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PARALLEL IMPLICIT RUNGE-KUTTA-NYSTROM
METHODS. OF DIRECT COLLOCATION TYPE
'FOR STIFF'INITIAL-VALUE PROBLEMS

NGUYEN HUU CONG

Abstract. In this paper, we study parallel iteration of predictor-corretor methods (Parallel
PC methods) with direct collocation-based smplicit Runge- Kutta-Nystrom correctors for solving stiff
initial-value problems for special second-order, ordinary differential equations (ODEs} on parallel
computers. These steration mehtods are such that in each step, the iterated method belongs to the
class of diagonally smplicit Runge-Kutta-Nystrom methods (DIRKN methods). By a suitable choice
of the parameters in the iteration process, the parallel methods constructed in this paper are rather
efficient for solving stiff initial-value problems on parallel computers.

1. INTRODUCTION

We shall be concerned with the integrating the initial-value problem for
systems of special second-order, ordinary equations ( ODEs) of dimension d

y"(t) = g(y(t)), ylto) = vo,v'(to) = 95, y: R — R%, g:R* - R%, to <t < tena.

Important test examples from this class of problems originate from structural
mechanics. Such problems belong usually to the stiff class. Ideal method for
solving this class of problems is the method which have, in addition to a high step
point order and the property of A-stability, a high stage orders, in order to avoid
the effect of order reduction (cf. [1]).

In this paper, we consider parallel integration methods based on parallel
iteration of fully implicit Runge-Kutta-Nystrom (RKN) methods of direct collo-
cation type. Such RKN methods possess the largest possible stage order, so that
we automatically achieve high stage orders if the method is used is sufficiently
accurate (for an extensive investigation of such RKN methods see [8]).
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We shall investigate parallel iteration methods which are such that, after a
finite number of iterations, the method belongs to the class of diagonally implicit
Runge-Kutta- Nystrom methods (DIRKN methods). Adopting the terminology
used for iterating implicit linear multistep methods, we shall call the implicit RKN
method the corrector and the method used for starting the iteration the predictor.
The parallel iteration process will be called parallel predictor — corrector(PC)
method.

The large number of stages of this parallel PC method increases with the
number of iterations and may vary from step to step depending on the con-
vergence criterion but can be computed in parallel on multi-processor comput-
ers. An other advantage is that on each processor, the method behaves as a
single — diagonal — implicit RKN method (SDIRKN), that is, only one LU de-
composition per processor is required. Thirdly, we can reduce the number of
iterations per step by a suitable choice of the iteration parameters of the itera-
tion process. For three single A stable IRKN correctors derived. in [8] by direct
collocation techniques, we have constructed parallel PC methods which are very
efficient for stiff initial-value problems. The use of direct collocation-based A-
stable corrector methods guarantees high stage order, so that the phenomenon of
- order reduction, exhibited in many problems with large Lipschitz constants, does
not deteriorate the accuracy of the methods. The numerical experiments clearly
show that the parallel iteration methods proposed in this paper are much more
efficient than sequential SDIRKN methods.

REKN method

We consider RKN correctors of the form

k
Un+1 = Yn + Ayl +boh?g(ua) + B2 big(Yy),

1=1

k
Un+1 = Yn + dohg(yn) + R ZdiQ(Yi), (1.2)

t=1

k
Y: = yn + cihy!, + a;h%g(y,) + h? Z Sglls), i =L
et

or using the Butcher array notation (cf. [4]).

0 0 oT
C a A
] bge bl

do' dT (13)
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where b = (b;), ¢ = (ci) and d = (d;) are k-dimensional vectors, and A = (a;;)
is an k-by-k matrix. We always assume that the matrix A is nonsingular. If the
vector a does not vanish, then (1.2) presents an (s = k + 1)-stage RKN method
réquiring k tmplicit stages and one explicit stage. If a = 0, then (1.2) reducex to
the general (s = k)- stage RKN method with s implicit stages. For a discussion
of the order of accuracy p and the stage order r of RKN methods, the reader is
referred to ([3], [8]).
In this paper, we shall concentrate on the parallel iteration of the single
A-stable direct collocation-based IRKN correctors, which are denoted by Dr(3/4,
1), Dr(-1/5, 9/10, 1) and Dr(-1/4, 0, 9/10, 19/20, 1). Here (3/4, 1), (-1/5, 9/10,
1) and (-1/4, 0, 9/10, 19/20, 1) are the vectors of collocation points (more detail
about this methods and direct collocation-based IRKN methods, please see [8]).
The use of non-A-stable RKN correctors will be investagated in an other paper in
order to exploit the performance in high step point order.

