A REDUCTION OF THE MULTIDIMENSIONAL QUANTIZATION AND U(1)-COVERING

T. Kubota, H.W. Leopoldt: IUV NART ische Theorie der Zeta Werte, J. angew. Math. 214-215 (1964), 328-339.

Dedicated to the memory of Professor Le Van Thiem

Abstract. Using the metaplectic representation in terms of the Bargmann - Segal model we lift the character of the solvable radical of the stabilizer to U(1) - covering. Applying the structure and pairing of vacuum states for positive polarizations suggested by P.L. Robinson and J.H.Rawnsley we present a reduction of the procedure of multidimensional quantization to the case of semi-simple groups. Our geometric construction is connected with the M.Duflo's second method by using M_p^c -structures in place of metaplectic structures. From a semi-simple datum we construct unitary induced representations of Lie groups by means of positive solvable distributions. They are then illustrated as representations obtained from the procedure of geometric multidimensional quantization.

1. INTRODUCTION of diam ni sejon equi

The multidimensional quantization procedure of Do Ngoc Diep [1-3] could be viewed as a geometric version of M.Duflo's construction of the unitary dual of Lie groups (see [4]). To avoid the Mackey's obstructions when reducing Kirillov's method of orbits to special contexts, M.Duflo lifted the construction to \mathbb{Z}_2 covering by using metaplectic structure. Our purpose is also to eliminate the Mackey's obstructions to obtain linear representations from the projective ones.In [8] by using the technique of P.L.Robinson and J.H.Rawnsley (see [6]) we lifted the construction to U(1)-covering via Mp^c - structures instead of metaplectic structures. It is a reduction of the multidimensional quantization to the case of discrete groups by using U(1) - covering.

In this paper we shall reduce the same problem to the case of semisimple Lie groups. This reduction is connected with the M.Duflo's second method of which we proposed a geometric version in [7]. From a semisimple datum we shall construct unitary representations of Lie groups by means of positive solvable distributions (Theorem 1). They then will be illustrated as representations obtained from a natural generalization of Kirillov-Kostant-Souriau's procedure of quantization (Theorem 2).

$1 \to U(1) \to Mp^{\circ}(T_{(f)H}(R_F \setminus G)) \xrightarrow{\delta} Sp(T_{(f)H}(R_F \setminus G)) \to 1.$

2. U(1) -COVERING OF THE RADICAL AND SEMI - SIMPLE DATA

Let G be a connected and simply connected real Lie group. Denote by \mathcal{G} the Lie algebra of G and by \mathcal{G}^* its dual space. The group G acts in \mathcal{G}^* by the coadjoint representation. Let $F \in \mathcal{G}^*$ be an arbitrary point in an orbit ω , and G_F be the stabilizer of this point. Denote by \mathcal{G}_F its Lie algebra, $\mathcal{R}(F)$ the solvable radical of \mathcal{G}_F and R_F the corresponding analytic subgroup in G.

2.1. U(1) - covering of the radical R_F of the stabilizer G_F

Denote by $\mathcal{AP}^{U(1)}(G)$ the set of all F in \mathcal{G}^* which are U(1)-admissible (see [8]) and positive well- polarizable; $X_{irr}^{U(1)}(F)$ the set of all equivalent classes of irreducible unitary representations of $G_F^{U(1)}$ such that the restriction of each of them to $(G_F^0)^{U(1)}$ is a multiple of the character $\chi_F^{U(1)}$, then a member $\tilde{\sigma} \in X_{irr}^{U(1)}(F)$ is considered as an irreducible projective representation of the discrete group $G_F^0 \setminus G_F$, (see [8]). We set

$$\mathcal{B}^{U(1)}(G) = \{(F, \tilde{\sigma})/F \in \mathcal{AP}^{U(1)}(G), \ \tilde{\sigma} \in X_{irr}^{U(1)}(F)\}$$

For every $(F, \tilde{\sigma}) \in \mathcal{B}^{U(1)}(G)$, in [8] we can choose a $(\tilde{\sigma}, \chi_F^{U(1)})$ - polarization $(\mathcal{N}, \rho, \sigma_0)$ and construct a natural unitary representation of G. Here, we reduce the same problem to the case of semi-simple Lie group. It is considered as a semi-simple datum described in detail in subsection 2.2.

Let S_F be the semi-simple component of G_F in its Cartan-Levi-Maltsev's decomposition, $G_F = S_F.R_F$. From the local triviality of the S_F - principal bundle $S_F \mapsto R_F \setminus G \xrightarrow{k} G_F \setminus G$ there exists a connection on the bundle. Then the Kirillov 2-from B_Ω of K - orbit Ω induces a nondegenerate closed G - invariant 2 - form \tilde{B}_Ω on the horizontal part $T_H(R_F \setminus G)$ defined by the formula

diw solution (i.e.
$$ilde{B}_{\Omega}(f)(ilde{X}, ilde{Y})=B_{\Omega}(F)(k_{*} ilde{X},k_{*} ilde{Y}),$$
 down O \ni A bas $(ar{Q})$

where $f \in R_F \setminus G$, $k(f) = F \in \Omega$, and k_* is the linear lifting isomorphism induced from k, (see [7]).

