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HEIGHTS FOR P-ADIC
MEROMORPHIC FUNCTIONS AND VALUE
- DISTRIBUTION THEORY

HA HUY KHOAI*)

Dedicated to the memory of Professor Le Van Thiem

1. INTRODUCTION.

1.1. In recent years many papers concern the relation between number theory
and value distribution theory (Nevanlinna theory) ‘(see [L], [V]1, [V]2, [W], [O]1,
[0]2). In [V]1 P. Vojta gives a “dictionary” for translating the results of Nevanlinna
theory in the one-dimensional case to Diophantine approximations. Due to this
dictionary we can regard the Roth’s theorem as an analog of Nevanlinna’s Second
Main Theorem. P.Vojta has also made quantitative conjectures which generalize
Roth’s theorem to higher dimensions by relating the Second Main Theorem of
Nevanlinna in higher dimensions (Griffiths-Stoll-Carlson-King) to the theory of
heights. One can say that P. Vojta proposed an “arithmetic Nevanlinna Theory ”
in higher dimensions. In the philosophy of Hasse-Minkowski principle one would
naturally have interest to determine how Nevanlinna theory would look in the
p-adic case. 4

1.2. In [H]1, [H]2, [H-M] we constructed a p-adic analog of Nevanlinna the-
ory. In this paper we introduce the notion of heights for p-adic meromorphic
functions and thereby study p-adic holomorphic functions as well as meromorphic
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ones. By using the notion of heights, in several problems we only need to consider
the behavior of functions when the argument passes “critical points”. This makes
it easier to prove both the p-adic interpolation theorem and p-adic analogs of two
Main Theorems of Nevanlinna theory. The notion of heights and the p-adic analog
of Nevanlinna theory in higher dimensions will be described in a future paper:

1.3. We first recall some facts from classical Nevanlinna theory ([N], [Hay]).
Let f(z) be a meromorphic function in the complex plane C and a € C be a
complex number. One asks the following question: How “large” is the set of
points z € C at which f(z) takes the value a or values “close to @” 7 For every
value a Nevanlinna has constructed the following functions.

Let n(f,a,z) denote the number of points z € C for which f(z) = a and '
|z| < r, counting with multiplicity. We set \

Ny = [2E2I =200y 0001087,

0
1 7 1
+
= — P —
m(f,e,7) 27r/10g |f(re®) — a| &
0
where i
ot {‘logz : it g1
0 it 251,
and that

T(f,a,r) = N(f,aar) -I—m(f,a,r).

Nevanlinna’s First Main Theorem asserts that for every meromorphic function
f(2) there exists a function T'(f,r) such that for all a € C,

T(fya,r) =T(f,r) + h(f,a,r),

where h(f,a,r) is a bounded function of r. Since the function T(f,r) does not
depend on a, we can roughly say that a meromorphic function takes every value
.a the same number of times.

Nevanlinna’s Second Main Theorem asserts that generally m(f,a,r) is small
compared with T(f,r) and consequently N(f,a,r) approximates T'(f,r). Namely,
one defines the defect of a as follows:

o mfer) _ . N(far)
ola /) sodimm Gt = MRV (r, ) -
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Then the set of defect values, i.e. those a such that §(a) > 0, is finite or countable,
in addition Y 6(a) < 2, where the sum extends over all defect values. We would
like to mention that the inverse problem is considered first by Le Van Thiem.

1.4. In 2. we define the height for p-adic holomorphic functions. The p-adic
Poisson-Jensen formula is described in terms of heights. In 3. we are concerned
with the problems of p-adic interpolation of holomorphic functions. We define the
height of discrete sequences of points and give a necessary and sufficient condition
for a sequence of points to be an interpolating sequence of a given function. In

4. we define the height for meromorphic functions and prove the p-adic analog of
two Nevanlinna’s Main Theorems.

