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UNIQUENESS OF GLOBAL QUASI-CLASSICAL
SOLUTIONS OF THE CAUCHY PROBLEM
FOR THE EQUATION
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- Abstract. A notion ‘of quasi-classical solutions for the Cauchy problem Ou/8t+
+(8u/8z)? = 0, u(0,z) = uo(z) in n-dimensional space (n > 1) is presented and o uniqueness
theorem, is established by the method based on the theory of differential inclusions. ' '

Key words. Cauchy problems, quasi-classical solutions, multivalued functions, differential
inclusions. .

In this paper we study the Cauchy problem for the Hamilton-Jacobi equation
du/dt+(du/dz)? = 0 in n-dimensional space (n > 1) and present a notion of global
quasi-classical solutions for this problem. We establish a uniqueness theorem for
global quasi-classical solutions by the method based on the theory of multivalued
mappings and differential inclusions. In particular, we give an answer to a problem
posed by S.N. Kruzkov in [1].

Let T be a positive number, 17 = (0,T) xR"™ = {(t,z) e R*t' |0 < t < T},
||| and < .,. > be the norm and the scalar product iz R" respectively. We consider
the Cauchy problem

(*) Supported in part by NCSR Vietnam Program “Applied Mathematics”.
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6“5;’ it (augf)) =0,(t,z) € Qr, (1)

u(0,z) = uo(z), z.€ R", (2)

where uo(.) is a known function, 8u/dz = (9u/dz:,...,0u/dz,), (8u/dz)* =
(Ou/0z1)? + ... + (Ou/dz,)>. Y :

Definition 1. A function u in C! (Q7) N C([0,T) x R™) 15 called a global
classical solution of the problem (1), (2) if and only if u(t, z) satisfies (1) every-
where in (7 and (2) on {t =0,z € R"}.

In [3] we obtained some new uniqueness results for global classical solutions
of Cauchy problems for general Hamilton-Jacobi equations.

Denote by A the set of all closed sets G in R with mes (G) = 0, where mes
is the Lebesgue measure. The Cantor-set belongs to A [4]. We remind that the
Cantor-set is the set of all numbers of the from
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where ¢; is either 0 or 2. It is bounded, complete, nowhere dense on R and
possesses a continuum capacity.

~ We denote by Lip(Q7) the set of all locally Lipschitz continuous functions
u defined in Qr, i.e. for any compact set K C 11 there exists a number L > 0
. such that:

u(ts, z1) — u(te, z2)| < L(|ty — ta2] + ||lz1 — z2]),
A4 (tl,xl) € K, (tz,xz) € K.

Further, we set Lip([0,T) x R") = Lip(Qr) n C([0,T) x R").

Definition 2. A function v in Lip([0,T) x R™) is called a global quasi-
classical solution of (1), (2) if and only if there exists a set G € A such that
u € CH(((0,T)\ G) x R") and u(t, z) satisfies (1) everywhere in ((0,T)\ G) xR™
and (2) on {t =0,z € R"}.

We are now able to formulate the main result in this paper.

Theorem 1. Ifwu; and u; are global quasi-classical solutions of the Cauchy
problem (1), (2) with '

ess.supl||du;(t,z)/0z|| < 00,7 =1,2,
(tyz)EQT
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then uy(t,z) = uz(t, z) in Qr.

Remark 1. By virtue of Definition 2, if u is a global quasi-classical solution,
there exists at least one interval (e, 3) such that v € C'((a,8) x R™). It is well
known that in the case n = 1 we have the continuum set of global generalized
Lipschitz continuous solution for (1), (2) with ug(z) = 0:

vx(t, ) = min{0, A|z| — A*t}, A = const > 0.

For A > 0 we can not find any interval (e, B) C (0,T), such that vy (¢, z) is
differentiable in (@, ) X R, because v)(t, z) is not differentiable on |z| = At or on
z=0,t € (0,T) (see Fig. 1)
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Thus, only the function vo(t,z) = 0 (i.e. A = 0) is the unique global quasi-
classical solution for (1), (2) with uo(z) = 0.

The proof of Theorem 1 will be based on the following result which is. of
independent interest, in our opinion.

Theorem 2. Let u be a function in C1(((0,T)\G) xR™)NLip([0,T) xR"™),
where G € A, u(0,z) =0 on {t =0,z € R"}. Suppose that there exists a number
N > 0 such that for any (t,z) € ((0,T) \ G) x R™:

du(t, z)

ot

duft,z)

< N1+ o) | 228 Q
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Then u(t,z) =0 in Q7.

. Proof Let (ty,z0) € N be an arbitrary point in Q1, B, be the ball
BY= {fI | fll <r} c R"™. We have to show that u(tg,zs) = 0. For this we define
in Q17 a multivalued function F : 7 — R™ in the following way

BN (1+]jz])» tegq, |
F(t,lill) = {f = BN(1+||:E||) : Bu(t,z)/c’)t = f, 8u(t,:z:)/6:v >= 0},
‘ tPEH0, )G

We now consider the differential inclusion

#(t) € F(t,z(t)), (4)

subject to the constraint
.’Il(to) = Ig. (5)