The symplectic group $Sp(T_{(f)H}(R_F \setminus G), \tilde{B}_{\Omega}(f))$ consists of all the real automorphisms which preserve the symplectic form $\tilde{B}_{\Omega}(f)$. Then $Sp(T_{(f)H}(R_F \setminus G))$

has an U(1) - connected covering $Mp^{c}(T_{(f)H}(R_{F}\setminus G))$, (see [8]). We have a surjective group homomorphism δ from $Mp^{c}(T_{(f)H}(R_{F}\setminus G))$ to $Sp(T_{(f)H}(R_{F}\setminus G))$ and the following sequence is central short exact one as lauden a more benealdo

$$1 \to U(1) \to Mp^c(T_{(f)H}(R_F \setminus G)) \stackrel{\delta}{\longrightarrow} Sp(T_{(f)H}(R_F \setminus G)) \to 1.$$

Proposition 2.1. There exists a group homomorphism j from R_F to $Sp(T_{(f)H}(R_F \setminus G))$.

Proof. Let $g \in R_F$ then $\widetilde{Adg}^{-1}: \mathcal{G}/\mathcal{G}_F \longrightarrow \mathcal{G}/\mathcal{G}_F$ is a real automorphism induced from $Ad q^{-1}$. The following diagram is commutative be the stabilizer of this point. Denote by g_F its Lie algebra, R(F) the solvable

2.1.
$$U(1)$$
 - covering of $(2/2)^{1/2} \xrightarrow{Adg^{-1}} 0$ is $(2/2)^{1/2} \xrightarrow{Adg^{-1}} 0$. The set of all (1) -admissible (ase [8]) and positive well- $(1/2)^{1/2} \xrightarrow{k} 0$ is rizable; $(1/2)^{1/2} \xrightarrow{k} 0$ set of all equivalent classes

does to notify the
$$T_{(f)H}(R_F\setminus G) \xrightarrow{j(g)} T_{(f)H}(R_F\setminus G)$$
 and the state of $T_{(f)H}(R_F\setminus G)$ and the state of $T_{(f)H}(R_F\setminus G)$ and $T_{(f)H}(R_F\setminus G)$ and $T_{(f)H}(R_F\setminus G)$ and $T_{(f)H}(R_F\setminus G)$

Putting $j(g)=k_*^{-1}\widetilde{A}dg^{-1}k_*$, we have

$$\tilde{B}_{\Omega}(f)(j(g)\tilde{X},j(g)\tilde{Y}) = B_{\Omega}(F)(k_*j(g)\tilde{X},k_*j(g)\tilde{Y}) = \tilde{B}_{\Omega}(f)(\tilde{X},\tilde{Y}),$$

thus $j(g) \in Sp(T_{(f)H}(R_F \setminus G))$. \square

Denote by $R_F^{U(1)}$ the Lie subgroup of the Cartesian product of Lie group $R_F \times Mp^c(T_{(f)H}(R_F \setminus G))$ consisting of all pairs (g,U) such that $\delta(U) = j(g)$.

Proposition 2.2. $R_F^{U(1)}$ is U(1) - covering of R_F .

Proof. We have

$$R_F^{U(1)} = \{(g, U)/\delta(U) = k_*^{-1} \tilde{A} dg^{-1} k_*\}$$

where $U \in Mp^{c}(T_{(f)H}(R_{F} \setminus G))$ has the parameters (λ, ϕ) with $\phi \in Sp(T_{(f)H}(R_{F} \setminus G))$ G)) and $\lambda \in \mathbb{C}$ such that $|\lambda^2 \text{Det} C_{\phi}| = 1$, where $C_{\phi} = \frac{1}{2}(\phi - i\phi i)$ commutes with $i \in \mathbb{C}, i^2 = -1.$

 $i\in \mathbb{C}, i^2=-1.$ Since $\delta(U)=\phi$ every member of $R_F^{U(1)}$ has the form $(g;(\lambda,\tilde{A}dg^{-1}))$ such

$$((\mathbb{D}/\mathbb{R})_{\mathbb{H}(1)}\mathbb{T})$$
 as near $((\mathbb{R}^2\mathrm{Det}C_{k^{-1}}\tilde{A}dg^{-1}k_*)=1$ by seeing ability amening the second s

Putting $l(g; (\lambda, k_*^{-1} \tilde{A} dg^{-1} k_*)) = (\lambda, k_*^{-1} \widetilde{A} dg^{-1} k_*) \in Mp^c(T_{(f)H}(R_F \setminus G)),$ and $\sigma_{j(g;U)} = g$. Then the following diagram

iii)
$$\forall f \in R_F \setminus G$$
, $\forall f \in R_F \cap G$,

is commutative, the proposition is proved. If and the subtrace ultrivia at I had ver

2.2. (r, U(1)-admissible forms and semi-simple data.