2. HEIGHT OF P-ADIC HOLOMORPHIC FUNCTIONS.

2.1. Let p be a prime number, Q, the field of p-adic numbers, and C, the
p-adic completion of the algebraic closure of Q,. The absolute value in Q, is
normalized so that |p| = p~!. We further use the notation v(z) for the additive
valuation on C, which extends ord,. Let D be the open unit disk in Cp:

DEAZ O [z < I

Let f(z) be a p-adic holomorphic functions on D represented by a convergent
series: :

He) = Z G2 s
n=0
Since we have

lim {v(a,) + nv(z)} =

Z2—00

for all v(z) =t > 0, it follows that for every ¢ > 0 there exists an n for which
v(an) + nt is minimal. Let n}"t, ny , be the smallest and the largest values of n at
which v(a,) + nt attains its minimum. We set:

+ o+ QOIS & 1p _p= +
hie=ngt, by, =npt, hpe=hge, —hy,.

2.2. Definition. We call h;’t, 7.t h ¢t the right local height, left local height,
local height of the function f(z) at ¢t = — log, |z| respectively..

2.3. Definition. The global height of f(z) is defined by

H(fyt) = min {v(en) +nt}.
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2.4. Remarks. 1) In [H]1 we called H(f,t) the Newton polygon of the
function f(z). However the term “Newton polygon” is used in the literature for
another object.” We use here “the height” which would be more suitable in this

" context.

2) We have

H(f, t{ = .,I(I,l)ilee {— log, |an| — nlog, |2|}.
0<n<oo

2.5.L.emma. 1) If hgs = O then f(z) # 0 when v(2) = t, and one has

() =m, 2"

2) If hyy # 0, then f(z) has zeros at v(z) =t and hy; = t. number of zeros
ot vlg)'s= ¢ .

8) In any finite segment [r,s],0 < r < s < +oo there are only finitely many
t satisfying hs; # 0. Such points t are called the critical points of f(z).

P roof. 1) Assume that hy; = 0, then n}r’t 3 n;’t and v(a,) + nt attains

its minimum for a unique @ = n}r’t = nj ;. We have H(f,t) = v(eg) + 1t =

oo
vl }, a,2) at v(a)=1t.
n=0
2) and 3) follow from Definitions 2.2-2.3 and the properties of the Newton
polygon of f(z) (see[M].[H]1).
2.6. Ezample. Consider the function

27
n

log(l+2) = 5._9:(—1)"_1

For every t > 0 we have

=nt —logn/logpif n =p*

v((=1)" "1 /n) + nt){

>nt —logn/logp if n # p*

Hence, for any t > 0, ni‘;g’t and Mog,t have the form p* for some k > 0. It is easy

+ - et gkt - _ ok
to see that Mlog,t £ Mog,t if and only if Rigt =¥ and Rlogt =8 for some k.

In this case we have

k—-1__ - el k__
(1) M) g =l ((=1)P T /6 + Pt
Thus, the function lbg(l + z) has critical points ¢ = ﬁ_—l (k =D, 2; 4.) and

we have: hltg,t,, = ;—}T, Piog 1, = ;’—;Ll, hlog,tkyz 1, .hlog,t =0 for all t # tg (k =
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1,2,...), H(log,t) = —1—1 +(log, (p— 1)t], where [:c] denotes the largest integer being
equals or less than z.

2.7. Theorem. (the p-adic Poisson-Jensen formﬁla). Let f(z) be a holomor-
phic function in the unit disk and let to >t > 0. Then we have:

H(f,to) = H(f,t) =h7, i+ ) ke (1)

to >8>t

Proof. Letty > t1v> tg > ... >ty > t be all the critical points of
the function f(z). Note that the height H(f,s) is a linear function of s in every
segment [txi1,tk| and we have ny, = n}"tk“ v H(f,8) =vi{a.+ )+ nz 8=

tre+1
fotgq1

v(a, e ) + ny, s It follows that H(f,tk) — H(f,tks1) = [v(a"},tk) +ng bkl -
[v(a, 4 ) +n}L,tk+ltk+1] T "?,tk(tk — tey1). H(f,t0) — H(f,t) = H(f,t0) —

(f,tl) ¥ H(f,t1) — H(f,t2) + ... +H(f,t2) — H(f,t) = (n7,to — nfst1)+
(nFe b1 = nyg,t2) + o Hngy tn n?t t) = hpg ttalngs, = npg,) Htalng,, -
ney )t Htalng, —np, | ) ¥ hft ke, — h}:t+ Y. hjfs. Theorem 2.7 is

to>8>t .

proved.

