ON A GENERALIZATION OF A HARDY-LITTLEWOOD THEOREM

 :tralsviups ots

LÊ HAI KHÔI

\author{
Q $\left.\ni s,(|s|-1)^{t} \mathrm{~s} \gg \mid(s)^{1}\right\} \mid$
 Dedecated to the memory of Professor Le Van Thiem

}
(t)' 't que mil (ii)

Abstract. The Hardy-Littlewood theorem on a characterization of moduli of continuity and an extimation of derivatives of holomorphic Lipschitz functions in the unit disk are generalized for the case of more general domains.
8. लi bees geont ot 1slimie 915

1. INTRODUCTION

Let $f(x)$ and $g(x)$ be nonnegative functions defined on an abstract set X. By $f(x) \ll g(x), x \in X$, we mean that there exists a constant $C>0$, which is independent on x, and for which the inequality $f(x) \leq C g(x)$ holds for all $x \in X$. In the case $f(x) \ll g(x)$ and $g(x) \gtrless<f(x), x \in X$, we write $f(x) \approx g(x), x \in X$.

Modulus of continuity, by definition, is a continuous function $s(t):[0, \infty) \rightarrow$ $[0, \infty)$ satisfying the following conditions: $s(0)=0$ and $0 \leq s(t)-s\left(t^{\prime}\right) \leq s(t=$ $\left.t^{\prime}\right), 0 \leq t^{\prime} \leq t$. We denote by S the set of all differentiable moduli of continuity $s(t)$ such that $s^{\prime}(t)$ are decreasing.

Let G be a domain on the complex plane C and $s \in S$.
$H(G)$ denotes the space of all functions holomorphic in G with the topology of uniform convergence on compact subsets of $G ; \operatorname{Lip}_{s}(G)$ denotes the class of all functions $f(z): G \rightarrow \mathbf{C}$ for each of which there exists a constant $M<\infty$ such that
as bus. ou zininipf $\left(z_{1}\right)-f\left(z_{2}\right) \leq M . s\left(\left|z_{1}-z_{2}\right|\right)$ for all $z_{1}, z_{2} \in G$.
One denotes by $\|f\|_{s}$ the infimum of all such M. Note that if $s(t)=t t^{\alpha}, 0<\alpha \leq 1$, then the classes $\operatorname{Lip}_{s}(G)$ are usual Lipschitz classes. arasseib oilt bis D6 of s lo

The following theorem is due to Hardy and Littlewood $\ddagger 1\}$. See also [2, p.74].

Theorem A. Let D be the unit disk and $s(t)=t^{\alpha}, 0<\alpha \leq 1$. If $f \in H(D) \cap \operatorname{Lip}_{s}(D)$ then

$$
\left|f^{\prime}(z)\right| \ll s^{\prime}(1-|z|), z \in D .
$$

In [3] this result is generalized for the case of functions $s \in S$, namely
Theorem B. Let D be the unit disk and $s \in S$. The following statements are equivalent:
(i) $f \in H(D) \cap \operatorname{Lip}_{s}(D)$, then

$$
\left|f^{\prime}(z)\right| \ll s^{\prime}(1-|z|), z \in D .
$$

(ii) $\limsup _{t \rightarrow 0^{+}} \frac{s\left(t s^{\prime}(t)\right.}{t}<\infty$.

The following question arises: are there results of a such sort in a general case, i.e. in the case of arbitrary domains?. In this note we shall show that for certain (sufficiently general) domains the answer will be affirmative. The methods are similar to those used in [3].

ИOIT๖UવоятиI

2. DEFINITIONS

Let G be an arbitrary bounded domain with boundary ∂G. From compactness of ∂G it follows that if $w \in \mathbf{C}$ then the quantity $d_{w}:=\sup _{z \in G}|z-w|$ is finite and positive, moreover the supremum is attained on ∂G, i.e. the set $P_{w}:=\left\{z \in \partial G:|z=w|=d_{w}\right\}$ is nonempty. This means that for every $w \in \mathbf{C}$, $\partial U\left(w, d_{w}\right) \cap \partial G \neq \emptyset$, where $U\left(w, d_{w}\right)$ is the open disk of radius d_{w} and with centre w. The points in $\partial U\left(w, d_{w}\right) \cap \partial G$ are called convex-points of G with respect to w.