We do not assume that Ω passing $F \in \mathcal{G}^*$ is an integral orbit, i.e there does not exist a unitary character χ_F of G_F .

Since $1 \to U(1) \to R_F^{U(1)} \to R_F \to 1$ is a short exact sequence we have furthermore a split short exact sequence of the corresponding Lie algebras as follows:

$$0 o u(1) o \mathrm{Lie} R_F^{U(1)} o \mathcal{R}_F o 0$$
 and sw door \P

Thus the Lie algebra of $R_F^{U(1)}$ is $\mathcal{R}_F \oplus u(1)$, (see [6, §5]).

Definition 2.1. A point $F \in \mathcal{G}^*$ is called (r, U(1)) - admissible (r for radical, U(1) for U(1)-covering) iff there exists a unitary character $\eta_F^{U(1)} : R_F^{U(1)} \to S^1$ such that

$$(d\eta_F^{U(1)})(X,arphi)=rac{i}{\hbar}(F(X)+arphi) ext{ where } (X,arphi)\in \mathcal{R}_F\oplus u(1).$$

case, the corresponding complex subalgebra $W = p^{-1}(k, L_f)$ satisfies R

- i) If \mathcal{G} is solvable, we have $R_F = G_F^0$ then the notion of (r, U(1))-admissible form coincides with the notion of U(1)-admissible form that is described in [8].
- ii) If F is U(1)-admissible (see [8]) then it is (r, U(1))-admissible but the reverse does not hold in general.

Denote by $Y_{irr}^{U(1)}(F)$ the set of all equivalent classes of irreducible unitary representations of $G_F^{U(1)}$ such that the restriction of each of them to $R_F^{U(1)}$ is a multiple of the character $\eta_F^{U(1)}$. If $F \in \mathcal{G}^*$ is (r, U(1))-admissible then it is radmissible (see [7] and [4]), so $Y_{irr}^{U(1)}(F)$ is the set of equivalent classes of irreducible projective representations of the semi-simple group $R_F \setminus G_F$ (see [4]). If F is (r, U(1))-admissible and $\tau \in Y_{irr}^{U(1)}(F)$, the pair (F, τ) is called a semi-simple datum.

2.3. Solvable positive distribution. (1-00A, A) (1) (1)

Definition 2.2. A smooth complex tangent distribution $\tilde{L} \subset (T(R_F \setminus G))^{\mathbf{C}}$ is called a *positive solvable distribution iff*

i) \tilde{L} is an integrable and G-invariant subbundle of $(T_H(R_F \setminus G))^C$,

ii) \tilde{L} is invariant under the action Ad of G_F ,

- iii) $\forall f \in R_F \setminus G$, the fibre \tilde{L}_f is a positive polarization of the symplectic vector space $((T_{(f)H}(R_F \setminus G))^{\mathbf{C}}, \tilde{B}_{\Omega}(f))$, i.e
 - α) dim $\tilde{L}_f = \frac{1}{2} \dim T_{(f)H}(R_F \setminus G)$,
 - β) $\tilde{B}_{\Omega}(f)(\tilde{X},\tilde{Y})=0$, for all $\tilde{X},\tilde{Y}\in \tilde{L}_f$,
- γ) $i\tilde{B}_{\Omega}(f)(\tilde{X},\overline{\tilde{X}}) \geq 0$, for all $\tilde{X} \in \tilde{L}_f$, where $\overline{\tilde{X}}$ is the conjugation of \tilde{X} , we say that \tilde{L} is strictly positive iff the inequality (γ) is strict for nonzero $\tilde{X} \in \tilde{L}_f$.

Proposition 2.3. Suppose that \tilde{L} is a positive solvable distribution then the inverse image \mathcal{N} of $L_F = k_* \tilde{L}_f$ under the natural projection

is a positive polarization in $\mathcal{G}^{\mathbf{C}}$. So F is a one dimensional representation of \mathcal{N} .