2.8. Remark. Note that the formula (1) is analogous to the classical Poisson-
Jensen formula. In.fact, suppose that to = oo, f(0) # 0 and t is not a critical point
of the function f(2). Then we have H(f,t0) = —log,, |f(0)|, H(f,t) = — log, |f(2)]
on the circle |z| = p~ hf to = 0, t >Z>t R h'f*',t = ) —log, |2|, where the sum

o>8
extends over all the zeros z; of the function f(z) in the disk |z| < p~*. Then
formula (1) takes the following form: log, ;)= |f(2)| — log, |f(0)| = 3= — log, |2i]."
Recall that the classical Poisson-Jensen formula is the following: -

a€D
a#0

2w
%/ log |f(¢*®)|d® — log |£(0)| = }_ ~(ordaf) loglal,
0 =

where D is the unit disk in C and ord, f is the order of f(z) at a.

3. HEIGHTS OF SEQUENCES OF POINTS AND
P-ADIC INTERPOLATION.

3.1. The construction of the p-adic zeta-function by interpolating from a set
of integers ([K-L]) caused many people to be interested in the problem of p-adic
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interpolation. In [H]1 we found a necessary and sufficient condition for a discrete
sequence of points in the unit disk D to be an interpolating of a given function
f(z). This is the first theorem of p-adic interpolation of unbounded functions. In
this section we formulate and prove the interpolation theorem in terms of heights
of p-adic holomorphic functions.

3.2. Definition. Let g(2) be a holomorphic function in the unit disk D.
We denote by 0(g) the class of holomorphic functions in D satisfying the following
condition -

sup |f(2)| = 0(sup |g(2)])

|z|=r |z|=r

when r — 1 — 0.

3.3. Corollary. f € 0(g) if and only if

lim (H(/,1) ~ H(g,1)} = oo.

3.4. Now let u = {uo,uy,...} be a sequence of points in D. In what follows we
shall only consider sequences u for which the number of points u; satisfying v(u;) >
t is finite for every t > 0. We shall always assume that v(u;) > v(ui+1) (¢ =
ats.a) '

3.5. Definition. For every ¢ > 0 the heights h,,tt, wtsPu,t, H(u,t) are
defined by: hf’t = nf’t.t, where.nI’t(n;,t) is the number of points u; such that
v(u;) >t (resp. v(u;) >t), hys =hy - h:’)t and H(u,t) = h:f,t oy, — 3 B

s>t
where to = v(ug). We shall always assume that tlim H(u,t) = —oo.

—0

3.6. Ezample. For the sequence of primitive p™-roots of unity, m = 1,2, ...

we have :
hE, = hE, 1 hus = hiog,ts H(u,1) = H(log,t).

3.7. Remark. If u = {u;} is the sequence of zeros of the function f(z), then
we have H(f,t) — H(u,t) = 0(1) when ¢t — 0.

3.8. Definition. The sequence u = {u,} is called an interpolating sequence
of f(2) if the sequence of interpolation polynomials for f on u converges to f (2)-

3.9. Theorem. The sequence uw = {u;} ts an interpolating sequence of the
function f(2) if and only if
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lim{H(£,) = H(u,1)] = oo.

Proof. For simplicity we assume that u is a sequence of distinct points.
In the case of dealing with sequences of non-distinct points we need a minor
modification of the proof. Recall that the interpolation polynomials {Py(z)} for
the function f(z) on the sequence u are determined by the following relations:

degPx < k; Pi(u:) = f(ui),1-=0,...,k.
We set Si(z) = Pk+1(z) — Py(2).
First of all we prove the following

3.10. Lemma. For all to > 0 and for all k such that t; = v(ux) < to we
have :
\[H(Sk,tk) — H(u, tg)] — (H(Sk,t0) = H(u,to0)]| < to.

