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HEIGHTS FOR P.ADIC
MEROMORPHIC FU]\CTIONS AI{D VALUB

DISTRIBUTION THEORY

HA HUY KHOAI*)

Dedicated to the mernorV of Prolessor Le Van Thiem

1.  INTRODUCTION.

1.1. In recent years many papers concern the relation between number theory
and value distr ibution'theory (Nevanlinna theory)'(see IL], [V]1, [V]2, IW], IO]1,
[O]2). In [V]1 P. Vojta gives a "dictionary" fon translating the results of Nevanlinna
theory in the one-dimensional case to Diophantine approximations. Due to this
dictionary we can regard the Roth's'theorem as an analog of Nevanlinna's Second
Main Theorem. P.Vojta has also made quanbitative conjectures which generalize
Roth's theorem to higher dimensiorn by relating the Second Main Theorem of
Nevanlinna in higher dimensions (Griffiths-Stoll-Carlson-King) to the theory of
heights. One can say that P. Vojta proposed aln "arithmetic Nevanlinna Theory "
in higher dimensions. In the philosophy of Hiesse-Minkowski principle one would
naturally have interest to determine how Nevanlinna theory would look in the
p-adic case.

1.2. In [H]1, [H]2, [H-M] we constructed a padic analog of Nevanlinna the-
ory. In this paper we introduce the notion of heights for p-adic meromorphic
functions and thereby study padic holomorphic funictions as well as meromorphic

*)Supported by the Max-Planck-Institut fiir Mathemratik in Bonn and the National
Basic Research Programrne in Natural Science, Vietnam.
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ones. By using the notion of heights, in several problems we only need to consider
the behavior of functions when the argument passes "critical points". This makes
it easier to prove both the padic interpolation theorem and padic analogs of two
Main Theorems of Nevanlinna theory. The notion of heights and the padic analog
of Nevanlinna theory in higher dimensions will be described in a future paper"

1.3. We first recall some facts from classical Nevanlinna theory ([N], [Hay]).
Let f (z) be a meromorphic function in the complex plane C and a € C be a
complex number. One asks the following question: How "large" is the set of
points z € C at which /(z) takes the value o or values "close to a" ? For every
value o Nevanlinna has constructed the following functions.

Let n(f ,c,z) denote the number of points z € C for which f (") : o and

lzl 1 r, counting with multiplicity. We set

N ( f , a , r )
n( f  ,  a , t )  -  n( f  ,  a ,o)  

d i  - l  n( f  ,a ,  o)  log r ,

2r

J
0

f- J
0

1

2n
, +
t o g 'm ( f  , a , r )

where

and that

Nevanlinna's First

/(z) there exists a

ffiqa,,

r - Flog u --
l o g r  i f  r ) l

0  i f  c ( 1 ,

T ( f  , a , r )  :  N ( . f ,  a , r )  *  m ( f  , a , r ) .

Main Theorem asserts that for every meromorphic function
function T(f ,r) such that for all a € C,

{

T ( f  , o , r )  :  T ( f  , r )  +  h ( f  , a , r ) ,

where h(f ,o,r) is a bounded function of r. Since the function T(f ,r) does not
depend on o, we can roughly say that a meromorphic function takes every value
a the same number of times.

Nevanlinna's Second Main Theorem asserts that generally m(f ,o, r) is small
compared with ?(/,r) and consequently N(/,o,r) approximates T(f ,r).Namely,
one defines the defect of o as follows:

6(o,f):,gW#-1-"u3"ff#
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Then the iet of defect values, i.e. those a such that 6(o) ) 0, is finite or countable,
in addition | 6(a) ( 2, where the sum extends over all defect values. We would
like to mention that the inverse problem is consideied first by Le Van Thiem.

1.4. In 2. we define the height for padic holomorphic functions. The padic

Poisson-Jensen formula is described in terms of heights. In 3. we are concerned
with the problems of padic interpolation of holomorphic functions. We define the
height of discrete sequences of points and give a necessary and sufficient condition
for a sequence of points to be an interpolating sequence of a given function. In
4. we define the height for merornorphic functions and prove the p--adic analog of
two Nevanlinna's Main Theorems.