Proof. We have $0 \leftarrow 32 \leftarrow 100$ Asid $\leftarrow (1) = 0$

$$\dim \mathcal{N}/\mathcal{G}_F=\dim L_F=\dim k_* ilde{L}_f=$$
 $=rac{1}{2}\dim T_{(f)H}(R_F\setminus G)=rac{1}{2}\dim \Omega.$

On the other hand, $\tilde{B}_{\Omega}(f)(\tilde{X},\tilde{Y}) = B_{\Omega}(F)(k_*\tilde{X},k_*\tilde{Y})$ then \mathcal{N} is a positive polarization in $\mathcal{G}^{\mathbf{C}}$.

Suppose $\tilde{L} \subset (T_H(R_F \setminus G))^C$ to be a positive solvable distribution such that $\tilde{L} \cap \overline{\tilde{L}}$ and $\tilde{L} + \overline{\tilde{L}}$ are the complexifications of some real distributions. In this case, the corresponding complex subalgebra $\mathcal{N} = p^{-1}(k_*\tilde{L}_f)$ satisfies the following conditions: $\mathcal{N} \cap \overline{\mathcal{N}}$ and $\mathcal{N} + \overline{\mathcal{N}}$ are the complexifications of the real Lie subalgebras $\mathcal{B} = \mathcal{N} \cap \mathcal{G}$ and $\mathcal{M} = (\mathcal{N} + \overline{\mathcal{N}}) \cap \mathcal{G}$. Denote by B_0 and M_0 the corresponding analytic subgroups.

Definition 2.3. A positive solvable distribution \tilde{L} is called *closed* iff all the subgroups B_0, M_0 and the semi-direct products $B = R_F.B_0$ and $M = R_F.M_0$ are closed in G.

In what follows we assume that \tilde{L} is closed. The following proposition can be proved in a similar way as Proposition 2.3 in [8].

Proposition 2.4. In the neighbourhood of the identity of $R_F^{U(1)}$ we have

$$\eta_F^{U(1)}(g;(\lambda,\tilde{A}dg^{-1})) = \exp(\frac{i}{\hbar}(F(X)+\varphi),$$

where $\varphi \in \mathbf{R}$ satisfying the relation $\lambda^2 DetC_{\tilde{A}dg^{-1}} = e^{\frac{i}{\hbar}\varphi}$. The integral kernel of $\eta_F^{U(1)}$ is given by the formula

$$u(z,w) = \exp\{\frac{i}{\hbar}(F(X) + \varphi) + \frac{i}{2} < z, w > -\frac{1}{4\hbar} < w, w > \},$$

where $z, w \in \mathcal{M}^{\mathbf{C}}/\mathcal{B}^{\mathbf{C}}$ as [1] at 2 mercent to look and entropy of $\mathbb{R}^{\mathbf{C}}$

2.4. Extension of the character on $B^{U(1)} = R_F^{U(1)} \ltimes B_0$

According to the Definition 2.3., B_0 is a normal subgroup in B, and R_F has adjoint action on B_0 . Moreover, we have the homomorphism $\sigma_j: R_F^{U(1)} \longrightarrow R_F$, thus $R_F^{U(1)}$ acts on B_0 . Hence we can define the semi-direct product $R_F^{U(1)} \ltimes B_0$ and the following diagram is commutative

$$1 o U(1) \longrightarrow R_F^{U(1)} \longrightarrow R_F \longrightarrow 1$$

$$\uparrow \mathrm{id} \qquad \uparrow p_{B_0} \qquad \qquad \uparrow p_{B_0}$$

$$1 o U(1) \longrightarrow R_F^{U(1)} imes B_0 \longrightarrow R_F \cdot B_0 \to 1$$

where p_{B_0} is the quotient homomorphism between the corresponding groups. Then $R_F^{U(1)} \times B_0$ is the U(1)-covering of $B = R_F \cdot B_0$. By putting $B^{U(1)} = R_F^{U(1)} \times B_0$ we have $\mathcal{B} \oplus u(1)$ being the Lie algebra of $B^{U(1)}$. Denote by $B_0^{U(1)}$ the inverse image of B_0 in $B^{U(1)}$ under the U(1)-covering projection.

Let $\tilde{\sigma}$ be some fixed irreducible unitary representation of G_F in a separable Hilbert space \tilde{V} such that the restriction of $\eta_F^{U(1)} \cdot (\tilde{\sigma}\sigma_j)$ to $R_F^{U(1)}$ is a multiple of the character $\eta_F^{U(1)}$, where σ_j is the homomorphism defined in Proposition 2.2.

