)gradp:|grad(ps — p1)

Q\

~—

st (f(P2) = f(p1))(p2 — p1)}dzds (2.26°)

We shall estimate each member in the right part of (2.26’). With o; = ‘3_21% and
61 > 0 the following estimation holds

[A(p2) — A(p1)]grad(py — p1)dzds =

e
B, D

/ \A(p2)grad®(p2 — p1) + (A(p2) — A(p1))gradpigrad(ps — p1)|dzds
G

t i

C//‘grad p2 — p1)] dzds—C'lél//|grad (pg — p1)|*dzds—

0 0

v

: :
C :
= 5—11 /{(/ lp2 — P1|a‘d$)2/al(/ lgradp; |P* d-’lﬁ)2/ﬂ1 ds. (2.27)
0

Otherwise for 63 > 0 we see that

0

¢ : ¢
" :
—Céy / / lgrad(ps — p1)|*dzds — 5 / / Ips — p1|*dzds. (2.28)
0 G 0 G

/ / BB 2 (s N, 2 p s e / 15212 paigwadion syl dods
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We have also

, ; :
// f(p1))(p2 = p1)dzds < C / / Ips — p1|®dzds. (2.29)
0 G

0

By virtue of (2.26)—(2.29) we obtain

G Seib57 g5 BpD)ds B2 = 2L oY / (155 = pa|dsiz

O\s

G
=% (C + :S— -+ C = C161 = 0262) / lpz = p1|2dS
2
'@, ‘ ‘
oo 7‘ /{(/ |p2 ——pl\o“da:)z/a‘-(/ \gradp, [P dz)?/P1}ds. (2.30)
0 G G

Using the imbedding theorem (see [1]) for u € H'(G) we get
lullzre) < Cllullf@llullzz(sy, 0 < e <1, ~

A?I_Va if N > 2a and p is arbitrary if N < 2a. Therefore, by choosing

where p <

= EAL we see that
1

N/B:1
1pllZer oy < OlIRIINEL Ipll 5 e (2.31)

From (2.31) with a;; = %, By-= 5_1% and 6, > 0 it follows that

it
/{(/ Ip2 4P1\“‘d=v)2/“’(/ |gradp,|** dz)?/P*}
0 G G

t t
C ' 5
= 0353/ ||p2 — p1|lds + —6—3 / |p2 — p1}2(/ Igradpllﬁldx)_ﬁl—N ds.
3 :
0 G (2.32)

k(s) = (/ \gradp; (z, s)|P" dz)ﬁ_li_"'.
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In view of (2.25) we have k(s) € L!(S). Using (2.30) and (2.32) we get

¢
/(Apz — Ap1,p2 — p1)ds > (C — C161 — Caby — —0353 / Ip2 — p1|*ds
0
(& C1C3 ‘
s (2C e 0161 = 0262 . )/(1 i k( ))lpz = pllzds. (233)
b - 6163
0

By choosing 61,65 and 83 such that C — C18; — Ce6y — %0353 > 0 from (2.26)
t "

and (2.33) we see that |py(t) — p1(t)|2 < C [(1+k(s))|p2(s) — p1 (s)|?ds. By virtue
0

of the last inequalilty and the Gronwal lemma we obtain p1(t) = pa(t) as was to
be shown.

Theorem 2.4. Under the assumptions of Theorem 2.8 the sequence {p,}
of solutions of Galerkin equation (2.8) strongly converges to the solution p of the
problem (2.5) in the spaces C(S, H) and L*(S,V).

P roof. According to the results in [5] (see Lemma 1.5, page 209) there is
a sequence {w,}, w, € C'(S,V,) such that w, — p in w. From (2.5) and (2.8)
we have

0= [ (p(6) — (5) + Apn(e) — Ap(s), Pa(s) — wn(e))ds

B, o

t

1 ”
o(t) = PO = 3lpan = pal* + [ (Apn = Ap,pn — p)ds
0

IV
B | =

—2|lpr = pllc(s,m)lIp = walles,zy = 1Pn = pllL2s,v) P’ — wallz2(s,v+)
= [|4pn — Apl|z2(s,v-)llP = wnllz2(s,v)- (2:34)
Since W is continuously imbedded into C(S, H) and the sequences {p,} and {p,} |
are bounded in C(S, H) and L?*(S,V*), respectively, from (2.34) we obtain__
¢
0 23 1pa(t) = PO = 3lpan = pal? + [ (APn — Ap,pn — p)ds
0
~Cllp= wallw- | 25 f3038)

Using (2.33) and (2.35) and the Gronwall lemma we see that

dim |lpn = pllogs,py =0, m[Ipn — pllza(s,v) = 0.

