UNIQUENESS OF GLOBAL QUASI-CLASSICAL SOLUTIONS OF THE CAUCHY PROBLEM FOR THE EQUATION
 $\partial u / \partial t+(\partial u / \partial x)^{2}=0^{(*)}$

TRAN DUC VAN and NGUYEN DUY THAI SON

Dedicated to the memory of Professor Le Van Thiem

Abstract

W)}\) notion of quasi-classical solutions for the Cauchy problem $\partial u / \partial t+$ $+(\partial u / \partial x)^{2}=0, u(0, x)=u_{0}(x)$ in n-dimensional space $(n \geq 1)$ is presented and a uniqueness theorem is established by the method based on the theory of differential inclusions.

Key words. Cauchy problems, quasi-classical solutions, multivalued functions, differential inclusions.

In this paper we study the Cauchy problem for the Hamilton-Jacobi equation $\partial u / \partial t+(\partial u / \partial x)^{2}=0$ in n-dimensional space $(n \geq 1)$ and present a notion of global quasi-classical solutions for this problem. We establish a uniqueness theorem for global quasi-classical solutions by the method based on the theory of multivalued mappings and differential inclusions. In particular, we give an answer to a problem posed by S.N. Kružkov in [1].

Let T be a positive number, $\Omega_{T}=(0, T) \times \mathbf{R}^{n}=\left\{(t, x) \in \mathbb{R}^{n+1} \mid 0<t<T\right\}$, $\|\cdot\|$ and $<, .>$ be the norm and the scalar product in \mathbf{R}^{n} respectively. We consider the Cauchy problem
(*) Supported in part by NCSR Vietnam Program "Applied Mathematics".

$$
\begin{array}{r}
\frac{\partial u(t, x)}{\partial t}+\left(\frac{\partial u(t, x)}{\partial x}\right)^{2}=0,(t, x) \in \Omega_{T} \\
u(0, x)=u_{0}(x), x \in \mathbf{R}^{n} \tag{2}
\end{array}
$$

where $u_{0}($.$) is a known function, \partial u / \partial x=\left(\partial u / \partial x_{1}, \ldots, \partial u / \partial x_{n}\right),(\partial u / \partial x)^{2}=$ $\left(\partial u / \partial x_{1}\right)^{2}+\ldots+\left(\partial u / \partial x_{n}\right)^{2}$.

Definition 1. A function u in $C^{1}\left(\Omega_{T}\right) \cap C\left([0, T) \times \mathbb{R}^{n}\right)$ is called a global classical solution of the problem (1), (2) if and only if $u(t, x)$ satisfies (1) everywhere in Ω_{T} and (2) on $\left\{t=0, x \in \mathbf{R}^{n}\right\}$.

In [3] we obtained some new uniqueness results for global classical solutions of Cauchy problems for general Hamilton-Jacobi equations.

Denote by A the set of all closed sets G in \mathbf{R} with mes $(G)=0$, where mes is the Lebesgue measure. The Cantor-set belongs to \mathcal{A} [4]. We remind that the Cantor-set is the set of all numbers of the from

$$
\sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{3^{i}}
$$

where ε_{i} is either 0 or 2 . It is bounded, complete, nowhere dense on \mathbf{R} and possesses a continuum capacity.

We denote by $\operatorname{Lip}\left(\Omega_{T}\right)$ the set of all locally Lipschitz continuous functions u defined in Ω_{T}, i.e. for any compact set $K \subset \Omega_{T}$ there exists a number $L \geq 0$ such that:

$$
\begin{aligned}
& \left|u\left(t_{1}, x_{1}\right)-u\left(t_{2}, x_{2}\right)\right| \leq L\left(\left|t_{1}-t_{2}\right|+\left\|x_{1}-x_{2}\right\|\right), \\
& \text {, }
\end{aligned}
$$

Further, we set $\operatorname{Lip}\left([0, T) \times \mathbf{R}^{n}\right)=\operatorname{Lip}\left(\Omega_{T}\right) \cap C\left([0, T) \times \mathbf{R}^{n}\right)$.
Definition 2. A function u in $\operatorname{Lip}\left([0, T) \times \mathbf{R}^{n}\right)$ is called a global quasiclassical solution of (1), (2) if and only if there exists a set $G \in A$ such that $u \in C^{1}\left(((0, T) \backslash G) \times \mathbf{R}^{n}\right)$ and $u(t, x)$ satisfies (1) everywhere in $((0, T) \backslash G) \times \mathbf{R}^{n}$ and (2) on $\left\{t=0, x \in \mathbf{R}^{n}\right\}$.