2. PARALLEL ITERATION OF PC METHODS

We shall construct integration methods by diagonal-implicit PC iteration of
fully implicit RKN methods. Thus, assuming that in (1.2) the matrix A = ay;
is a full matrix, we have to find the solution of the stage vector equation, the
stage vector Y = (¥;). Our aim is to construct solution methods that run fast
on parllel computers. In the case where all eigenvalues of the Jacobian matrix
are close to the origin, the stage vector equation in (1.2) can be solved by fixed
point iteration which is well suited for implementation on parallel computer. For
first-order ODEs this has been discussed in [12], [10] and [5]. If there are also
largely negative eigenvalues, then fixed point iteration would dictate rather small
stepsizes in order to get convergence. We will consider a more powerful class
- of parallel iteration processes which leads to the same degree of implicitness as
occuring in SDIRKN methods. These processes are similar to the stiff steration
method applied in [7] and parallel PC iteration applied in [9].

2.1. Iteration of the stage-vector equation

Let Yi(“ ) denote the u-th iterate to Y; and define

Xi=Y; — =, Xf“) := Y;(u) — z;, where z;:=£ y, + c;hyl, + a;h?g(y,). (2.1) ‘

We shall compute iterates X; (1) , rather than the iterates Y(" ) , because the quan-

tities X (k) are of smaller magmtude and are therefore less sensmve to rounding
errors. In terms of X; and z;, the stage vector equation in (1. 2) reads
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k
X; =h22ai,-g(Xj+xj), g0 0k (1.27)
i=1 ‘

For each of these equation, we define the iteration process

XM = R26ig(XPP 1) S XED k(XY 1 g — w, [ x)

k
7 5 de BalE S A e (2:2)
i=1
where + = 1,... ,k; p=1,...,m. Here, the w, are relaxation parameters and

the 6; are iteration parameters which are assumed to be positive. The follwing
lemma is gvident.

Lemma 2.1. Suppose that the iteration process (2.2) converges, then Xi('“)
converges to the i-th component of the solution of the stage vector equation (1.2°)
1. e. to X;. ' )

Since the k systems that are to be solved in each iteration step of (2.2) can
be solved in parallel and each has the dimension equal to that of the system (1.1)
the iteration proces (2.2) is on an k-processor computer of the same computational
complexity as an m-stage SDIRKN method on a one processor computer.

Definition of the step values. Suppose that we adopt Yi(m) = Xl.(m)fi— I; as a
sufficiently accurate approximation to the exact stage vector solution Y of the
corrector (1.2). Then, the most natural way to approximate the step values ¥n+t
and y,,,; in (1.2) is to define these values according to the formulas (see [8])

k
Yn+1 = YUn + h’y:z + bOhfzg(yﬂ) + h2 Z big()/i(m))’

=1

k
Vi1 = Yh + dohg(yn) + Y dig(¥(™), (2.3)

g1

(in order to avoid confusion, we shall from now on denote the corrector solution
values obtained from y, and yj, by u,4; and u;,, ). However, the presence of the
righthand side evaluations in these formulas may give rise to loss of accuracy in
the case of stiff problems (see [13]). This difficulty can be overcome by applying a
similar approach as proposed in |7] for the implementation of implicit RK methods..
For simplicity, we describe this approach for a scalar equation y" = g(y).
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Lemma 2.2. Defining Y = (¥;) and G = (g(¥:)), the corrector (1.2) can
be written in the form

Un+1 = Yn S hy:; + b0h2g(yn) o hszG,
Uy 41 = Yn + dohg(yn) + hdT G, with
G =h 247 Y — eyn — chyl, — ah®g(yn)],

where e 1s k-dimensional vector with unit entries.

