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UI{IQUENESS OF GLOBAL QUASI-CLASSICAL
SOLUTIONS OF THE CAUCHY PROBLEM

FOR THE EQUATION

0 u l 0 t * ( 0 u l 0 n ) ' : g  ( * )

TRAN DUC VAN ANd NGUYEN DUY THAI SON

Ded,icated, to the nxenxoiV ol Professor Le Van Thiem

Abstract. A notion ol quasi-classical solutions lor the Cauchy problern 0u/0t*
: +(su/0r), - o, u(0, c) - ,o (r) in n-dimewional spau (" > 1) is prc.sented and a uniqueness

tharcm is established lg the methd based on the thmry ol difrercntial inckuioru.

I(ey words . Cauchy prcblems, quasi-classical solutiorts, mt&ivdued functions, d,ifiercntiat

inclusions.

In this paper we s.tudy the Ca'uchy problem for the Hamilton-Jacobi equation

0u I 0t+(0u I 0r)2 : 0 in n-dimernional space (" 2 t) and present a notion of global

quasi-classical solutions for this problem. We establish a uniqueness theorem for

global quasi-classical solutions by the method based on the theory of multivalued

mappings and differential inclusions. In particular, we give an answer to a problem

posed by S.N. KruZkov in [t ] .
Le tT  be  apos i t i venumber ,  O?  :  (0 ,? )xR '  :  { ( t , t )  €  Rn '+ l10  <  t  <T ) ,

ll.ll and ( .,. ) be the norm and the scalar product in R.' respectively. We consider

the Cauchy problem

(*) Soppotted in part by NCSR Vietnam Program "Applied Mathematics"
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u"9:") 
* (a"L:,")) '  :0, (r, , ,)  € f , i r ,

A t \ 0 r /

u ( o , r ) : u o ( n ) , 2 € R , ,

(1)

(2)

where u6( . )  is  a  known funct ion,  0uf0r :  ( lu l0U," . . ,7uf0rr ) ,  (Tul0r)2:
(0u l011 )2  + . . .  +  (0u l0 r ^ )2

Definit ion 1. A function u in cL(nr) n c(i0,") x R") is cal led, a global
classical solution ofthe'problem (1), (p) i f  and onlyif"(t,p) satisf ies (1) euery-
where in { ly and, (2) on {t:  0, u € R"}.

In [s] we obtained some new uniqueness results for global classical solutions
of Cauchy problems for general Hamilton-Jacobi equations.

Denoteby A the set of al l  closed sets G in R with mes (G):0, where tnes
is the Lebesgue measure. The Cantor-set belongs to I [4]. We remind that the
Cantor-set is the set of all numbers of the from

$ z
? , " '

where a; is either 0 or 2. It is bounded, complete, nowhere dense on R and
possesses a continuum capacity.' 

We denote by Lip(Ay) the set of all locally Lipschitz continuous functions
u defined in o2", i.e. for any compact set K c tlr there exists a number L > a
such that:

lu( t r , " r )  -u( t2,n2) l  S r( l r ,  - tz l+ I l " ,  -  
" r l l ) ,

V  ( t t , r r )  e  K , ( t z , c 2 )  €  K .

Further, we set Lip(10,7) x R") : Lip(Ad n C([0,?) x R")
Definition 2. A function u in Lip(10,?) x R,") rr called a global quasi-

classical solution of (1), (p) ;f and only if there erists a set G € A such that
u € Cr(((0, T) \ G) x R') and u(t,x,) satisf i ,es (t) euerywhere in ((0, f) \  G) x R"
and (2)  on { t :  0 ,  r  €  R"} .

We are now able to formulate the main result in this paper.

Theorem l. If u1 and u2 ar€ global quasi-classical solutions of the Cauchy
problem (1), (2) with

ess.supl l0u;(t ,  r)  I  Arl l  (  s,  , i  :  1,2,
( t , c ) € O 1
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then u1( t , r1  :  u2( t , r )  in  Oa.

Rentark 1. By virtue of Definition 2, if z is a.global quasi-classical solution,
there exists at least one interval (a,B) such that u e Cr((a,B) x R"). I t  is well
known that in the case n : L we have the continuum set of global generalized
Lipschitz continuous solution for (1), (2) with u6(z) : 0:

u l ( t , x ) :  m in {0 , f  l " l  - . \ 2 t } ,  . \  :  cons t  )  0 .

