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A FORMULA FOR LOJASIEWICZ NUMBERS
~ AND A NEW CHARACTERIZATION
OF THE IRREGULARITY AT INFINITY
OF ALGEBRAIC PLANE CURVES
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Dedicated to the memory of Professor Le Van Thiem

1.

According to the work [2]-[4], the Lojasiewicz number is an useful invariant
of the singularities at infinity of polynomials. The aims of this paper are following.

(i) To relate the Lojasiewicz number at infinity of an algebraic plane curve
to the Lojasiewicz numbers of the compactification of the curve in the projective
plane. ‘ :
(ii) Using the result of (i), to give a new characterization of the irregularity
at infinity, different from the characterizations, given in the previous works [1]-[4],
5], [6], [9], [10], [11]. Besides these results, this paper contains also the description
of the Newton-Puiseux expansions at infinity of affine curves.

2.

Let P(z,y) € C[z,y] be a polynomial of two complex variables.

2.1. Definition. (i) The value to € C is called regular at infinity, if there
are 6 > 0,r > 1, such that ;

P P~ YDg)~ B, — Dy
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is a locally trivial C*°-fibration, where

Ds = {te C,|t —to| < 6}

and
Br = {z = (z,y) € C?,|2| < r}.

(it) If the value to is not regular at infinity, 1t 1s called critical value, corre-
sponding to the singularities at infinity of P.

(i11) The curve V.= P~1(t ) where to is a critical value, corresponding to
the singularities at infinity of P, ts called irregular at infinity.

Let 0 € C be a critical value, corresponding to the singularities at infinity
of P. For 6 > 0 and r > 1 we define

weltds |(zif11)f|‘=r lgradP(z,y)|
(z,9)EP~1(Ds)

where D5 = {t € C, |t| < 6}.
Let 1 ")
: s nYs\r .
Loo(V) = lim lim — === (2.1)
2.2. Definition [2]. Number Loo(V), defined by (2.1), is called Lojaste-
wicz’s number at infintty of V.
Let V = {(z : y: 2) € CP2, 2?P(%,%) = 0} be the compactification of V'
in CP2. ‘
Let P = zdP(ﬁ, 2
 Let Ay,--- , Ak be the points of intersection of V with the ”line at infinity”
g =06f CP*. Each point A; belongs to one of two open set Uy = {(z:y :2),z =
1} and Uy = {(z : y : 2),y = 1}. Let, for example, A; € Uy. Let Ly, (V) be the
Lojasiewicz number of the germ at A; of the analytical function P(1,y,2), defined
by C.T.Kuo and Y.U.Lu in [7].
We define the number

(V)2 et sg) ().

v=1,...,k

Our results are

2.3. Theorem. Let P~1(0) be an irregular at infinity algebraic affine plane
curve. Ler d be a degree of P(z,y). Then we have

w(V)+L(V)=d-2.
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2.4. Theorem. The curve V. = P~1(0) is irregular at infinity if and only if
L(V)>d-1.

In order to prove these theorems, we need a version at infinity of the Newton-
Puiseux theorem, which will be given in the next section.

3.

. 3.1 Definition. The polynomial P(z,y) is called convenient at infinity, if
Py(0,y) # 0 and Py(z,0) # 0, where Py(z,y) is a homogeneous part of the highest
degree of P(z,y). '

3.2.Remark. If P(z,y) is convenient at infinity, then

k
Py(z,y) = [[(piz = ai)™,
4 =1

i
95

where P; #0 and q; # 0; 1 = 1, ...k.

3.3. Proposition (Newton-Puiseux expansions at infinity). Suppose that
P(z,y) is convenient at infinity and let V. = P~1(0). Then there exist d roots
y = a;(z),1 = 1,...d, verifying the equation

AP(:c, ai(z))

=
Each such a root a;(z) has the forni
ko j ", my()+i
ai(z) = c;z + Z C(@)o 2’ + e(s)yz™ B/ml) ¢ Z §T TR o s p
Jj==1 j=—1
= C(z')g(l.)zm(i)g(i)/nl(i) (i) (7) ok Z (i1 (g 1 /nl( ) s ng(i)(,’),
_ e

where ¢; € {~5¥,j = 1,---k} and the numbers m;(7),n; (i) are integers. Moreover,
the series
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ai(r™ (‘l)u-ny(.’)("')),i =1,-:d
converge for |t| > ro, where ro is some positive number.