P r o o f. By the Poisson-Jensen formula we have

H(SkytO) 5 H(Sk’tk) = h-;k,to Sk tx + Z h’Sk:s’

to >8>tk

which implies that

{H(Sk,to) — H(u,to)] — [H(Sk,tk) = H(u tk)] —

i (hEk,to =1 ;,to) D1 (hz;,tk hy t,,) o ( Z (hSk,. R hu,s))-
to>8>1

From the definitions of hgy,,hy; for k such that v(ug) < to we have

Z (hSk,. — hu,B) =0

to >8>t

- o :E
0 S ng, 1o ~ Putor Mspte — Nuyt, < 1.

From this Lemma 3.10 follows.
We now return to prove Theorem 3.9. :

1) Necessity. Suppose that H(f,t) — H(u,t) does not tend to infinity. Then
we can find a sequence {s;} such that H(f,s;) — H(u, s;) is bounded. Hence there
is an integer ko such that for k > ko we have

H(Sk,s0) — H(u,50) >sup{H(f,s;) — H(u,s‘-)} + 1+ s0.
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In view of Lemma 3.10 for k > ko and all : > 0 we have:
H(Sk,s;) — H(u,s;) > sup{H(f,s ;) — H(u, s,)} 4.1

and hence,

H(Sk,s:) — H(f,s:) 2 1. : (2)
We set My = L 1nf H(Sk, 0). Since lim H(u t) = —oo it suffices to consider the
case when f(z) is unbounded ive. llm H ( f,t) = —oo. Then there exists a number
Ny such that for all N > Ng we have

H(f,SN) SMO_]..
Since H(Sk,sn) > H(Sk,0), we have

H(Sk,sn) — H(f,sn) = Mo — H(f,sn) > 1.

Thus, the inequality (2) holds for all k¥ > 0 and all n > Ny. By assumption we
have .

and this implies the obvious inequality
4 > . '.
H(f,sN) %121%1 {H(Sk?sN)}

This contradicts (1) and proves the necessity.
2) Sufficiency. We first prove the following

3.11. Lemma. For any k we have H(Sk,tx) > H(f,tx) or H(S‘k,tk+1) >
H(f:tk+1)'

P r o o f. By Lazard’s lemma ([Laz]) we have:

k
f(2) = w(2) [ [ (= — w) + Qi(2),
1=0
where degQx(2) < k, H(Qk,tx) > H(f,tx). On the other hand, Qx(u;) = f(us),
i = 0,...,k; and then Qx(z) = Pi(2). Thus, H(Pk,tx) > H(f,tx). Similarly,
H(Piy1,tks1) = H(f,te+1). If v(ugsr) = v(ug), ice. tx = tgyy, then we have
H(Sk,tx) > H(f,tx). Assume that tx # tiq1. If H(Pry1,te) > H(f,2x) then we
have H(Sk,tx) > H(f,tr). Otherwise, H(Pxy1,tx) < H(Pg,tx). Since tx # tr+1
we have n;k“,tk“ =k+1landnp 4 =k2>np , . Thus we have
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H(Py,teq1) = H(Pr,tx) = np, 4 (te = tkt1) 2
> H(Pes1,te) —np,,, 1 (b — tet1) = H(Pry1,tk+1)

and then H (Sk,tk+1) > H(f tk+1).