For every $z \in G$ one denotes by $\rho(z, \partial G)$ the distance of z to ∂G. We say that G is a (ρ)-domain if there exists a point $w_{0} \in \mathbf{C}$ for which there is a convex-point $z_{0} \in P_{w_{0}}$ such that for some $r_{1} \in(0,1)$ the following conditions hold:
$\left(C_{1}\right)$ all points $z \in I_{z_{0}}:=\left\{z=r w_{0}+(1-r) z_{0}, 0<r<r_{1}\right\}$ belong to G;
$\left(C_{2}\right) \rho(z, \partial G) \gg d_{w_{0}}-\left|z-w_{0}\right|, z \in I_{z_{0}}$.
Geometrically, condition $\left(C_{1}\right)$ means that on the segment joining w_{0} and z_{0} there is a point z_{1} such that the open segment joining z_{0} and z_{1} belongs to G. The $\left(C_{2}\right)$ says that for all points z from the segment joining z_{0} and z_{1} the distance of z to ∂G and the distance of z to z_{0} are equivalent (in the sense \asymp). Here we notice that for all $z \in I_{z_{0}}$ the inequality $\rho(z, \partial G) \leq d_{w_{0}}-\left|z-w_{0}\right|$ always holds.

3. MAIN RESULTS

Theorem. Let G be à bounded domain and $s \in S$. Consider the following two statements
(a) $\limsup _{t \rightarrow 0^{+}} \frac{s(t)}{t s^{\prime}(t)}<\infty$;
(b) If $f \in H(G) \cap \operatorname{Lip}_{s}(G)$ then

$$
\left|f^{\prime}(z)\right| \ll s^{\prime}(\rho(z, \partial G)), z \in G
$$

Then we have

1) Statement (a) implies statement (b);
2) If G is a (ρ)-domain then statement (b) implies statement (a)

Proof. Suppose that (a) holds. Then there exist positive constants t_{0} and C_{0} such that $s(t) / t<C_{0} s^{\prime}(t)$ for all $t \in\left(0, t_{0}\right]$. Since $s(t) / t$ and $s^{\prime}(t)$ are decreasing we get $s(t) / t s^{\prime}(t)<s\left(t_{0}\right) / t_{0} s^{\prime}\left(d_{w_{0}}\right)$ for all $t \in\left[t_{0}, d_{w_{0}}\right]$.

Hence

$$
\frac{s(t)}{t} \leq C_{1} \cdot s^{\prime}(t) \text { for all } t \in\left(0, d_{w_{0}}\right)
$$

where $C_{1}=\max \left\{C_{0} ; s\left(t_{0}\right) / t_{0} s^{\prime}\left(d_{w_{0}}\right)\right\}$.
Now let $f \in H(G) \cap \operatorname{Lip}_{s}(G)$. Fix $z \in G$. One has for $0<R<\rho(z, \partial G)$

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & =\left|2 \pi R \int_{0}^{2 \pi} \frac{f\left(z+R e^{i \theta}\right)-f(z)}{e^{i \theta}} d \theta\right| \leq \\
& \leq\|f\|_{s} \cdot s(R) / R \leq C_{1} \cdot\|f\|_{s} \cdot s^{\prime}(R)
\end{aligned}
$$

from which (b) follows by letting R tend to $\rho(z, \partial G)$.
Now, we suppose that (b) holds and that G is a (ρ)-domain. We shall show that if (a) fails then one can construct a power series in $H(G) \cap \operatorname{Lip}_{s}(G)$ for which (b) fails, a contradiction. Indeed, assuming (a) fails, we can choose a rapidly decreasing sequence of positive numbers $\left\{t_{k}\right\}$ satisfying the folowing conditions

$$
\frac{s\left(t_{k}\right)}{t_{k} s^{\prime}\left(t_{k}\right)} \geq e^{2 k}, k=1,2, \ldots
$$

Let z_{0} be a convex-point satisfying the conditions (C1) and (C2) and let $z_{0}-w_{0}=$ $\left|z_{0}-\dot{w}_{0}\right| \cdot e^{i \theta_{0}}, 0 \leq \theta_{0}<2 \pi$. Define $n_{k}=\left[\frac{1}{t_{k}}\right], c_{k}=s\left(t_{k}\right) e^{-i\left(n_{k}-1\right) \theta_{0}} / e^{k} d_{w_{0}}^{n_{k}}$, where $[x]$ denotes the integer part of x. Then a power series $f(z)=\sum_{k=1}^{\infty} c_{k}\left(z-w_{0}\right)^{n_{k}}$ converges in the disk $\left\{z:\left|z-w_{0}\right|<d_{w_{0}}\right\}$.