Proof. Let Py(z,y) = [I°,(piz + ¢iy)*, and P'= Py + Q. Since P(z,y)
is convenient at infinity, we have : .

k
Viade=0igl] 4,
1=1

where A; = (1, el € CP2. Let us consider the equation ;zdP(%, £) = 0, locally
at A;. We make a change of variables

i = &
q:
Let P
| e
fultaaal) & zdP(;, > 1),
Then
k %
filui,2) =[[ (o + gus — ;=) ] = gf ui’+
. o qq
; P
L 1 £ o
+ZdQ(_’ 1 ql)'
| 2 =
One puts
g
gi(us) = [[[(pj + a5t~ ¢ )% ] — " ui*
J# :
and
§ it
hi(ul,z) s zd_lQ( ’ 3 & )a

then the multiplicity of g(ui) at u; = 0 is s; and h;(u;,z) is a polynomial of

variables u; and z. Thus fi(u;,2) = gi(ui) + zhi(us, 2). Applying a version of

Newton’s algorithm, described by R.Walker in [W] for the germ of f;(u,, 2) at the
point A;, we have exactly s; solutions u;, (2), ..., uis, (2) of the equation f(u;,2) = 0,

satisfying the condition '
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u;(z) = 0as 2 =0, 7 =118

Each of these solutions has the form

. ko ; ﬁ,,L ki o ; ;
u(z) :ZCo,sz g et ZC’sz e
=1 1=l
m! o o] m! +7
5 ngﬁ ¥ Z Cg’]-zﬁu
§—=1 ‘

Moreover, the series u(r™ ™) converges for || < € for some & > 0 sufficiently
small. -

Let .

@'(2) = =7 +u(2),
q:

then a’(z) is one of solutions of 2P (1, %) = 0, locally at A;, and a'(z) — ~Fias
z 0.

Now, the proof of Proposition 3.3 follows from the following -

3.4. Lemma. There exist one-to-one correspondence between the solutions
a'(2) of the equation 2°P (1, L) = 0 and the solutions a(z) of the equation Plz,y)=
0. More precisely, if y = a'(z) is a solution of zdP(%, 2) =0 then y = a(z) =
za’(%) 15 a solution of P(x,y) = 0. Inversely, if y = a(z) is a solution of P(z,y) =
0, then y = za(1) is a solution of 2%P(1, %) =0. '

P r o of. Evident. Thus, the Proposition 3.3 is proved.

4.

We recall some results of (7] and [3]
4.1. Let A; be, as in Section 2, a point of intersection of V with the ” line
at infinity” {z = 0} C CP?. Let a},(2),...,a}, (z) be the Puiseux expansions of V'

at the point A;. Let £L4,(V) be the Lojasiewicz number of the germ at A; of the

iunction P =2?P(L, %) For each a;;(2) we construct the series ¢;(z) as follows.
et

S}I‘ = 1}1;2;(1)(&1-]-(2) - a:'K(Z)),

where v(.) is a valuation of fractional series. The series ©;;(2) is the series a!;(2)
with its term of degree g;.(i) replaced by 25 (i),f is a generic coefficient, and all

higher order terms omitted. Then, according to Theorem A of [7], we have
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L4,(V)=  max l;.(i) -1,

J=Dbswen8;

where l;-(i) = v(P(2,};(2))

4.2. Let ay(z), ..., aq(z) be the Puiseux expansions at infinity of V. For any
1 =1,...,d, one puts

g = I?;?"(ai(z) - a;(z)).

One denotes by ;(z) the series a;(z) with its term of degree ¢; replaced by £z, €
is a generic coefficient, and all lower order terms omitted. Let [; = v(P(z,pi(z)))-
According to Theorem 1.3.2. of [3], if V is an irregular at infinity algebraic curve,
then

$=1 v\ oyl

Proof of Theorem 2.3

Let M/ be the set of Puiseux expansions of V at the point A; (with the
‘notations of Sections 2.4). Let aj(z) € M! and ©!(z) be the fractional series,
obtained from a!(z) as in Section 4. Let

I'(a}) = v(P(2,9:(2)))-
Then
I'(a}) =) v(@i(2) — ai(2)),
where a/y(2) runs through all a}(2) € M;. By Lemma 3.4
)= Y vlapiy) - zar(2))
' A %
qr (z)EM;
where ax(z) runs through all elements of the set

M; = {ax(2), 3al(2) € M}, au(2) = 20k ()}
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“and p;(z) = zp}(1). Thus