We now return to the proof of sufficiency. In view of Lemma 3.10, for an
arbitrary N we have H(Sn,ty) > H(u,tn) +tn + H(Sp,tn) — H(u,t,) for t, =
v(un) < tn. By Lemma 3.11 we have either H(Sp,t,) > H(f,tn) or H(Sp,tnt1) >
H(f,tn+1), and then we obtain

II(Sn,tN) Z]IﬁhtN)-%tN
+ min{[H(f,ts) — H(u,tn)], H(f,tn+1) — H(u,tns1)]-

From this and the assumption we have

lim H(Sn,tn) = 00

n—oo
ie. lim S,(z) = 0, and hence there exists P(z) = lim P,(z). It remains to
=rO0 n—o0

prove that P(z ) = f(2). Since u is an interpolating sequence of P(z), we must
have

tli_r%[H(P, t) — H(u,t)] = co.
By setting g(z) = P(z) — f(2) we obtain
lim{H(g,6) ~ H(u,f) = oo. ) (3

On the other hand, as g(u;) = 0 for 1 = 0,1,2,..., we find (3) contradicts Remark
3.7. Then g(z) = 0 and Theorem 3.9 is proved.

We can formulate Theorem 3.9 in terms of local heights.

3.12. Corollary. The sequence u = {u;} ts an interpolating sequence of the

function f(z) if
(S = Y g} = 9
8>1 8>t
and h h,f]t 1s bounded when t — 0. \
In fact, under these conditions it follows from the Pmsson—Jensen formula

and the definition of H(u,t) that hm{H(f, t) = Hlud)} =
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3.13. Remark. One can find the function f(z), the sequence of points u such
that llm{z Bus = 3 hys} = oo while h,f,t - hzt is unbounded and H(f,t) —
s>t

L LA
H(u,t) does not converge to infinity.

3.14. Corollary. The sequence u is an interpolating sequence for all func-
tions in O(f) if the functions

e o
nf,t _ nu,t

are bounded.

In fact, from the proof of the Poisson-Jensen formula it follows that if for all
t > 0 we have nep—Nyy < M then H(u,t) — H(f,t) < H(u,to) — H(f,to + Mto)
for t < to. Let g be a function of class 0(f). We have ‘

H(g, f) — H(u,t) = [H(g,t) — H(f,¢)] - [H(w,t) = H(/, )]
> [H(g,t) — H(f,t)] — [H(u,t0) — H(f,t0)] — Mty — co when t — 0.

3.15. Corollary. The sequence {y — 1} where ¥ =1 n=12,..1s an
interpolating sequence for all functions of class 0(log).

In fact, take for f(z) the function log(1l + 2) and let u be the sequence in
Corllary 3.15. Then njf’t = nff’t = 0 (see Example 3.6).

A similar result holds for functions of class 0(log®). Note that the p-adic
L-functions associated to cusps forms are p-adic holomorphic functions of class

0(log¥) for some k (see [Vish]).

3.16. Corollary. Let {u;} C D and {a;} C C, be two sequences of values in
D and C,. Let {P,(2)} be the sequence of polynomials satisfying the conditions:
deg P,(z) < n, Py(u;) = @i, 1 =0,...,n. Then we have the following.

1) If H(P,,0) — H(u,t,) — oo when n — oo, there exists a holomorphic
funetion flz) sueh that flus) =04, $=0,1,2,..., §(2) = lim P,(z)

: n—00

2) Conversely, if there exists a holomorphic function g(z) = lim P,(z),

then
H(P,,0) — H(u,t,) + nty, — o0

when n — 0.

-Proof Wehave H(Py,,t,) < H(Py,0) and H(P,,t,) — H(u,t,) — oo
when n — co. Arguments similar to those used to prove Theorem 3.9 give us for
every fixed N:

H(Sn,tn) — H(u,ty) > min[H(Pp,tn) — H(w,tn), H(Ppn,tni1) — M(u, tniq)]-
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Consequently, lim H(S,,ty) = co and there exists f(z) = lim P,(2). Obviously
n—oo \

that ) = 8, 01,2, 4

Conversely, if there exists a holomorphic function g(z) = lim P, (z), then we
have H(P,,t,) > H(g,t,) and then H(P,,0) > H(P,,t,) —nt, > H(g,tn) — ntn;
H(P,,0) — H(u,t,) + nt, > H(g,t,) — H(u,t,) — 0o, since u is an interpolating
sequence of the function g(z). :

3.17. Remark. In many cases we have nt, < co. For example when u is
the sequence {y — 1} with 4p™ = 1, Corollary 3.16 gives a necessary and sufficient
condition.