We are now able to formulate the main result in this paper.
Theorem 1. If u_{1} and u_{2} are global quasi-classical solutions of the Cauchy problem (1), (2) with

$$
\underset{(t, x) \in \Omega_{T}}{\text { ess.sup }}\left\|\partial u_{i}(t, x) / \partial x\right\|<\infty, i=1,2
$$

then $u_{1}(t, x)=u_{2}(t, x)$ in Ω_{T}.
Remark 1. By virtue of Definition 2, if u is a global quasi-classical solution, there exists at least one interval (α, β) such that $u \in C^{1}\left((\alpha, \beta) \times \mathbf{R}^{n}\right)$. It is well known that in the case $n=1$ we have the continuum set of global generalized Lipschitz continuous solution for (1), (2) with $u_{0}(x) \equiv 0$:

$$
v_{\lambda}(t, x)=\min \left\{0, \lambda|x|-\lambda^{2} t\right\}, \lambda=\text { const } \geq 0 .
$$

For $\lambda>0$ we can not find any interval $(\alpha, \beta) \subset(0, T)$, such that $v_{\lambda}(t, x)$ is differentiable in $(\alpha, \beta) \times \mathbf{R}$, because $v_{\lambda}(t, x)$ is not differentiable on $|x|=\lambda t$ or on $x=0, t \in(0, T)$ (see Fig. 1)

Fig. 1

Thus, only the function $v_{0}(t, x) \equiv 0$ (i.e. $\lambda=0$) is the unique global quasiclassical solution for (1), (2) with $u_{0}(x) \equiv 0$.

The proof of Theorem 1 will be based on the following result which is of independent interest, in our opinion.

Theorem 2. Let u be a function in $C^{1}\left(((0, T) \backslash G) \times \mathbf{R}^{n}\right) \cap \operatorname{Lip}\left([0, T) \times \mathbf{R}^{n}\right)$, where $G \in \mathcal{A}, u(0, x) \equiv 0$ on $\left\{t=0, x \in \mathbf{R}^{n}\right\}$. Suppose that there exists a number $N \geq 0$ such that for any $(t, x) \in((0, T) \backslash G) \times \mathbf{R}^{n}$:

$$
\begin{equation*}
\left|\frac{\partial u(t, x)}{\partial t}\right| \leq N(1+\|x\|)\left\|\frac{\partial u(t, x)}{\partial x}\right\| . \tag{3}
\end{equation*}
$$

Then $u(t, x) \equiv 0$ in Ω_{T}.
Proof. Let $\left(t_{0}, x_{0}\right) \in \Omega_{T}$ be an arbitrary point in Ω_{T}, \bar{B}_{r} be the ball $\bar{B}_{r}^{n}=\{f \mid\|f\| \leq r\} \subset \mathbf{R}^{n}$. We have to show that $u\left(t_{0}, x_{0}\right)=0$. For this we define in Ω_{T} a multivalued function $F: \Omega_{T} \rightarrow \mathbf{R}^{n}$ in the following way

$$
F(t, x)= \begin{cases}\bar{B}_{N(1+\|x\|)} & t \in G \\ \left\{f \in \bar{B}_{N(1+\|x\|)}: \partial u(t, x) / \partial t\right. & +<f, \partial u(t, x) / \partial x>=0\} \\ & t \in(0, T) \backslash G\end{cases}
$$

We now consider the differential inclusion

$$
\begin{equation*}
\dot{x}(t) \in F(t, x(t)) \tag{4}
\end{equation*}
$$

subject to the constraint

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} \tag{5}
\end{equation*}
$$

Let $X\left(t_{0}, x_{0}\right)$ be the set of all absolutely continuous functions $x(\cdot):[0, T] \rightarrow$ \mathbb{R}^{n}, which satisfy almost everywhere in $[0, T]$ the differential inclusion (4) and the initial condition (5). We are going to show that $X\left(t_{0}, x_{0}\right)$ is a non-empty compact set in $C\left([0, T], \mathbf{R}^{n}\right)$. To prove this we need to verify that
(i) $F(t, x)$ is a non-empty convex compact set in \mathbf{R}^{n} for all $(t, x) \in \Omega_{T}$.
(ii) The function F is upper semicontinuous in Ω_{T}.