Vo) = #Mi+ Y v(sof(i)—ak(i))

ai (z)EM;
1
s=@iadsqx X uas —ak(;)). (5.1)
ar (z)EM;
We observe that
1 1 1 1
> e a2 == Y wleiln) —e()+
ak (z)EM; i a;j(z)eEM; .
’ d 1 _
+ ) v(pi(=) — o -)). (5.2)
k=1
It follows from the proof of Proposition 3.3 that
‘ 1 1
v(pi(7) —ar(7)) = -1
for ax(z) ¢ M;. Therefore
| 1 1
24 vlpi(7) = ak(3)) = ~(d — #Mi) = —d + s;. (5.3)
ax (z)EM;
On the other hand,
d » d :
3 v(tp,'( —a;(2)) = =D _ v(pi(2) ~ a;(2)) = ~l(as), (5.4)
j=1 g=1
where I(a;) = v(P(z, 1(2))).
It follows from (5.1)-(5.4) that
'(a}) = s; + [~l(a;) — (—d+ s:)] = d—~U'(a;). (5.5)

By Secton 4.1

LailV) = e (V(e}) 1

and by (5.5)
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Thus

L(V)= max L4,(V)=(d—1)—~ min min l(ay)

O D 1=1,..;k a;eM;
=(d—1) — min I(a;).
3=al5...

Since V is irregular at infinity, by Section 4.2; we have

e =l

Then

i LV)+ Loo(V) =d—2.

Theorem 2.3 is prbved.

Proof of Theorem 2.4

Suppose that V is an irregular at infinity curve. Then, by Section 4.2,
Loo(V) < —1. Tt follows from Theorem 2.3 that L(V) >d — 1.

Conversely, supposing that £(V) > d — 1, we have to show that V is an
irregular at infinity curve.

6.1. Lemma.Let by(z),...,ba~1(z) be the Puiseuz ezpansions at infinity
of the curve W = P 1(0). Suppose that L(V) > d — 1. Then there exist b,

y
So € {1,...,d— 1}, s.t.

v(P(z,bs,(z))) <O.
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Proof. Let L(V)=V(a])—1>d—1and let

1
! £, A
iy (2) = zal, ().
Then
la;,) =d—1'(al)) <.
Let us denote ‘
g, = r.gi.nv(aio (z) — ai(x))
and let
g':o T v(a"io (:l}) — Gy, (IE))

By Lemma 3.14 of [3], there exists by, (z) € {b1(z),...,b4_1(z)} such that

Sio = (i, (7) — aj, (2)) = v(ai, (2) = bsy (7)) = v(aj, (z) — bs, (2)).
We obrerve that

v(ar(2) = bs (2)) < v(ar(z) — aiy(2)) (6.1)

for all r € {1,...,d} — {40}-
In fact

v(a,r(a:) — G4 (.’L')) 2 v(a‘io (‘t) S (IE)) = v(a’io (.’1:) R bso (.’B))
and therefore, applying Lemma 3.12 of (3] for three series a,(z), a;, (), bs, (z), we

get (6.1).
We see then

d
v(P(2,b5(2))) = ) v(ar(2) = by () =

= Z v(a,(x) bso (‘T)) il $ig <
f-',éio

< Z.v(a"‘(x) — @i, (.’B)) + Gip = l(a’io) <0
1#1g

and hence Lemma (6.1) is proved.
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We continue the proof of Theorem 2.4. Let denote by t(z) = Pk A, ().
Then, by Lemma 6.1,

t(r) > 0as z— o0

Since b, (z) is a Puiseux expansion at infinity of W = P;1(0), the points (z, b, (z))
are nothing else but the points of ramification of the Riemann surface Vi) =
P~!(t(z)). Then, by using the arguments of the proof of Theorem 2.2.1 in [3], we
get, forr > 1 ‘

|(V = B,) = |(Vi(s) = By)+ number of points of ramification of Vi(,) in
Vi(zy — Br,
where [(.) is the Euler characteristic.

Since (z,bs, (z)) € Vi(z) — By, we get

L(V o Br) # l_(Vt(a:) ¥ Br)

which shows that 0 is a critial value, coresponding to the singularities at infinity
of P. The theorem is proved.

7.

7.1 Recently, Professor P. Casson-Nogeies communicated me that she has
received also Theorem 2.3, independently.

e 7.2. As we know, if a germ of an analytical function satisfies some conditions
of nondegeneracy, then its local number of Lojasiewicz can be computed via its
Newton’s diagram ([8]). In the light of Theorem 2.3., it would be nice to have a
formula expessing the number L. (V) in terms of Newton’s diagram at infinity of
V.
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