4. HEIGHT FOR P-ADIC MEROMORPHIC FUNCTION

4.1. Let p(z) be a meromorphic function on D. By -d‘eﬁnition, p(z). =
f(2)/g(z), where f(z) and g(z) are holomorphic functions on D not having com-
mon zeros. We set

H(p,t) = H(f,t)H(g,1)
we call H(ip, t) the global height of the function ©(2). As in the case of holomorphic
functions, the (right, left) local height ©(z) at t is defined by h;,t = h}:t - h;"t;
5 92(155E £3 i b - \
hﬁP:t = hf,t — gty Hpt = et hso,t‘ ‘

4.2. Remark. hy s > O(hy: < 0) if and only if p(2) has zeros (poles) at
vizF= :

4.3. The characteristic function. For a € C, we set

m(p,a,t) = H"(p — a,t) = max{H(p — a,t),0}

N(p,a,t) = Z n(p,a,s)(s— t)

s>t

where n(p,a,s) denotes the number of points z € D such that v(z) = ¢t and
©(2) = a, here every such point is counted according to its multiplicity as a root
of p(z) = a. We set ‘

T(p,a,t) = N(p,a,t) + m(p,a,t),

and moreover that

N((p,t) s Zh’g,a o h;:ta

m(p,t) = H*(1/p,1),
T(p,t) = N(p,t) + m(p,1).
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We call T'(p,t) the characteristic function of the meromorphic function @(z).

4.4. Theorem. Let ©(z) be a meromorphic function in D. Then for every
a € C, we have '

T(p,a,t) = T(p,t) +0(1).
We first prove the following

4.5. Lemma. Let p,p; (1 = 1,2,...,k) be meromorphic functions on D.
Then we havz:

1) m(Z 0i,t) < max{m(pi,t)}

g m([] oi,t) < 3 mlee)
wMﬁwﬁséNMM
) N(Tput) < T Npat)
) T(5 (out) < 3 Tlout)

-
-

0

: .
6) T(1T #,9) < 3 T(wist)
=1 v=1
7) T(p,t) is a decreasing function of t
8) T(p,t) is a bounded function if and only if p(2) is a ration of two bounded
holomorphic functions.

Proof. 1) and 2) follow from the properties of the height and the definition
of the function m(p,t). 3) and 4) are proved by the remark that N(p,t) is the
sum of valuations of poles of ¢(z) in the disk |z| < p~*. 5) and 6) are consequences
of 1), 2), 3), 4).

We now prove 7). First of all we show that N(p,t) is a decreasing function.
Assume t' > t” > 0 and in the segment (t”,t’) there is no critical point of g(z).
Then we have

N(w, t,) = Z hg,s s h;:t’ _— Z hg,s X\ hg,t' o h;-,t' :

s>t a>th
e =

= z,hy, h e E:hg, g,t’t=
s>t a>t"

=3 hoa = npt' S Y ko g =N(p,t").  (4)

8>t" 8>t"
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Since every segment [t",¢'] can be divided into a finite number of segments
on which g(z) does not have critical points, (4) shows that N(p,t) is a decreasing

function.
Now assume that m(p,t’) = 0, then T(p,t') = N(p,t') < N(p,t") <

T(p,t"”). When m(p,t') > 0 we have H(1/p,t') > 0 and H(p,t') < 0, i.e.
m(1/p,t') = 0. Then we have

T(1/p,t') = N(1/p,t') < N(1p,t") < T(1/p,t"). (5)

Note that the Poisson-Jensen formula is valid for meromorphic functions when the
heights h*, h, H are defined as above. We take t so that for ¢ > ¢, the function
©(z) does not have critical points and hence h, s = 0 for's > t5. We have

H(p,to) — H(p,t) = g yy — (kb —hi )+ D 8 > thya=

h;,to * [Z hf,s T h:;,t] i [Z hg,s e h;-,’t]-
a>t 8>t

This implies that

T((p, t) F: T(l/(p,t) e H(‘P,to) _'h‘;,to' ‘ (6)