Definition 2.4. The triplet $(\tilde{L}, \rho, \delta_0)$ is called a solvable $(\tilde{\sigma}, \eta_F^{U(1)})$ - polarization, and \tilde{L} is called a weakly Lagrangian distribution iff

i) σ_0 is an irreducible representation of the subgroup $(B_0)^{U(1)}$ in a Hilbert space V such that

$$\sigma_0|R_F^{U(1)} \cap B_0^{U(1)} = (\tilde{\sigma}\sigma_j)\eta_F^{U(1)}$$

ii) ρ is a representation of the complex Lie algebra $\mathcal{N} \oplus u(1)$ in V such that

$$d\sigma_0 = \rho \mid_{B \oplus u(1)}.$$

Proposition 2.5. If Ω_F is (r, (U(1))-admissible, $(\tilde{L}, \rho, \sigma_0)$ is a $(\tilde{\sigma}, \eta_F^{U(1)})$ -solvable polarization then there exists a unique irreducible representation

where
$$\varphi \in \mathbb{R}$$
 satisfying the relation $\lambda^2 DetC$, $= e^{\frac{i}{2}} \varphi$. The integral kernel of $\sigma: B^{U(1)} \longrightarrow U(V) \longrightarrow U(V)$ is given by the form that $\sigma: B^{U(1)} \longrightarrow U(V)$

Proof. Repeating the proof of Theorem 2 in [1] and using the fact that

$$\sigma_0\mid_{R_F^{U(1)}\cap H_0^{U(1)}}=(ilde{\sigma}\sigma_j)\eta_F^{U(1)}$$
 and $d\sigma_0=
ho\mid_{\mathcal{B}\oplus u(1)}$

we can extend σ_0 to σ that satisfies the conditions in the proposition.

3. INDUCED REPRESENTATION OBTAINED FROM A SEMI-SIMPLE DATUM.

3.1. Induced representation.

Let $(F, \tilde{\sigma}\sigma_j \eta_F^{U(1)})$ be a semi-simple datum.

Proposition 3.1. With any solvable $(\tilde{\sigma}, \eta_F^{U(1)})$ -polarization $(\tilde{L}, \sigma_0, \rho)$ there exists a natural construction of induced representation of G.

Proof. If we choose $F_0 = 0 \in \mathcal{G}$ then $G_{F_0} = G$. According to the definition, $Mp^c(\mathcal{G}/\mathcal{G}_{F_0}, \tilde{B}_{F_0}) = U(1)$. We put $G^{U(1)} = G \times U(1)$. Fixing a connection $\overline{\Gamma}$ on $B \mapsto G \longrightarrow B \setminus G$ we have the corresponding ones Γ , $\tilde{\Gamma}$ on $G_F \mapsto G \longrightarrow G_F \setminus G$ and $R_F \mapsto G \longrightarrow R_F \setminus G$. Passing to the U(1)-covering of leaves, i.e the structural groups are lifted to U(1)-covering. We obtain the following isomorphisms between the total spaces of principal bundles

$$G^{U(1)} \cong G^{U(1)}_{\overline{\Gamma}} \cong G^{U(1)}_{\Gamma} \cong G^{U(1)}_{\Gamma}$$
 (see [8], Proposition 3.1).

We have a principal $B^{U(1)}$ -bundle on $B\backslash G$, a principal $G_F^{U(1)}$ -bundle on the orbit Ω , a principal $R_F^{U(1)}$ -bundle on $R_F\backslash G$ and two homomorphisms between them as follows:

$$B^{U(1)}\mapsto G^{U(1)}_{\overline{\Gamma}}$$
 and $G^{U(1)}_{F}\mapsto G^{U(1)}_{\Gamma}$ for $R^{U(1)}_{F}\mapsto G^{U(1)}_{\overline{\Gamma}}$ (if $B\setminus G$ $\stackrel{\pi}{\longleftarrow} G_{F}\setminus G$ $\stackrel{k}{\longleftarrow} R_{F}\setminus G$

where π and k are the natural projections. Staixs shad next noise inslead slowless

In view of the representation $\sigma: B^{U(1)} \to U(V)$ let us denote by $\overline{E}_{\sigma,\rho}$; $E_{\sigma|G_F^{U(1)},\rho}$; $\tilde{E}_{\sigma|R_F^{U(1)},\rho}$ the vector bundles on $B\backslash G$, $G_F\backslash G$ and $R_F\backslash G$ associated respectively with σ and its restrictions on $G_F^{U(1)}$ and $R_F^{U(1)}$. In the category of smooth vector bundles $k^*\pi^*\overline{E}_{\sigma,\rho}$; $k^*(E_{\sigma|G_F^{U(1)},\rho})$ and $\tilde{E}_{\sigma|R_F^{U(1)},\rho}$ are equivalent. The fixing connection Γ induces a connection also denoted by Γ on the bundle $G_F^{U(1)} \mapsto G^{U(1)} \to \Omega$, then we obtain an affine connection ∇^{Γ} on the associated bundle $\pi^*\overline{E}_{\sigma,\rho}$. At last we have an affine connection $\tilde{\nabla}^{\Gamma}$ on $\tilde{E}_{\sigma|R_F^{U(1)},\rho}$ (briefly $\tilde{E}_{\sigma,\rho}$). We put

$$\mathcal{S}_{ ilde{L},S_F(ilde{E}_{\sigma,
ho})} = \left\{ s \in \mathcal{S}_{S_F}(ilde{E}_{\sigma,
ho})/ ilde{
absolute}_{ ilde{\xi}}^{\Gamma} s = 0, orall ilde{\xi} \in ilde{L}
ight\},$$