First we check (i). It is obvious that $F(t, x)$ is a convex closed set in \mathbf{R}^{n}. If $t \in G$ we have $F(t, x)=\bar{B}_{N(1+\|x\|)} \neq \emptyset$. If $t \in(0, T) \backslash G$ and $\partial u(t, x) / \partial x=0$ we also have $F(t, x)=\bar{B}_{N(1+\|x\|)} \neq \emptyset$. If $t \in(0, T) \backslash G$ and $\partial u(t, x) / \partial x \neq 0$. We put

$$
f=-\frac{\partial u(t, x) / \partial t}{\|\partial u(t, x) / \partial x\|^{2}} \partial u(t, x) / \partial x
$$

By virtue of (3) we obtain

$$
\|f\|=\frac{|\partial u(t, x) / \partial t|}{\|\partial u(t, x) / \partial x\|} \leq N(1+\|x\|)
$$

On the other hand,

$$
\begin{aligned}
\frac{\partial u(t, x)}{\partial t} & +<f, \frac{\partial u(t, x)}{\partial x}>= \\
& =\frac{\partial u(t, x)}{\partial t}-\frac{\partial u(t, x) / \partial t}{\|\partial u(t, x) / \partial x\|^{2}}<\partial u / \partial x, \partial u / \partial x>=0
\end{aligned}
$$

so $f \in F(t, x)$. Thus we have shown for any $(t, x) \in \Omega_{T}$ the set $F(t, x)$ is nonempty. Besides that $F(t, x)$ is a convex, closed and bounded subset in \mathbf{R}^{n}. Hence $F(t, x)$ is a compact set in \mathbf{R}^{n}.

To verify (ii) we observe that the function F is bounded in a neighborhood of any $(t, x) \in \Omega_{T}$, i.e. there exist numbers $l>0, r>0$ such that

$$
\sup \left\{\|f\| \mid f \in F(\tau, y),(\tau, y) \in B_{l}^{1}(t) \times B_{r}^{n}(x) \subset \Omega_{T}\right\}<+\infty,
$$

where $B_{l}^{1}(t)\left(\right.$ resp. $\left.B_{r}^{n}(x)\right)$ is an open ball in $\mathbf{R}^{1}\left(\right.$ resp. $\left.\mathbf{R}^{n}\right)$ centered in t (resp. x) with radius l (resp. r). In addition, it is easy to see that the function F is closed because for any sequence $\left(t_{k}, x_{k}\right) \in \Omega_{T}(k=1,2, \ldots),\left(t_{k}, x_{k}\right) \rightarrow(t, x) \in \Omega_{T}$, and for any sequence $f_{k} \in F\left(t_{k}, x_{k}\right)(k=1,2, \ldots), f_{k} \rightarrow f$, we have $f \in F(t, x)$. Then the function F is upper semicontinuous in Ω_{T}

Thus, we have shown that the multivalued function F satisfies (i),(ii) and from the definition of $F(t, x)$ we have

$$
\sup \{\|f\| \mid f \in F(t, x)\} \leq N(1+\|x\|)
$$

By virtue of Theorem 3, p. 206 in [2] the set $X\left(t_{0}, x_{0}\right)$ of absolutely continuous solutions of (4),(5) is non-empty and compact in $C\left([0, T], \mathbf{R}^{n}\right)$.

Now let $x(.) \in X\left(t_{0}, x_{0}\right)$. We consider the function $\varphi(t) \equiv u(t, x(t))$. Since $u \in \operatorname{Lip}\left([0, T) \times \mathbf{R}^{n}\right)$ and $x(t)$ is absolutely continuous on $[0, T]$, we conclude that $\varphi($.$) is absolutely continuous on [\varepsilon, T-\varepsilon]$ for any $\varepsilon \in(0, T / 2)$. On the other hand,

$$
\dot{\varphi}(t)=\frac{\partial u(t, x)}{\partial t}+\left\langle\dot{x}(t), \frac{\partial u(t, x)}{\partial x}>=0\right.
$$

almost everywhere on $[\varepsilon, T-\varepsilon]$. Then $\varphi(t)$ is constant on $[\varepsilon, T-\varepsilon]$. Since ε is an arbitrary positive number and $\varphi(t)$ is continuous at $t=0$, we obtain that $\varphi(t)=\varphi(0)=u(0, x(0))=0$ for $t \in[0, T)$. In particular, $\varphi\left(t_{0}\right)=u\left(t_{0}, x\left(t_{0}\right)\right)=$ $u\left(t_{0}, x_{0}\right)=0$. The proof of Theorem 2 is complete.