2. HEIGHT OF P-ADIC HOLOMORPHIC FUNCTIONS.

2.1. Let p be a prime number, Qo the field of yadle numbers, and Co the
p-adic completion of the algebraic closure of Qp. The absolute value in Qo is

normalized so that lpl : p-t. We further use the notation u{z) for the additive
valuation on Co which exiends ord,r" Let D be the open unit disk in Co:

D = { " € C p i l r l  < r } .

LeI f (z) be a padic holomorphic functions on D represented by a convergent
series:

Ie) : i o*"*.
n:o

Since we have

, ! jg { r ( " " )  +zu(z) } -ee

for all u(z) : f ) 0, it follows that for every t > 0 there exists an n for which
u(a") * nt is minimal. Let nf ,t,n y,, be the smallest and the largest values of. n at,

which u(a") * nt attains its minimum. We set:

ht,,  --  nt,r . t ,  h\,r :  nJ,t . t ,  hf , ,  :  h1p - ht, t .

2.2. Definition. We call hf,r,hJ,r,h1,r the right loeal height,left local height,

local height of the function l(z) at t - - logo lzl respectively..

2.3. Definition. The global height of f (z) is defined by

H(f ,t): o$t1""{v(a") * nt}.
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2.4. Remarks. f) In [H]1 we called H(f ,t) the Newton polygon of the
function /(z). However the term "Newton poiygon" is used in the literature for
another object.-We use here "the height" which would be more suitable in'this
context.

2) We have

H(f ,t) : ,fll, {- logo la"l - nlogrlzl}.
O < n < €

2.5.Lemm a. 1) If  hy', t  :  o then IQ) I o when v(z) : t ,  and, one has

l f  ( " ) l  -  P-H( f ' t )  '

2) If hy f O, then f (z) has zeros at u(z) : t and' hL, : t. number of zeras
a t  u ( z )  : 1  .

3) In any f,nite segment [r,s],0 <r < s ( *oo there are only f initely many
t sotisfying hf,t I O. Such points t are called. the critical points of f (z).

P r o o f.  1) Assume that hy,t:0, then ,f,r:  nJ,, and u(a*) * nf attains

i ts  min imum for  a  unique f i , :  n fp:  n \ , r .  We have H( f  , t )  :  u(an)  *nt :
oo

, (  D  & n z " )  a t  a ( z ) : 1 .
n = O

2) and 3) follow from Definitions 2.2-2.3 and the properties of the Newton
polygon of f  (z) (see[M].[H]t).

2.6. Esample. Consider the function

oo -rl

l o g ( t +  4 : D e \ " - r ; .
n = l

F o r e v e r y t > 0 w e h a v e

,( ( -1)* - r  ln)  + *q{  
n t  -  losnf  losp i f  n  :  pk

( > zl - log nl logp if  n * pk

Henie, for any f ) 0, rlou,r and za*,, have the forrn p& for some k > 0. It is easy

to see that rz[*,, * nie' if and only if ,ile,t - ok-r and nfr,, - p& for some /c.
In this case we have

u((_r1r* - ' * r  1o*- r )  *  pk- r r :  u( (_r )p*- ,  lor )  +  pkt .

Thus, the function log(l *z) has crit ical points t1r: g];7 (/c:1,2,.. .) and
r  r - l -w g h a v e :  h [ o " , r r :  o * r h i e , t r :  # r h b s , t p : l r h b s , t  

=  0  f o r  a l l t  t ' t 1 ,  ( k  -
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1,2,...),If (log, t) : 
# *[logr(p- 1)t], where [c] denotes the largest integer being

equals or less than c.