Theorem is proved.
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3. ITERATIVE METHOD

This section is devoted to an iterative method for obtaining an approximate
solution of the problem (2.5). Assume po to be a given element of the space
L?(S,V)NC(S,H). We shall construct the following iterative sequence {pi}.

P: <} BiPi = 07 Pi(o) =l = H, y 2 = W’ 1= 1a233, veey (31)
where the operator B; is defined by the formula

(B, 1 = / Bloksgradp prosn WA {82 An)
G

+ u(pi—1)8gradh — f(pi-1)h}dz. (3.2)

Theorem 3.1. Suppose that all conditions in Theorem 2.4 are satisfied.
Then the sequence {p;} defined by the iterative method (3.1), (8.2) strongly con-
verges to the solution p of problem (2.5) in the spaces C(S, H) and L?(S,V).

P roof. It can easily be seen that with given element p;_; € W the operator
B, : L?(S8,V) — L%*(S,V*) is strongly monotone and Lipschitz continuous. Hence
problem (3.1) has a unique solution p; € W. We consider the space X = L?(S,V)N -
C(S,V) with the norm

qug(,k = HxHZC,k * aOH:’:H%ﬂ(s,v),k, z € X,
where
t
|z||% & = sup(e™*D|z(t)|?), |lz|Z2(s,v) % = sup(e”*(*) / ||z(s)]|*ds),
tes tes :
0
t
s /{52 % (/ |gradp|™* dz) 7= }ds, e | (3.3)
0 G

here 71,6, and ao are constants which will be choosen in the future. From (2.5)
and (2.1) we see that !

o /(P;(S) — p/(s) + Bi(pi(s) — Ap(s), pi(s) — p(s))ds

he %‘Pi(t) - p(t)]* + /{/[A(pi_l)gmdp,-grad(p,- —p)

— XMp)gradp grad(p; — p) + (m(pi — p) + m(p — pi—1))(pi — p) + (1(pi-1)

— u(p)bgrad(p; — p) — (f(pi-1) — f(p)) (pi — p)dz}ds. (3-4)
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We shall estimate each member in the right part of (3.4). By an argument similar
to that as in the proof of Theorem 2.3 we get

/ /{[/\(pi-l)gradm — A(p)gradplgrad(p; — p) + m(p; — p)*}dzds >

090G

Cé
* Bt Cy) /Hpi—p'\zds— 2/llpz 1 — pl|*ds—

Otherwise we have

i
//m pi = p)(p = pi_1)dzds
0

%
¢
< Cé / |lp: — plds + z / i1 — pl*ds, (3.6)
0 /

t

//(N(Pi—l) — u(p)gradp) (p; — p)dzds

0 G

<cm/||p1 J Ly /Ipu—pfds- (3.7)

/t/(f(pi g IR, f(P))(Pi — p)dzds

A 1
. 1 ¢
< s, / )~ o)l + 5 / Maipeed . (3.8)
0 0
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From (3.4)—(3.8) it follows that
> Lipi(®) — (0" + (m — 4C5) /Hms ) - p(s) s
Céz/llpz 1(s) — (s lzds‘ /‘Px 1(s) =m(s )\2

(/ Igradp!ﬁ‘ dz) FioW s — —6— / lpi—1(s) = p(s)|*ds.
& 'Y
Téking C; = 4C in the best inequality we obtain

i) B 20m i) [ lpi(®) = ol

< 0415?2 / Ipe-1(s) = p(s)]I” 435(5512 AR _p(S)’Z: 9

Taking ap = 2(m — C161), a1 = %15—‘?2, 8y = Igl_c‘;;_n and multiplying both parts of

inequality (3.9) with e~ *(*) we have

ai
sz pl% .k < 2as(llpi — Pl + o IPi-1 - pllZz(s,v),5)- (3.10)
If we choose 6; < ; By < J—L and n > & then we see that/
1 ai ‘
o >0, O €'~ — < 8. (3.11)
8 as

From (3.10) and ((3.11) it follows that

= EHPO == PHXk

lpi — plI% .k < Ilpz 1=k S-S
Therefore we obtain

11_1’1{310 |lps = pllL2(s,v) =0, 11220 |lpi = pllc(s,n) =0
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The proof is complete.
Note that in the above iterative method instead of the nonlinear problem
(2.5) we resolve the sequence of linear problem (3.1), (3.2).
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