By combining (5) and (6) we obtain T(p,t') < T(p,t”). To prove (8) we as- ‘
sume that p(z) = f(2)/g(z), where f(z) and g(z) are two bounded holomorphic
functions. From (6) it follows that

N(g,t) +m(g,t) = N(1/g,t) + m(1/g,t) + H(g,te) = hgy,:

Then we have

N(1/g,t) = m(g,t) = m(1/g,t) + N(1/g,t) + H(g,t0) — hg)y, =
=H (gt = Ry T ONGT)

Since g is bounded, so are N(g,t), H(g,t) and N(p,t) = N(1/g,t). Then T(p,t) =
N(p,t) + m(p,t) is bounded also.

Now suppose T'(p,t) is bounded. Then N(p,t) is bounded, and since
T(1/p,t) is bounded, so is N(1/p,t). Suppose that p(z) = f(z)/g(2). It fol-
lows from (6) that =7

m(f,1) = m(1/1,8) = N(1/£,8) = N(£,£) +0(1)
H(f,t) = N(f,1) + m(f,t) = N(1/,t) +0(1)
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Since N(1/f,t) = N(1/p,t) is bounded, we have H(f,t) > —oo, and consequently
f(2) is bounded. Similarly g(z) is bounded.

We are now in a position to prove Theorem 4.4. We have

1 1
= t) =T(p —
ml——t) + N o—ot) = T gl A% Hibie)
Using Lemma 4.5. we obtain
T(p —a,t) <T(p,t) + log; a,

T(p,t) < T(p — a,t) +logp
Since T(p, a,t) = T(p — a,t), Theorem 4.4 is proved.

4.6. Theorem. Let p(z) be an unbounded meromorphic function on D,
ai,...,aq be distinct numbers of Cp. Then we have

m(tp,t)+zm(¢_lai

=1

1) < 2118, 1) = N lty ULl),
where Ni(t) = N(1/¢',t) + 2N(p,t) — N(¢',1).
We now. return to the Second Main Theorem. We set
N(p,t) = N(¢',t) — N(p,1t).

Then N(ﬁ,t) is the number of distinct zeros of p(z) — a in |z| < p~*. We set

m(1/p — a,t) — N(1/p = a,t)
o) =lm—ron ol B Ten
= N(1/p —a,t) — N(1/p - a,t)
paies - T(p,1) ’
' N(1/p — a,t)
o =1 I s

4.7. ‘Theorem. Let p(z) be an unbounded meromorphic function on D.
Then the set of values a € Cp such that ©(a) > 0 is finite or countable and
furthermore we have
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3 (6(a) +0(a)) < 3 O(a) < 2.

a

Theorems 4.6 and 4.7 are proved by using the arguments similar to those in
the proof of Lemma 4.5 and the standard arguments of complex analysis (see the
proof of the Second Main Theorem [N]).

From the First and Second Main Theorems we have the corpllaries about
properties of p-adic meromorphic functions. Since the proofs in many cases are
similar to those in the complex case, we formulate them without proofs.

: For each @ € C, we let E4(p) denote the set of points z € D for which
©(2) = a, where every points is taken as many times as its multiplicity of being a
root of the equation p(z) —a = 0.

4.8. Corollary. Suppose that p,(z) and p3(z) are two meromorphic func-
tions on D for which there exist three distinct values aj,as,a3 € C, such that
E. (p1) = Eq (p2), 1t = 1,2,3. Assume moreover that at least one of them is not
a ratio of two bounded holomorphic functions. Then o, = pa. _

4.9. Corollary. Let R(u) be a rational function of degree d and f(z) be a
meormorphic function on {z € C,,|2| < R}, R < co. Then we have
T(R(f),t) = dT(f,t) +0(1),
when t — —log, R. ‘

, 4.10. Corollary. A meromorphic function f(z) is transcendental if and
only if

T(f,¢)

1 e

t—oo —t

4.11. Corollary. For an unbounded meromorphic function on D we have

1
> o, M) <14 —.
b k+1
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