2.7. Theorem. (the padic Poisson-Jensen formula). Let f(z) be a'holomor
phic lunction in the unit disk ond lct tq ) t > 0. Thcn we hove:

H(f ,to) - H(f ,t) : hl,to - hl,, + t .hf,".
fo  )a ) t

(1)

P r o o f .  L e t t s  )  t 1  )  t z ) . . . > t , - >  t b e a l l t h e c r i t i c a l p o i n t s o f
the function f (z). Note that the height H(f ,") is a linear function of s in every
segment [ tn+r, tp]  and we have n7]r :  nf , t r*r ,  H(f  ,s)  = u(an+,,** ,  )  *  nf , r r*r" :

u(an7,,r) * nV,r*s. It follows that H(f ,tx) - H(f ,tr+r) : Io(on7,,*) + nr,r*trl -

l r (ony,"** , )  lnf , r** , t r+r l  :  n1,r*( t r  -  t r+r) .  
'H(f  

, ro)  *  H(f  , t )  :  H(Lto) -

H(L tL i  +  H( f  , r r )  -  H( f , t ; )  + . . .  + r r (  f , tn )  -  H( f , t )  :  (n ' i , to to  -  n - i , ro t r ) *

(n7,r,t1 - n Jgtr) + ... *(n7,r-tn -.n1,1*t) : h\,ro I t1(n y,t, - njn) + t2(n J,i, 
-

ni,r,) * .-. *tn(nV,r. - nV,r*-r) - hf ,, 
: hV,ro - hf,r* 

,"r"D' 
h1,". Theorem 2'7 is

proved.

2.8. Remarlc. Note that the formula (1) is analogous to the classical Poisson-
Jensen formula. In fact, sqppose that to : 6, f (O) + 0 and I is not a critical point '

of the function /(z). Then we have H(f ,to) - - logp l/(0)1, nU,t) - - logp l lk)l
on the circle lrl : p-' ihV,ro : o,r"Ir, hf,, - hl,, : D - logo lz;1, where the sum

extends over all the zeros z; of the function f(z) in the disk lzl S f-t. Then
formula (f) takes the following form: log,1,;=t lf @l logp l/(0)l : t - logolz;1.'
Recall that the classical Poisson-Jensen formula is the following:

-(ord, / )  log lo l ,

where D is the unit disk in C and ordo/ is the order of f (z) at a.

3. HEIGHTS OF SEQUENCES OF POINTS AND
P.ADIC INTERPOLATION.

3.1. The construction of the padic zeta-function by interpolating from a set
of integers (tK-Ll) caused many peopld to be interested in the problem of padic

2r
< a

* / t.* l/("")ldo - log l/(o)l : tz|t J oeD
0 - o * o
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interpolation. In [H]1 we found a necessary and sufficient condition for a discrete

sequence of points in the unit disk D to be an interpolating of a given function

/(z). This is the first theorem of padic interpolation of unbounded functions. In

this section we formulate and prove the interpolation theorem in terms of heights
of padic holomorphic functions.

3.2. Definition. Let g(z) be a holomorphic function in the unit disk D.

We denote by O(g) the class of holomorphic functions in D satisfying the following

condi t ion 
sup l / (z) l  : ' (sup lE(z) l )
lzl=r l"l:,

w h e n r - - - - - - + 1 - 0 .

3.3. Corollary. / e O(g) if ond onlg if

J'q{II(/,  t) - H(s,t)} :  -.

3.4. Now let u : {uo,ur,.. .} be a sequence of points in D. In what fol lows we

shall only consider sequences u for which the number of points u; satisfying u(ul) )
t is finite for every t > 0. We shall always assume that u(u;) ) u(u;11) (i:

0 , 1 ,  " ' ) '

3.5. Definit ion. For every t > 0 the height" hl,r,hJ,t,hu,t,H(u,t) are

defined by: hj,r: n|,r.t, where.zi,r@r,r) is the number of points ui such that

a(u;) > t (resp. u(u;) > t),  hu,t :  hu*- hl,rand ff(u, t) :  hl,r- hu,ro - 
prhu,r,

where to : u(uo). We shall always assume that liq H(u,t): -oo.

3.6. Erample. For the sequence of primitive pm-roots of unity, rn : L,2,...
we have :

'  h | , t :  h ls , t ,hu, t :  h tos, t ,  H(u, t ) :  .F f  ( log, l ) .