Let X(to, o) be the set of all absolutely continuous functions z(-) : [0,T] —
R", which satisfy almost everywhere in [0, T| the differential inclusion (4) and the
initial condition (5). We are going to show that X(¢¢,zo) is a non-empty compact
set in C([0,T],R™). To prove this we need to verify that ‘
- (i) F(t,z) is a non-empty convex compact set in R" for all (¢,z) € Q7.
(ii) The function F is upper semicontinuous in Q7.
First we check (i). It is obvious that F(¢,z) is a convex closed set in R". If
t € G we have F(t,z) = By(14|z)) # 0. If t € (0,T) \ G and du(t,z)/dz = 0 we
‘also have F(t,z) = By(14c|) # 0- It € (0,T) \ G and du(t,z)/dz # 0. We put

du(t,z)/ot

= -— 3 t :
: |Ou(t,z)/0z|? u(t,z)/0z
By virtue of (3) we obtain
|Ou(t, z) /Ot
= toutt, )jaz), = VO + =)
i |Bu(t, z)/dz]| | gD
On the other hand, :
aU(t, I) au(t,x) ¢
T R

_ Ou(t,z) = Ou(t,z)/ot e B 1 0. S O,
=22 ENOEIESE < Ou/dz,0u/dz >=0,
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so f € F(t,z). Thus we have shown for any (t,z) € Qr the set F(t,z) is non-
empty. Besides that F(t,z) is a convex, closed and bounded subset in R™. Hence
F(t,z) is a compact set in R™.

To verify (ii) we observe that the function F is bounded in a neighborhood
of any (t,z) € 7, i.e. there exist numbers I > 0,r > 0 such that

sup{||f|| | f € F(r,y),(r,y) € B (t) x B}(z) C Or} < +oo,

where B} (t)(resp. B?(z)) is an open ball in R'(resp. R") centered in ¢ (resp. x)
with radius ! (resp. r). In addition, it is easy to see that the function F is closed
because for any sequence (tg,zx) € Qr(k = 1,2,...), (tk; z) — (t,z) € Qr, and
for any sequence fx € F(tk,zx)(k =1,2,...), fx = f, we have f € F(t,z). Then
the function F' is upper semicontinuous in {lr

Thus, we have shown that the multivalued function F satisfies (i),(ii) and
from the definition of F(t,z) we have

sup{||f|l | f € F(t,z)} < N(1 + ]}

By virtue of Theorem 3, p. 206 in [2] the set X (2o, 7o) of absolutely contin-
uous solutions of (4),(5) is non-empty and compact in C([0,T],R").

Now let z(.) € X(to,zo). We consider.the function p(t) = u(t,z(t)). Since
u € Lip([0,T) x R™) and z(t) is absolutely continuous on [0, T], we conclude that
©(.) is absolutely continuous on [, T —¢] for any € € (0,7/2). On the other hand,

gb(t) 4 au(att,:c)+ < (1), Bu(gta,:a;) T

almost everywhere on [¢,T — €]. Then p(t) is constant on le,T —¢€]. Since ¢
is an arbitrary positive number and p(t) is continuous at ¢t = 0, we obtain that
o(t) = 9(0) = u(0,2(0)) = 0 for ¢t € [0,T). In particular, ©(to) = u(to, z(to)) =
u(to, o) = 0. The proof of Theorem 2 is complete.

Remark 2. We show by the following example that the Lipschitz continuity
of u(t, ) is essential in Theorems 1 and 2

Let G C [0, 1] be the Cantor set, i.e the set of all numbers in the form

izzzl__

where ¢; is either 0 or 2. We define the function v(.) which is called the Cantor
ladder in the following way [4]. For t € G and
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we put

oo b‘ ’
Z on b;
‘ i=1
If (@, B) is an open maximum interval in (0,1)\G (i.e. @, € G), then v(8) = v(a).
We set for t € (o, 3) : v(t) = const = v(a) = v(B). It follows that v(.) € C[0,1],
and v(t) = 0 almost everywhere in (0,1). In fact, v(t) =0, V¢ € (0,1) \ G.
Putting u(¢, z) = v(t), (t,z) € 1, we see that v € C(((0,1) \ G) x R™),
but u does not belong to Lip([0,1) x R™). The function u satisfies the condition
(3) in Theorem 2, and u(0,z) = 0, for all z € R™ but u(t,z) = v(t) % 0 in 0.
P r oo f of Theorem 1. Consider the function u(t,z) = u;(t,z) — us(t, z),
u(0,z) =0,z € R". Let

k= ma.x { ess.sup ||Ou;(¢, z)/BzH}

=12 | (t,2)eQr

From definition 2, there exist G;,G2 € A such that

u; € Lip([0,T) x R™) N C'(((0,T)\ G;) xR™)

and u; satisfies (1) everywhere in ((0,T) \ G;) x R"™. So, u;/8z; € C(((0,T) \
G;) X R™). Hence,

ess.sup ||Ou;(t, z)/9z|| = sup |oui(t,z)/dz||,7 = 1,2.
(t,z)EQr (t,z)e((0,T)\G:)xR"

It is easily seen that there exists a constant L such that for all p;,p, € By

o l* = lIp2l?| < Lilp1 — p2l|-

By virtue of the last inequality we have

Gu(t ) aul(t z) 12 — 8u2(t Ouz(t, z) o

ot o ey T I

u(t )

3
< Lofl=——~=1

for any (¢t,z) € ((0,T) \ G) x R™, G = G1 UG, € A. Applying Theorem 2 to the
function u we obtain that u(¢,z) = 0 in Qr, which proves Theorem 1.



Uniquehess of global quasi-classical solutions ... 71

The uniqueness of global quasi-classical solutions of Cauchy problems for
general nonlinear partial differential equations of first order will be considered in
a forthcoming paper by the method used here.
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