Now for $z_{1}, z_{2} \in G$ and $q \in \mathbf{N}$ one has
gniwollol $f\left(z_{1} 12 w_{0}\right)^{q}-\left(z_{2}-w_{0}\right)^{q}\left|\leq\left|\left(z_{1}-w_{0}\right)\right|^{q}+\left|\left(z_{2}-w_{0}\right)\right|^{q} \leq 2 d_{w_{0}}^{q} d T\right.$ and

$$
\begin{gathered}
\left|\left(z_{1}-w_{0}\right)^{q}-\left(z_{2}-w_{0}\right)^{q}\right|=\left|z_{1}-z_{2}\right| \cdot \left\lvert\,\left(z_{1}-w_{0}\right)^{q-1}+\ldots+\frac{(1)}{(\mathrm{s})}\right. \text { qua mil (s) } \\
+\left(z_{2}-w_{0}\right)^{q-1}\left|\leq\left|z_{1}-w_{2}\right| q d_{w_{0}}^{q-1}\right.
\end{gathered}
$$

Consequently,

$$
\left(\left|\left(z_{1}-w_{0}\right)^{q}-\left(z_{2}-w_{0}\right)^{q}\right| \leq \min \left\{d_{w_{0}}^{q-1} \cdot q \cdot\left|z_{1}-z_{2}\right|, 2 d_{w_{0}}^{q-1}\right\}\right.
$$

$$
\operatorname{zan}_{1, z_{2} \in G} \frac{\left|\left(z_{1}-w_{0}\right)^{q}-\left(z_{2}-w_{0}\right)^{q}\right|}{s\left(\left|z_{1}-z_{2}\right|\right)} \leq \text { dsrls dowe ow bniesocosb }
$$

$$
\leq \max \left\{\sup _{0<t<1 / q} \frac{q d_{w_{0}}^{q-1} t}{s(t)} ; \sup _{1 / q<t<2 d_{w 0}} \frac{2 d_{w_{0}}^{q}}{s(t)}\right\}
$$

$$
\begin{align*}
& \geq \left\lvert\, \theta b \frac{(s)\}}{}=\max \left\{\frac{d_{w_{0}}^{q-1}}{s(1 / q)} ; \frac{2 d_{w_{0}}^{q}}{s(1 / q)}\right\}=\right. \\
& (s)^{\prime} \\
& =\max \left\{1 ; 2 d_{w_{0}}\right\} \cdot \frac{d_{w_{0}}^{q-1}}{s(1 / q)}=C_{w_{0}} \frac{d_{w_{0}}^{q-1}}{s(1 / q)}
\end{align*}
$$

We have sWh . nismob-(q) s ai D tsitt bms ablorl (d) jsrit seoqque sw, woh

$=\sum_{k=1}^{\infty}\left|c_{k}\right| \sup _{z_{1}, z_{2} \in G} \frac{\left|\left(z_{1}-w_{0}\right)^{n_{k}}-\left(z_{2}-w_{0}\right)^{n_{k}}\right|}{s\left(\left|z_{1}-z_{2}\right|\right)} \leq \sum_{k=1}^{\infty}\left|c_{k}\right| \frac{c_{w_{0}} d_{w_{0}}^{n_{k}-1}}{s\left(1 / n_{k}\right)}=$

$$
=\sum_{k=1}^{\infty} \frac{s\left(t_{k}\right) C_{w_{0}}}{e^{k} d_{w_{0}} s\left(1 / n_{k}\right)}=\frac{C_{w_{0}}}{d_{w_{0}}} \sum_{k=1}^{\infty} \frac{1}{e^{k}}=\frac{C_{w_{0}}}{d_{w_{0}}(e-1)}<\infty \text {. }
$$

Jos On the other hand, since for $z \in\left|I_{z_{0}} \rho \rho(z, \partial G) \approx d_{w_{0}}-|z|+w_{0}\right|$, it follows that

रlixstudis b9fibom od «sว E © \& / D .anismob-(q) Jon 97s đoidw, amismob jowztanoo of borltom is gvig 9w woh (d)

Note that if $z \in I_{z_{0}}$ then $z \neq r w_{0}+(1+r) z_{0}, 0<r<r_{1}<1$. One has $z-w_{0}=(1+r)\left(z_{0}-w_{0}\right)$. Hence $\mathrm{I}_{2} \mathrm{H}$ glgnsizt usluggt is tabianoo woh

$$
\sup _{z \in I_{z_{0}}} \frac{\left|\sum_{k=1}^{\infty} c_{k} n_{k}\left(z-w_{0}\right)^{n_{k}-1}\right|}{s^{\prime}\left(d_{w_{0}}-\left|z-w_{0}\right|\right)}=\sup _{0<r<r_{1}} \frac{\sum_{k=1}^{\infty} s\left(t_{k}\right) n_{k}(1-r)^{n_{k}-1} / e^{k} d_{w_{0}} d \text { NMI }}{s^{\prime}\left(r d_{w_{0}}\right)} \geq
$$

2M9I\&OЯq Иज्ञ

$$
\geq \sup _{k} \sup _{0<r<r_{1}} \frac{s\left(t_{k}\right) n_{k}(1-r)^{n_{k}-1}}{e^{k} d_{w_{0}} s^{\prime}\left(r d_{w_{0}}\right)} \geq \sup _{k} \frac{s\left(t_{k}\right) n_{k}\left(1-\frac{1}{n_{k}} d_{w_{0}}\right)^{n_{k}-1}}{e^{k} d_{w_{0}} s^{\prime}\left(1 / n_{k}\right)} \gg
$$

9uld ai

This completes the proof of the theorem.