3.7. Remark. lf u: {u;} is the sequence of zeros of the function /(z), then

we have H( f  , t )  -  H(u, t )  :0(1)  when t  - -+ 0.

3.8. Definition, The sequence u = {u;} is called an interpolating sequence

of f (z) if the sequence of interpolation polynomials for f on u converges to f (z).

3.9. Theorern. The sequence ui : {u;} rs an interpolating sequence ol the

function f (r) ;f ond only il
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l iml l /( / ,  t )  -  H(u,t) l  :  - .
.  

l * 0 '  \ '  '

P r o o f. For simplicity we assume that u is a sequence of distinct points.
In the ca^se of dealing with sequences of nondistinct points we need a minor
modification of the proof. Recall that the interpolation polynomials {P1(z)} for
the function f (z) on the seguence u are determined by the following relations:

degPl < k; P{u;) :  /(r i) ,  a.= 0, . . . ,  f t .

We set Sn(r) :  Pk+r(z) - P*(z).

First of all we prove the following

3.10. Lemma. For al l  te ) 0 and for al l  lc such that t1r: u(ux) 1ts we
haue

l lfr(so, tk) - tr/(u,t1)] - [IJ(si,ro) -1 II(u,ro)]l S ro.

P- r o o f. By the Poisson-Jensen formula we have

H(S* , to )  - I I ( ^9 r , t r r )=h " . , r "  -h f * , r *  +  D  hs1 , , s t
t s  ) s ) t r

which implies that

[ f / (sr '  to\ -  H(u,to)]  -  [r(so,t t)  -  H(u,t l ' ) l  -

:  (hs* , to  -hu, t ) - ( f r j * , r *  -n f , r * )+(  
I  (hs* , "  -h , , " ) ) .

to  )s ) tp

From the definit ions of hs*.,,hu,sfot /c such that u(26) ( ts we have

(hs* . "  -h r , " )  =o

o ( nf*,to -ot,to,nf*,r* - t?f,,r& < l.

From this Lemma 3.10 follows.
We now return to prove Theorem 3.9.

1) Necessity. Suppose that H(f ,t) - H(r,t) does not tend to infinity. Then
we can find a sequence {s;} such that I{(/, s;) - If (u, s;) is bounded. Hence there
is an integer &s such that for k ) ko we have

H(Sr, "o)  -  I / (u ,s6)  > sup{^fJ( / ,sd)  -  / f (z ,s ; ) }  *  1*  ss.

T
t o ) s ) t r
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In view of Lemma 3.10 for k 2 ko and all f ) 0 we have:

H(Sr , " ; )  -  H (u ,s ; )  >  sup { I / ( / , " i )  -  H (u ,s ; ) }  +  1

and hence )
H(Sx ,s i )  -  H ( f  , " r )  t  1 .  (2 )

We set Mo: 
oJ;t{n" 

H(5o,0). Since 
}*A(",1) 

: -- i t  suff ices to consider the

case when /(z) is unbounded, i.". 
lTt 

H(f ,t): -oo. Then there exists a number

Ne such that for all N 2 No we have

H ( / , " r )  1  Mo -  t .

S ince H(Sn," r )  >  H(S*,0) ,  we have

H(S*," r )  -  f / ( / , " iu)  2  Mo -  H( f  ,s ;y)  )  1 .

Thus, the inequality (z) holds for all ft > 0 and all n. ) No. By assumption we
have 

oo

l@) : I tn(') '
/c:0

and this implies the obvious inequality

H(/,"rv) > fj3 {I/(sr,")}l

This contradicts (1) and proves the necessity.
2) Suffiqiency. We first prove the following