For. l  ) 0 we can not f ind any interval (o,g) c (0,?), such'that ur(t,z) is
differentiable in (o,g) x R, because u)(t,r) is not differentiable on lzl : )t or on
c :  0 , ,  €  (0,  7)  (see F ig.  1)

Thus,  on ly  the funct ion u6( t , r ) :0  ( i .e .  l :0)  is  the unique g lobal  quasi -
classical solution for (1)" (2) with u6(r) :0.

The proof of Theorem 1 will be based on the following result which is. of
independent interest, in our opinion.

Theorem 2. Let u be a function in C1(((0, 
")\ 

G) * R")n-Lip([0, 
") " 

R'),
whereG e A, u(O,r) :  O on {t:0,u € R"}. Suppose that there exists a number
N > 0 such that for any (t, r) e ((0, 

") 
\ G) x R":

)u(t ,  r )
at <N(r+il"i l) l l*rl l

Fig. l

(3)
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Then  u ( t . n ) :  0  i n  O7 .

P r o o f.  Let (t6,"0) € Oa be an arbitrary point in O7,8, be the ball
Ei :  {/ l  l l / l l  < r} c R". We have to show that u(ts,rs):0. For this we define
in Oa a multivalued function F : Or - R* in the following way

F(t ,  r )

B i v l r + l l c l l ) ,  t e G ,

{ /  e  B r t t + 1 " 1 )  :  } u ( t , r ) l A t  +  <  f , 7 u ( t , r ) l 0 r ) :  0 } ,
r € ( 0 , " )  \ G .

We now consider the differential inclusion

i ( t )  €  F ( t , r ( t ) ) ,

subject to the constraint

r ( ts)  :  7 ' '

Let X(l6,cs) be the set of al l  absolutely continuous functionsr(.) :  10,?] -
Rn, which satisfy almost everywhere in [0, 

"] 
the differential inclusion (a) and the

initial condition (s). we are going to show that X(ts,16) is a non-empty compact
set in C([0,f] ,R"). To prove this we need to verify that

(i) ,t'(t,c) is a non-empty convex compact set in R" for all (t,z) e Oa.
(ii) The function F is upper semicontinuous in O7.
First we check (i). It is obvious that F(f,r) is a convex closed set in R". If

t € G  w e h a v e  F ( t , r ) : B r u ( r + l l  , l l ) + A .  I f  t € ( 0 , f )  \ G a n d  A u Q , r ) l A r : 0 * e
a l so  have  F ( t , r ) :  B rv ( r+ l l  , lD  *  A .  f f  t  €  (0 , " )  \  G  and  7u ( t , x ) l 0 r+o .We pu t

t -
J  - -

au(t,  r)  lat }u(t ,  r )  I  0r .
l l }u( t , r )  lar l l2

By virtue of (e) we obtain

l l / l l  : l }u(t, r) I  at l < N(1  +  I l r l l ' 1 .
l lau(t ,  r)  lar l l

On the other hand.

-I-I

(4)

(5)

)u(t ,  r )  ,
a t - . f , \ A r :

OT

}u ( t , r )  }u ( t ,n ) la t
: - -

at ll}u(t, r) larl lz
< 0uf 0r,0ul0r ) :  0,
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so / € F(t,r). Thus we have shown for any (t,r) e [i7 the set F(t,r) is non-

empty. Besides that F(t, r) is a convex, closed and bounded subset in R'- Hence

F(t,r) is a compact set in R'.
To verify (ii) we observe that the function .F' is bounded in a neighborhood

of any (t, c) e O1, i.e. there exist numbers I > 0, r ) 0 such that

sup{ l l / l l  I  I  eF( r ,a ) , ( r ,v )eB l ( t )x .B i@)  c  o r }  {  *oo ,

where Bl(t)(resp. ni@D is an open ball in Rl(resp. R*) centered in t (resp' c)

with radiur'i 1t"rp. r'). tn addition, it is easy to see that the function F is closed

because for  any sequence ( tn , rx)  € t t r (k :  L ,2, . . . ) , ( to , tk)  *  ( t ,x)  e  O7,  and

for any sequence ft € F(t1r,rk)(k --L,2,.. .), fo --+ /,  we have / € F(t,r) '  Then

the function .F' is upper semicontinuous in O7

Thus, we have shown that the multivalued function F satisfies (i),(ii) and

from the definition of F(1, r) we have

sup{l l / l l  I  f  e r( t ,")}  < .nr( t  + l lz l l ) .