3.2. Induced unitary representation.

For convenience in what follows we write P in place of the principal $R_F^{U(1)}$ -bundle $R_F^{U(1)} \mapsto G^{U(1)} \longrightarrow R_F \setminus G$. By using the group homomorphism $l: R_F^{U(1)} \longrightarrow Mp^c(T_{(f)H}(R_F \setminus G))$ and the metaplectic representation:

$$\mu: Mp^c(T_{(f)H}(R_F\setminus G)) \longrightarrow \operatorname{End} \mathcal{E}'(T_{(f)H}(R_F\setminus G)$$

(see [6], §2) we have then the bundle associated to P via the homomorphism $\mu \circ l$. We consider the homomorphism $(\tilde{\sigma}\sigma_j\eta_F^{U(1)})(\mu \circ l)$ defined as follows

$$(\tilde{\sigma}\sigma_{j}\eta_{F}^{U(1)})(\mu\circ l)(g,U)=(\tilde{\sigma}\sigma_{j}\eta_{F}^{U(1)})(g,U)\otimes(\mu\circ l)(g,U)$$

Denote by $\mathcal{E}'_{\sigma,\rho}(P)$ the vector bundle associated to P via the homomorphism $(\tilde{\sigma}\sigma_j\eta_F^{U(1)})(\mu\circ l)$ with $V\otimes (T_{(f)H}(R_F\backslash G))$ as the typical fibre.

Theorem 1. With any solvable $(\tilde{\sigma}, \eta_F)$ -polarization $(\tilde{L}, \rho, \sigma_0)$ there exists a natural unitary representation of G in a Hilbert space $\mathcal{H}_{\tilde{L}}$

Proof. According to Proposition 3.2 in [8], and since k_* is the linear lifting isomorphism for each $f' \in R_F \backslash G$ there is a canonical linear map

$$W_{f'}: (T_{(f')H}(R_F\setminus G))^{f C}
ightarrow {
m End}\ ({\cal E}'_{\sigma,
ho}(p))_{f'}$$

such that if $\tilde{X}, \tilde{Y} \in (T_{(f')H}(R_F \setminus G))^{\mathbf{C}}$ then bendeb at V tank lister W V

beta boss $\mathbb{D}/\mathbb{R}[W_{f'}(\tilde{X}),W_{f'}(\tilde{Y})] = -\frac{i}{\hbar}\tilde{B}_{\Omega}(f')(\tilde{X},\tilde{Y}).$

We assume that $\dim_R T_{(f)H}(R_F\backslash G)=2m$, and the top exterior power K^L is a complex line bundle in $\Lambda^m(T_{(f)H}(R_F\setminus G))^{\mathbf{C}}$ with the basis vector denoted by $\mathcal{K}_{\tilde{L}}$. Putting

$$\left\{\mathcal{E}_{\sigma,\rho}'(P)\right\}_{f'}^{\tilde{L}} = \left\{\varphi \in \mathcal{E}_{\sigma,\rho}'(P)_{f'}/\tilde{X} \in \tilde{L}_{f'} \Rightarrow W_{f'}(\tilde{X})\varphi = 0\right\}$$

then $\mathcal{E}'_{\sigma,\rho}(P)^{\tilde{L}}$ is a tensor product of the complex line bundle $\mathcal{E}'(P)^{\tilde{L}}$ with the bundle $P(\tilde{\sigma}\sigma_j\eta_F^{U(1)})$ associated with the representation $\tilde{\sigma}\sigma_j\eta_F^{U(1)}$. Arguing as in Theorem 6.9 in [6] and Proposition 3.3 in [8], there exists a canonical isomorphism of complex bundles: 98 Just an area of complex bundles: 98 Just an

Then the natural representation of
$$G$$
 in $S_{i,\sigma}$ denoted by Ind (G,L) , $(E_{\sigma},\rho(P)^{\tilde{L}}\otimes E'(P)^{\tilde{L}}\otimes K^{\tilde{L}}\longrightarrow P(\tilde{\sigma}\sigma_{j}\eta_{F}^{U(1)})$.