3.11. Lemrna. For aiy k we haue H(Sn,tr)  > H(f  , tx)  or  H(Sp,r t+r)  )
H( f  , t r+ t )

P r o o f. By Lazard's lemma ([Laz]) we have:

k

I("): ek)lIk - u;) + ex(z),
d:0

where degQp(z) S k, H(Qr",t*) ) H(f,tx). On the other hand, Qx(a;) : I(u;),
a:0, . . . , /c,  and then Q1(z):-  Pr(") .  Thus, H(Pr, t r )  2 H(f , t r ) .  Simi lar ly,
H(Px+t , t r+ r )  7  H( f  , t r+ r ) .  I f  u (u i11)  :  u (uk) ,  i .e .  t * :  t k+ t ,  then we have
H(Sr,tr) > H(f ,tx). Assume that 11 * tr+t. If H(Ppar,tr) ) H(f ,tr) then we
have.Ff(Sr, t r )  )  H(f  , t*) .  Otherwise, H(Px+t, t r )  < H(Po,t ; . ) .  Since tn *  tn+t
we have ni**r,t,"+, : k + 1 and n".*, ,t*: k ) ni*,r*. Thus we have
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H(Px,tx+t)  :  H(Px,tr)  -  nF*$*(tn -  tn+r)  >

2  H(Pn+r , t r )  -  np i * , , t * ( t r  -  t t+ r )  :  H ' (Px+t , tn+ t )

and then H(Sr , t r+ r )  2  H( f  , t r+ r ) .
We now return to the probf of sufficiency. In view of Lemma 3.10, for 'an

arbitrary N we have .F/(^9,r, t iv) ) H(u,t7,7) * try * H(Sn,t^) - H(u,t") for tn :
u (u" )  (  t r .By  Lemma3.1 l  we have e i ther  H(Sn, t " )  >  H( f  , t " )  o r  H(Sn, l ,+ r )  )
H(f  , t "+r) ,  and then we obtain

H (S*, t  y)  > H (u,  r rv)  + t iv

+  m i n { [ f I ( f  , t . )  H ( u , t " ) ] , H ( f  , 1 , " + r )  -  H ( u , t " + t ) ] .

From this and the assumption we have

, lggf1S", l r )  
:  oo,

i .e.  
, l$S'  

(")  :0,  and hence there exists P(z) :  
)Hp*Q).  

I t  remains' to

prove that P(z) = f(z). Since u is an interpolating sequence of P("), we must
have 

gttr/(P, t) - H(u,r)r : po.

By sett ing g(") :  P(t) - f  (z) we obtain

] '+[^t l (o'  
t)  -  H(u,t)  :  * .  (3)

On the other  hand,  as g(u; )  :0  for  i :0 ,L,2, . . . ,  we f ind (3)  contradic ts  Remark
3.7. Then g(z) = 0 and Theorem 3.9 is proved.

We can formulate Theorem 3.9 in terms of local heights.

3.12. Corollary. The sequence rL: {u;} rs an interpolating sequence of the

function f (r) ;f

lgxtD hu,"- f h1,"): -
s ) t  8 > t

and, h[,, - hl,, is bound,ed when t --+ o.
In fact, under these.conditions it follows from the Poisson-Jensen formula

and the definit ion of H(u,t) that 
ltq{//(/, 

t) - H(u,r)} : *"
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3.I3. Remark. One can find the function f (z), the sequence of points u such

that  l iq{Lhu,"  -  |  h! ,"} :  m whi le htr , r -  h l r  is  unbounded and H(f  , t )  -
r * u  s ) t  s ) t

H(u,t) does not converge to infinity

3.t4. Corollary. The sequence u is an interpolating sequence for all func-
tions in O(f) if the functions 

+ +nl,t  - ni, t

are bounded.

In fact, from the proof of the Poisson-Jensen formula it follows that if for all
,  >  0  we  have  n i , r -  nu , t  1M then  H(u , t )  -  H ( f  , t )  <  H(u , to )  -  H ( f  , t o *  M to )
for I ( fs. Let g be a function of class 0(/). We have

H(s,  f )  -  H(u, t )  :  lH(s, t )  -  H(Lt) l  -  lH(u, t )  -  H(f  , t ) l
>  I H ( g , t )  -  H ( f  , t ) ] - f n @ , t o )  -  H ( f  , t o ) ] -  M t o  - +  o o  w h e n  l . - *  0 .