By virtue of Theorem 3, p. 206 in [Z] the set X(ts,z6) of absolutely contin-

uous solutions of (4),(5) is non-empty and compact in C([o'?],R").

Now let 
"(.) 

€ *(ro,16). We consider'the functiong(t): u(t ' ,"(t)) '  Since

u e Lip(lo, T) x R") and r(t) is absolutely continuorn on [0, ?], we conclude that

p(.) is a6solutely continuous on [e, T - t) for any e e (0, f 12). On the other hand,

bU):ryP.<t( '),  YP):o
almost everywhere on [e, T - ,]. Then tp(t) is constant on [e, T - ,). Since e

is an arbitrary positive number and rp(t) is continuous at t :0, we obtain that

p ( t ) :  p (O)  :  z (0 , c (0 ) )  : 0  f o r ,  €  [ 0 ,7 ) .  I n  pa r t i cu la r ,g ( to ) :  u ; ( t o , c ( to )1  :

u(ts,rs): 0. The proof of Theorem 2 is complete'

Remark p. We show by the following example that the Lipschitz continuity

of u(t, c) is essential in Theorems 1 and 2

Let G c [0,1] be the cantor set, i.e the set of all numbers in the form

where e; is either 0 or 2. We define the function u(.) which is called the Cantor

ladder in the following way [+]. For t € G and

' e ' .l-r 3r
i : 1

oo
.  s - g l
t =  >

Lt 3r
d : 1

,  e i  €  {0 ,  r } ,  i  - -  1 ,2 , .  .  .
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we Put 

(

a ( , )  : i # , t , : 7 ,
i : 1

I f  (o,B) is an open maximuminterval in (0, f)\C (i .e. a,P €G), then o(0) : a(a).
We set  for  t  €  ( " ,0) :  u( t )  :  const :  a(a) :  a(p) .  I t  fo l lows that  u( . )  €  C[0,1] ,
and ri(t) : 0 almost everywhere in (0,1). In fact, i,(t) :0, V, € (0,1) \ G.

Pq t t i ng  u ( t , r ) :  u ( t ) ,  ( t , r )  €  Or ,  we  see  tha t  z  €  C1( ( (0 ,1 )  \  G )  *  R ' ) ,
but u does not belong to Lip([O,l) x R"). The function u satisfies the condition
(S) in Theorem 2, and, u(O,r): 0, for al l  c € R" but u(t,r) :  u(t) I  0 in O1.

P r o o f of Theorem 1. Consider the function z(t, r) :  ur\,r) - u2(t,r),
u(0,  c)  :  o , r  €  R' .  Let

From definition 2, there exist G1 ,Gz e I such that

u; e Lip( lo, ?) x R") n ct (((0, 
")  

\  c;)  x R")

and u; satisf ies (1) everywhere in ((0,") \Gl) x R'. So, }u;f }r i  € C(((0,") \
Gl) x R')" I lence,

'  ess.supl l?u;(t ,r) lArl l :  sup l l?u;(t ,r) lArl l , i  :  r ,2.
( t , r ) eo1  ( t , r ) € ( (o , " ) \G ; )  xn .

It is easily seen that there exists a constant .L such that for all p1,pz e Bn

l l lp' l l '  - l lprl l ' l  < Lllpt - pzll.

By virtue of the last inequ'ality we have

, | u ( t , n )  I  <  l r t  
} u r ( t , r )  

l l 2  _ '  7 u z ( t , r ) , 2 1  
<'  A t  r - l r r  0 r  r r  r r  0 n  "  l -

_  -  , , } u ( t , x \ , ,s L. | - ; | '

for  any ( t , r )  e( (0,2)  \  C)  x  R' ,  G :  Gr  U G2 € A.Apply ing Theorem 2 to  the
function u we obtain that u(t,x): 0 in O1, which proves Theorem 1.

*: Pffi {;:t,=** 
ttou;(t'')ta4t}'
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The uniqueness of global quasi-classical solutions of Cauchy problems for

general nonlinear partial differential equations of first order will be considered in

a forthcoming paper by the method used here.
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