By putting $Q(P)^{\tilde{L}} = \mathcal{E}'_{\sigma,\rho}(P)^{\tilde{L}} \otimes K^{\tilde{L}}$, we have $[Q(P)^{\tilde{L}}]^2 = [P(\tilde{\sigma}\sigma_j\eta_F^{U(1)})]^2 \otimes K^{\tilde{L}}$. As in the above section, $\tilde{\nabla}^{\Gamma}$ is the connection in $P(\tilde{\sigma}\sigma_{j}\eta_{F}^{U(1)})$, it uniquely defines a connection denoted by $\tilde{\nabla}^{\tilde{L}}$ in $Q(P)^{\tilde{L}}$. Denote by $S_{\tilde{L},S_F}(Q(P)^{\tilde{L}})$ the space of all the sections of $Q(P)^{ ilde{L}}$ for which $ilde{
abla}_{ ilde{\xi}}^{ ilde{L}}s=0,\,orall_{ ilde{\xi}}\in ilde{L}$ and S_F -equivariant. Put $H_{\tilde{L}} = \{s \in \mathcal{S}_{\tilde{L},S_F}(Q(P)^{\tilde{L}}) / ext{ the density } < s,s>_{\tilde{L}} ext{ has compact support } \}, ext{ denote}$ by $\mathcal{H}_{\tilde{L}}$ the Hilbert space which is the complection of the space $H_{\tilde{L}}$. The natural unitary representation of G in $\mathcal{H}_{\tilde{L}}$ is the required representation. \square

4. A REDUCTION OF THE PROCEDURE OF MULTIDIMENTSIONAL QUANTIZATION

We use the bundle $Q(P)^{\tilde{L}} = P(\tilde{\sigma}\sigma_j\eta_F^{U(1)}) \otimes \mathcal{E}'(P)^{\tilde{L}} \otimes K^{\tilde{L}}$ to construct the procedure of quantization that is defined as follows:

static equation (
$$\tilde{L}_{i}$$
, \tilde{L}_{i}) and since \tilde{L}_{i} (\tilde{L}_{i}), and since \tilde{L}_{i} , \tilde{L}_{i}), and since \tilde{L}_{i} , \tilde{L}_{i} , and since \tilde{L}_{i} , \tilde{L}_{i} , or an equation in the linear equation (\tilde{L}_{i}), \tilde{L}_{i} , \tilde

$$f\mapsto \hat{f}=f+rac{\hbar}{i} ilde{
abla}_{ ilde{\xi}_f}^{ ilde{L}},$$

where $\mathcal{L}(\mathcal{X}_{\tilde{L}})$ is the space of all (un) bounded Hermitian operators on $\mathcal{X}_{\tilde{L}}$ and $\tilde{\nabla}_{\tilde{\varepsilon}}^{\tilde{L}}$ is the covariant derivation associated with the connection $\tilde{\nabla}^{\tilde{L}}$ on the G-bundle $Q(P)^L$. We recall that $\tilde{\nabla}_{\tilde{\varepsilon}}$ is defined by the formula:

$$\psi$$
 lifts to the representation Ind $(G,\tilde{L},(\tilde{\sigma}\sigma_f)\eta_F^{U(1)},\sigma_0,\rho)$. Therefore, it suffices to prove that the representation, $(\tilde{\xi}_f)\alpha_f^{i}+\epsilon_{\tilde{\chi}_f}^{u}J=t_{\tilde{\chi}_f}^{\tilde{\chi}_f}\tilde{\chi}$ epresentation ψ . We have

where α is 1-form of connection $\nabla_{\tilde{\xi}_f}^{\tilde{L}}$, $L_{\tilde{\xi}_f}$ is the Lie derivation along $\tilde{\xi}_f$ which is the horizontal lifting of strictly hamiltonian vector field corresponding to f.

Remark. As discussed above if $\tilde{\Gamma}$ denotes the connection on $R_F^{U(1)} \to G^{U(1)} \to R_F \setminus G$, then the connection form α can be computed from the relation $\frac{i}{\hbar}\alpha(\tilde{\xi}_f) = \rho(p_{\tilde{\Gamma}}, \tilde{\xi}_f)$, where $p_{\tilde{\Gamma}}$ is the projection onto the vertical directions. These operators are given by the integral kernel from Proposition 2.4. in view of Definition 2.4, Proposition 2.5.

By a similar argument as in [3] and [8] we obtain the follwing result.