Remark 2. We show by the following example that the Lipschitz continuity of $u(t, x)$ is essential in Theorems 1 and 2

Let $G \subset[0,1]$ be the Cantor set, i.e the set of all numbers in the form

$$
\sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{3^{i}},
$$

where ϵ_{i} is either 0 or 2 . We define the function $v($.$) which is called the Cantor$ ladder in the following way [4]. For $t \in G$ and

$$
t=\sum_{i=1}^{\infty} \frac{\varepsilon_{i}}{3^{i}}, \varepsilon_{i} \in\{0,1\}, \quad i=1,2, \ldots
$$

we put

$$
v(t)=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}}, \quad b_{i}=\frac{\varepsilon_{i}}{2}
$$

If (α, β) is an open maximum interval in $(0,1) \backslash G$ (i.e. $\alpha, \beta \in G)$, then $v(\beta)=v(\alpha)$. We set for $t \in(\alpha, \beta): v(t)=$ const $\neq v(\alpha)=v(\beta)$. It follows that $v(.) \in C[0,1]$, and $\dot{v}(t)=0$ almost everywhere in $(0,1)$. In fact, $\dot{v}(t)=0, \forall t \in(0,1) \backslash G$.

Putting $u(t, x)=v(t),(t, x) \in \Omega_{1}$, we see that $u \in C^{1}\left(((0,1) \backslash G) \times \mathbf{R}^{n}\right)$, but u does not belong to $\operatorname{Lip}\left([0,1) \times \mathbf{R}^{n}\right)$. The function u satisfies the condition (3) in Theorem 2, and $u(0, x)=0$, for all $x \in \mathbf{R}^{n}$ but $u(t, x)=v(t) \not \equiv 0$ in Ω_{1}.

Proof of Theorem 1. Consider the function $u(t, x)=u_{1}(t, x)-u_{2}(t, x)$, $u(0, x) \equiv 0, x \in \mathbf{R}^{n}$. Let

$$
k=\max _{i=1,2}\left\{\underset{(t, x) \in \Omega_{T}}{\operatorname{ess} . \sup }\left\|\partial u_{i}(t, x) / \partial x\right\|\right\}
$$

From definition 2, there exist $G_{1}, G_{2} \in \mathcal{A}$ such that

$$
u_{i} \in \operatorname{Lip}\left([0, T) \times \mathbf{R}^{n}\right) \cap C^{1}\left(\left((0, T) \backslash G_{i}\right) \times \mathbf{R}^{n}\right)
$$

and u_{i} satisfies (1) everywhere in $\left((0, T) \backslash G_{i}\right) \times \mathbf{R}^{n}$. So, $\partial u_{i} / \partial x_{j} \in C(((0, T) \backslash$ $\left.G_{i}\right) \times \mathbf{R}^{n}$). Hence,

$$
\underset{(t, x) \in \Omega_{T}}{\operatorname{ess.sup}}\left\|\partial u_{i}(t, x) / \partial x\right\|=\sup _{(t, x) \in\left((0, T) \backslash G_{i}\right) \times \mathbf{R}^{n}}\left\|\partial u_{i}(t, x) / \partial x\right\|, i=1,2 .
$$

It is easily seen that there exists a constant L such that for all $p_{1}, p_{2} \in \bar{B}_{k}$

$$
\left\|\left\|p_{1}\right\|^{2}-\right\| p_{2}\left\|^{2} \mid \leq L\right\| p_{1}-p_{2} \| .
$$

By virtue of the last inequality we have

$$
\begin{align*}
\left|\frac{\partial u(t, x)}{\partial t}\right| & \leq\left|\left\|\frac{\partial u_{1}(t, x)}{\partial x}\right\|^{2}-\left\|\frac{\partial u_{2}(t, x)}{\partial x}\right\|^{2}\right| \leq \\
& \leq L \cdot\left\|\frac{\partial u(t, x)}{\partial x}\right\|
\end{align*}
$$

7otrus) 9nd. bollso ai foidw
for any $(t, x) \in((0, T) \backslash G) \times \mathbf{R}^{n}, G=G_{1} \cup G_{2} \in \mathcal{A}$. Applying Theorem 2 to the function u we obtain that $u(t, x) \equiv 0$ in Ω_{T}, which proves Theorem 1 .

The uniqueness of global quasi-classical solutions of Cauchy problems for general nonlinear partial differential equations of first order will be considered in a forthcoming paper by the method used here.

1. S.N. Kružkov: Theory of functions and differential equations (Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh. 5(1991), 36-43.
2. A.I. Subbotin: Minimax inequalities and Hamilton-Jacobi equations (Russian), Nauka, Moscow (1991), 216p.
3. T.D. Van and N.D.T. Son: On the uniqueness of global classical solutions of the Cauchy problem for Hamilton-Jacobi equations (to appear in Acta Mathematica Vietnamica).
4. J. Dieudonné: Foundations of Modern Analysis, Academic Press, 1960.

Institute of Mathematics Received November 8, 1991 P.O.Box 631 Bo Ho

Hanoi

 asviuว onffs to vjinflif ts amoiansqxe xuseiuף-notwoh shty to