3 .15 .  Coro l l a ry .  The  sequence  { f  -  t }  where  1P"  :  L ,  n :  L ,2 , . . . i s  an
interpolating sequence for all functions ol class 0(log).

In fact, take for /(z) the function log(1 * z) and let u be the sequence in
Cor l lary  3.15.  Then nf , r -  n t , t :0  (see Example 3.6) .

A similar result holds for functions of class O(logfr). Note that the p-adic
,L-functions associated to cusps forms are padic holomorphic functions of class
o(logk) for some /c (see [Vish]).

3.16. Corol lary. Let {u} C D and, {*;} c Co be two sequences of ualues in
D and Co. Let {P"(")} be the sequence of polynornials satisfying the conditions:
d"g P' (r) S tu, Pn(r;) :  d. i ,  i  :  O,... , fr.  Then we harte the fol lowing.

1) If  H(P",O) - 'H(u,tn) - q when n -+ 6, there erists a holomorphic

funct ion f  (z)  such that  f  (u ; ) :  o4t  i :0 ,  I ,2 , . . . ,  IQ)  - -  
^ fu  

P^1"1

2) Conuersely, if there erists a holomorpih;, function g(z) : 
-till 'P"(z),

then
H(Pn,o)  -  H(u, t " )  +  ntn - -+ sp

when n ---+ oo.

-P r  o  o f .  We have H(Pn, t , )  S H(Po,0)  and H(P, , tn)  -  H(u, to)  - )  oo
when rz --) oo. Arguments similar to those used to prove Theorem 3.9 give us for
every fixed N:

H  (S  n , rn )  *  H  (u , t  1 ,7 )  >  m in [ f / (P , , t  n )  -  H  (u , t  n ) ,  H  (P* ,  t , , +  r  )  -  M  (u , t ,+ r ) ] .
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Consequentty, 
J!5 

H(Sn,trv) : m and there exists f ("):limP"(z). Obviously

t ha t  / ( z ; )  :  d i t  i  :  0 ,  1 ,2 , . . .
Conversely, if there exists a holomorphic function g(z) : lim P"("), then we

have f / (P," , t , , )  )  H(g, t * )  and theh H(Pn,0)  > l / (P" , to)  -n tn)  H(g, tn) ' -n tn;
H(P",0) - H(u,tn) * ntn 2 H(g,t") - H(u,t") ---1 oo: since u is an interpolating
sequence of the function g(z).

3.17. Remork. In many cases we have nt,- < oo. For example when u is
the sequence {t - 1} with 1pn :1, Cofollary 3.16 gives a necessary and sufficient
condition.

4. HEIGHT FOR P-ADIC MEROMORPHIC FUNCTION

4.L. Let p(z) be a meromorph.ic function on D. By definition, ,p(z) :

IQ)lgk), where f (z) and g(z) are holomorphic functions on D not having com-
mon zeros. We set

H ( P , t ) :  H ( f  , t ) H ( g , t )

we call H (p,r) the global height of the function e("). As in the case of holomorphic
functions, the (r ight, left) local height p(z) at t  is definedby h$,t: hf,r- h[,t ;

ho,, : hV,, - hf,,r, Ho,, = hi,, - h[,r.
4.2. Remarle. he,t ) O(he,t < 0) if and only if tp(z) has zeros (poles) at

u ( z )  : 1 .
4.3. The characteristic function. For a € C, we set

* (p ,a , t )  :  H*  (P  -  a , t ) :  ma>c { } / (  ,P  -  a , t ) , 0 }

N(p ,a , t )  -  
D" ( r ,a ,  s ) ( s  -  t )
a > t

where n(g,a,s) denotes the number of points z € D such that u(z) : t and
p(z) : a, here every such point is counted according to its multiplicity as a root
of  tp(z) :  a .  We set

T(9,  o , t )  :  N (P,  a , t )  *  m(tP,  a , , t ) ,

N(P', t )  =

m ( e , t ) :

T ( p , t ) :

Doo," - h[,t,
g ) t

H+ ( t f  ,p , t ) ,

N(p, t )  +  m(p, t ) .

and moreover that
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We call T(p,t) the characteristic function of the meromorphic function q(z)"

4.4. Theorem. Let p(z) be a meromorphic function in D. Then for euery

a € Co we houe

T(p,  o , t )  :  T(p, r )  +  0(1) .