Proposition 4.1. The following three conditions are equivalent:

i) The application $f \mapsto \hat{f}$ is a procedure of quantization,

ii) curv
$$\tilde{\nabla}^{\tilde{L}}(\tilde{\xi},\tilde{\eta}) = -\frac{i}{\hbar}\tilde{B}_{\Omega}(\tilde{\xi},\tilde{\eta})\cdot I$$
,

iii)
$$d_{\tilde{\nabla}^{\tilde{L}}} \alpha(\tilde{\xi}, \tilde{\eta}) = -\tilde{B}_{\Omega}(\tilde{\xi}, \tilde{\eta}) \cdot I$$
,

where $\tilde{\xi}, \tilde{\eta}$ are the horizontal lifting of strictly hamiltonian field ξ, η on Ω Theorem 2. If curv $\tilde{\nabla}^{\tilde{L}} = -\frac{i}{\hbar} \tilde{B}_{\Omega}$ then with any solvable $(\tilde{\sigma}, \eta_F^{U(1)})$ polarization $(\tilde{L}, \rho, \sigma_0)$ the multidimensional quantization procedure gives us a representation ψ which lifts to the representation Ind $(G; \tilde{L}, (\tilde{\sigma}\sigma_j)\eta_F^{U(1)}, \sigma_0, \rho)$.

Proof. Suppose that $\operatorname{curv} \tilde{\nabla}^{\tilde{L}} = -\frac{i}{\hbar} \tilde{B}_{\Omega}$. From Proposition 4.1. we obtain the following representation of Lie algebra in the space $\mathcal{L}(\mathcal{X}_{\tilde{L}})$

$$\Lambda:\mathcal{G} o\mathcal{L}(\mathcal{H}_{\widetilde{L}});\;X\mapsto\Lambda(X)=rac{i}{\hbar}\hat{f}_X,\; ext{if ose }$$

where $f_X \in \mathcal{C}^{\infty}(\Omega)$ is the generating function of the hamiltionian field ξ_X corresponding to $X \in \mathcal{G}$. If G is connected and simply connected we obtain a unitary representation T of G defined by more more representation T of G defined by more representation T of G defined B define

$$T(\exp X) = \exp(\Lambda(X)), X \in \mathcal{G}.$$

On the other hand, we define the representation ψ as follows

$$\psi:\mathcal{G} o \mathcal{L}(m{\mathcal{X}}_{ ilde{L}}),$$
 where $X\mapsto \psi(X)=L_{ ilde{\xi}_X}+rac{i}{\hbar}\{arphi_X+lpha(ilde{\xi}_X)\},$ where $X\mapsto \psi(X)=L_{ ilde{\xi}_X}+rac{i}{\hbar}\{arphi_X+lpha(ilde{\xi}_X)\},$

where α is the 1-form of $\tilde{\nabla}^{\tilde{L}}$ such that $\frac{\hbar}{i}\alpha$ is the connection form of $\tilde{\nabla}^{\tilde{L}}$, and $\varphi_X:\Omega\longrightarrow \mathbb{R}$ is defined by $\varphi_X(F)=F(X)$. In the group level this representation

 ψ lifts to the representation Ind $(G, \tilde{L}, (\tilde{\sigma}\sigma_j)\eta_F^{U(1)}, \sigma_0, \rho)$. Therefore, it suffices to prove that the representation Λ coincides with the representation ψ . We have

where
$$\alpha$$
 is 1-form of connectic; $\nabla^{\tilde{L}}_{i}$, $\nabla^{\tilde{L}}_{$

the Theorem 2 is proved.

Acknowledgement. The author is indebted to his adviser Dr. Do Ngoc Diep for calling his attention to the study of the reduction of multidimensional quantization and U(1)-covering, and for many helpful discussions.

REFERENCES 3) 08 - = (0.3) 03 cb (iii

- 1. Do Ngoc Diep. Multidimensisonal quantization. I. The general construction. Acta Math. Vietnam. 5(1980), 42-45.
- 2. Do Ngoc Diep. Multidimensional quantization.II. The covariant derivation. Acta Math. Vietnam. 7(1982), 87-93.
- Do Ngoc Diep. Quantification des systemes Hamiltoniens a l'action plate d'un groupe de Lie, C.R. Acad. Sci. Paris, 295(1982) Serie I, 345-348.
- M.Duflo. Construction des gros ensembles de représenttations unitaires irreducibles d'un groupe de Lie quelconque, Proc. Conference, Neptune, Romanie, 1980, Pitman Publishing Co. 147-155
- A.A.Kirillov. Elements of the theory of representations, Springer-Verlag, Berlin-Heidenberg-New York, 1976.
- 6. P.L. Robinson and J.H.Rawnsley. The metaplectic representation, M_p^c -structures and geometric quantization. Memoirs of the American Mathematical society. September 1989. Volume 81. Number 410.
 - Tran Dao Dong and Tran Vui. On the procedure of multidimensional quantization. Acta Math. Vietnam. 14(1989), 19-30
 - Tran Vui. Multidimensional quantization and U(1)-covering Acta Math. Vietnam. (submitted)

Department of Mathematics, Received January 4, 1991 Pedagogical Institute, Hue, Vietnam. where α is the 1-form of $\nabla^{\bar{L}}$ such that $\frac{\hbar}{1}\alpha$ is the connection form of ∇