II ls

4. EXAMPLES.
a) The simplest examples of (ρ)-domains are disks. Moreover it is worth noticing the following fact:

Let G be a bounded domain satisfying the condition $\left(C_{1}\right)$. If G contains an image of $I_{z_{0}}$ with respect to a rotation around z_{0} by some angle φ_{0}, then G satisfies the condition $\left(C_{2}\right)$, i.e. G is a (ρ)-domain.

Indeed, in this case $\rho(z, \partial G)=\left(d_{w_{0}}-\left|z-w_{0}\right|\right) \cdot \sin \varphi_{0}$ for all $z \in I_{z_{0}}$. Thus, convex and starlike domains are (ρ)-domains.

In view of this fact we can construct general examples of (ρ)-domains by the following way: Consider an arbitrary disk $U\left(w_{0}, d\right)$ and fix a point $z_{0} \in \partial U$. Take an angle $\widehat{A z_{0} B}$, where A and B lie on different sides of the segment joining z_{0} and w_{0} being in $U\left(w_{0}, d\right)$. Then all domains G which are contained in U such
that two segments $A z_{0}, B z_{0}$ are on ∂G will be (ρ)-domains. It is clear that the set $G \backslash \widehat{A z_{0} B}$ can be modified arbitrarily.
b) Now we give a method to construct domains, which are not (ρ)-domains. Take, for example, a regular triangle $A B C$. Put it in the coordinate system so that $A(0 ; b), B(-a ; 0)$ and $C(a ; 0)$, where $b=a \sqrt{3}, a>0$. We adjoin sequentially by segments the points $C(a ; 0) \rightarrow C_{1}(0 ; 0) \rightarrow C_{2}(a / 2 ; b-b / 2) \rightarrow C_{3}(0 ; b-b / 2) \rightarrow$ $\cdots \rightarrow C_{2 k}\left(a / 2^{k} ; b-b / 2^{k}\right) \rightarrow C_{2 k+1}\left(0 ; b-b / 2^{k}\right) \rightarrow \cdots$ and the points $B(-a ; 0) \rightarrow$ $B_{1}(0 ; b / 4) \rightarrow B_{2}(-a / 2 ; b-b / 2) \rightarrow B_{3}(0 ; b-3 b / 8) \rightarrow \cdots \rightarrow B_{2 k}\left(-a / 2^{k} ; b-\right.$ $\left.b / 2^{k}\right) \rightarrow B_{2 k+1}\left(0 ; b-3 b / 2^{k+2}\right) \rightarrow \cdots$, then we obtain the infinite zigzag lines $C C_{1} C_{2} C_{3} \cdots C_{2 k} C_{2 k+1} \cdots$ and $B B_{1} B_{2} B_{3} \cdots B_{2 k} B_{2 k+1} \cdots$. One calls described process a "zigzag transform" of the triangle $A B C$ with respect to the side $C B$.

Now consider a regular triangle $H K L$. Let M, N, P be middle points of the sides $K L, L H, H K$. We do "zigzag transform" for triangles $H P N, K M P$ and $L M N$ with respect to the sides $N P, P M$ and $M N$ respectively. It is easy to verify that the obtained domains is not (ρ)-domain.

5. OPEN PROBLEMS.

1) Is there a domain, which is not a (ρ)-domain but for which the Theorem is true ?
2) Is it true that if two statements (a) and (b) in the Theorem are equivalent then the domain G must be (ρ)-domain ?

REFERENCES

1. G.H.Hardy and J.E.Littlewood: Some properties of fractional integral II, Math. Z. 34(1932), 403-439.
2. P.L.Duren: Theory of H^{p} spaces, Academic Press, Orlando, Florida, 1970.
3. C.A.Nolder and D.M.Oberlin: Moduli of continuity and a Hardy-Littlewood theorem, Complex Analysis, Joensuu, 1987. Proceedings. Lect. Notes in Math., vol. 1351, 1988, 265-272.

Institute of Informatics

Received July 19, 1991
Nghia Do, Tu liem,
Hanoi, Viet Nam