We first proJe the following

4.5. Lemma. Let prp; ( i  :  1r2,.. . , 'k) be meromorphic'functions on D.
Then we haue:

k
1) *(D pr, t )  < max;{m(pi , t ) )

d = l
k k

2) *( fr  pr, t )  < t  rn(p;, t )
r : 1  i : 1

k k
e/ N(D pr, t )  S t  N(p; , t )

r : 1  d = 1
k k

i l  N(f I  p; , t )  5 t  N(pi , t )
d : l  d : l
k k

5 ) r (D (p , , t )  S  D r (p ; , t )
d : l  d= l

l r k
6) T(f l  pr , t )  S t  T{p; , t )

d : l  d : l

7) f (p,t) rs c decreasing lunction of t
S) T(p,t) u o bound,ed. function if and only tf ,p(z) is a ration af two bounded

holomorphic functions.

P r o o f. 1) and 2) follow from the properties of the height and the deffnition
of the function m(p,t). 3) and 4) are proved by the remark that N(qr, f) is the
sum <rf valuations of poles of p(z) in the disk lzl I p-t . 5) and 6) are consequences
o f  1 ) ,  2 ) ,  3 ) ,  4 ) .

We now prove 7). First of all we show that lf(Vr,t) is a decreasing function.
Assume tt > ttt ) 0 and in the segment (t",t') there is no critical point of g(z).

Then we have

N(vr,t') : I ho," - hf,,t,: I or," - hs;, - h{,t, :
elt '  e)tt '

: I ho," - hf,,t, : D uo," - nf,,1,t' :
alt" s>t"

L oo," - n[,s,,ttS I ho," - h{,s,, : N(p,t"). (4)
elt,t alt,,
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Since every segment [t",t') can be divided into a finite number of segments
on which 9(z) does not have critical points, (4) shows that N(gu, t) is a decreasing
function.

Now assume that  m(p, t ' )  :0 ,  then T(p, t t )  :  N(p, t ' )  <  N( ,p, t " )  S
T(p , t " ) .  When  m(p , t ' )  )  0  we  have  H(L f  p , t ' )  )  0  and  H(p , t ' )  (  0 ,  i . e .
m( l l p , t ' )  : 0 .  Then  we  have

T(r lp , t ' ) :  N(r l ,p , t ' )  <  l f ( rvr ,  t " )  sT( l l<p, , t " ) . (5)

Note that the Poisson-Jensen formula is valid for meromorphic functions when the
heights h*,h,H are defined as above. We take te so that for t ) ts the functiort
rp(z) does not have crit ical points.and hence hp,r:0 for s ) to. We have

H(p, to )  -  H(p , t )  :  i t . r , to  -  @[ , ,  -  h f , )+  I  s  ]  ths ,s  :

hr,ro t [ I  tr," - hf ,t l  - tD hr," - h{, iJ.
e ) t  s ) t

This implies that

T ( p , t )  -  T ( t l p , t )  :  H ( p , t 6 )  -  h e , t o .  ( 6 )

By combining (5) and (6) we obtain T(p,t ')  < T(p,t"). To prove (8) we as-
sume that tp(z): fQ)lg(z), where f (z) and g(z) arc two bounded holomorphic
functions. From (6) it follows that

/ V ( g , t )  *  * ( g , t )  :  N ( r l s , t )  +  m r ( I f  s , t )  +  H ( s , t s )  -  h s , t o .

Then we have

N( t l s , t ) :  * (g , t )  -  m( t l g , t )  +  N( t l s , t )  +  H(s , to )  -  hn , ro :
:  -H (g , t )  -  hn , to  +  N(9 ,  t ) .

S ince g is  bounded,  so are N(g,  t ) ,H(g, t )  and N(p, t )  :  N(1/9,1) .  Then T(p, t )  :

N(p. , t )  +  m(p, ,1)  is  bounded a lso.
Now suppose T(p,d) is bounded. Then N(p,t) is bounded, and since

T( I lp , t )  is  bounded,  so is  N(L l ,p , t ) .  Suppose that  p(z) :  l (z) ls@).  I t  fo l -
lows from (6) that

n  ( f  , t )  -  * (1 l f  , t ) :  N ( t l f  , t )  -  l r ( / , t )  +0 (1 )
H( f  , t )  :  N( / ,  t )  t  ^ ( f  , t )  -  N(r l  L  t )  +  0(1)
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Since N(1lf , t) :  N(t/9,t) \s bounded, we have H(f , t) ) -oo, and consequently

/(z) is bounded. Similarly g(z) is bounded.
We are now in a position to prove Theorem 4.4. We have

, l l 1
m l  , t )  +  l f ( i ; t ) : T ( - : = t ) : T ( p  -  a , t )  +  0 ( 1 ) .' g _ a ,  g _ & ,  ' p - a ,

Using Lemma i.5. wu obtain

f  (e  -  a , t )  <  T(p, t )  *  logf ,  o ,

T(p, t )  .  T( ,p  -  a , t )  1  logf ,  a .

Since T (p, o,t) :  T (p - a,,t),  Theorem 4.4 is proved.

4.6. Theorem . Let p(z\ be an unbounded meromorphic function on D,
ars... tao be dist inct nurnbers of Cp. Then we haue

q

* (p , r )  + I  * ( ;A, t )Szr@,r )  - r / r ( r )  +o( r ) ,

where Nt  ( t )  :  N(1 lp '  , t )  +  2N(,p, t )  -  N(p ' , t ) "

Wc now return to the Second Main Theorem. We set

N ( P , t ) :  N ( P ' , t )  -  N ( P , t ) .

Then N (#, t) is the number of distinct zeros of p(r) - a in lzl 3 p-'. We set

I

6(d:n !##-1- -^NffP,
o(a) : r'^N(tl 'P 

- a'!-- \(1lP 
- a't)

t +o  T (p , t )

o (o) : r -' ;i^{-El!-!-'t)-

, 4.7. Theorem. Let p(z) be an unbounded, meromorphic function on D.
Then the set ol talues a € Co such that O(") > O is finite or eo$ntoble and

lurthermore we have
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!tot") +o(o)) < f o(o) s z.

Theorems 4.6 and 4.7 arc proved by using the arguments similar to those in
the proof of Lemma 4.5 and the standard arguments of complex analysis (see the
proof of the Second Main Theorem [N]).

From the First and Second'Main Theorems we have the corpllaries about
properties of padic meromorphic functions. Since the proofs in many cases are
similar to those in the complex case, we formulate them without proofs.

For each a € C, we let E"(e) denote the set of points z € D for which
p(z) : a, where every points is taken as many times as its multiplicity of being a
root of the equation gQ) - o : 0.

4.8. Corollary. Suppose that p1(z) and pz(") are two tnerontorphic func-
tions on D for which there erist three distinct volues ar,az,as € Cp such that
E^,(pt) - Ea;(pr), i -- L,2,3. Assume tnoreoaer that at least one of 

'thern 
is not

a ratio of two bounded holomorphic functions. Then gr = gz. -

4.9. Corollary. Let R(u) be a rational function of degree d, and f (z) be a
rneorlnorphic function on {z € Cp,lr l  < R},R ( oo. Then we haue

T(R( f ) , t ) :  dT ( f  , t )  +  o ( t ) ,

when t ---' - logo E.

4.10. Corollary. A rneromorphic function f (z) ;s transcend.entat ij and
only if

l im 
?( / , r )  

:  @.
t+oo - t

4.11. Corollary. For an unbounded, meromorphic function on D we have

E " (o , / ( * ) )s t *1 ]1a€Cp
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