P r o o f. If we use the notation in which for any vector v = (v;), the f(v)
denotes the vector with entries f(v;) then the corrector (1.2) can be written in the
following form:

Unt1 = Yn + byl + boh®g(yn) + R*bTg(Y),
Upy1 = Yn + dohg(yn) + hd"g(Y), w7 v
Y = ey, + chy!, + h%ag(y,) + h2Ag(Y)

From last relation we derive g(Y) = G = h™2A7 Y — ey,, — chy!, — ah®g(y,)] that
leads us to lemma 2.2. O

This representation shows that we can eliminate the righthand side eval-
uations and that u,4; and u},; can be expressed solely in terms of the stage
vector Y. Now we will compute yn4+1 and y),,; according to these formulas with

Y replaced by Y (™). Returning to systems of ODEs and to the notation Xi(m),
we obtain.

k
Yn+1 = Yn + hyp + boh®g(yn) + Z O‘iXi(m)’
i=1

k
Yhr1 = b + dohg(yn) + 1Y AX (™, (2.4)

=1
where the o; and f; are the components of the vectors
a:=bTA™ Y, B:=dTA™L.

In many cases the corrector satisfies the relation of stiff accuracy, i.e., ¢x =
1,bo = ar and bT A~ = el. In such cases, the step value u,4; produced by the
corrector is given by the last component of the stage vector, i.e. by Y. This leads
us to replacing the formula for y,; in (2.4) by ’
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Yni1 = Yn + hyl + boh2g(y) + XI™. (2.4))

2.2. The predictor

In order to start the iteration (2.2), we need a predictor to compute the

initial approximations X}O). For more details about the predictors we refer to [9).
In this paper we follow two more attractive predictors below:

Explicit predictor I with Xi(o) = —a;h%g(y,) \ v

Implicit predictor II with X = —a;h2g(y,) + h26;9(X? + z.).

In view of stability, an important property of these predictors is the degree
of amplification of stiff components (here, stiff components are understood to be
eigenvector components corresponding to large, negative eigenvalues of dg/dy).
We study this property by applying it to the scalar test equation y” = Ay.

Definition 2.1. We say that the predictor X is of order p* if X = X(©) =
O(h_”""l)

Theorem 2.1. The predictor I and predictor II are of order one, i. e.,
e® = X — X© = 0(h?)
P r o o f. From stage vector equation (1.2’), we derive

X = zA(X + eyn + chy,, + zay,) with z = A2, or
X = [I — zA]"'zA(eyn + chy,, + zayy). (2.5)

From (2.5) and observing that z = O(h?), Theorem 2.1. easily follows. [
2.3. The iteration error

Definition 2.2. We shall say that the order of the iteration error of the PC
method (2.1)-(2.4) equals g if

Upp 1, = Unt1,= ORI )8l oy = Ynga. = Q(BET), (2.6)

where (%n41,%p ;) and (Ynt1,Yn4;) denote the step values obtained from the
values (yn,y.,) by respectively solving the corrector equation and by performing a
finite number of iterations.

The iteration error associated with (2.1)-(2.4) can be studied by applying
it to the scalar test equation y” = Ay, where A runs through the eigenvalues of
dgdy. '



54 : : Nguyen Huu Cong
Theorem 2.2 Defining the iteration error |

eW =X - X" where X :=(X;),X® .= (Xi(#))v (2.7)

we have following error relation: : I

e(™ = P (H(z))e® with
R
Prlz) = H(l — wyz) and H(z) := [I — 2D] I - 24], z:= \h?
p=1 ' (2.8)
P r o o f. We can deduce from (2.2) that the iteration error (2.7) satisfies
the recursion ;

elk) = I - w#H(z)]e(“—l),H(z) :=[I — zD|"YI ='24], z:=Ah%, u=1,...,m,
where D is the diagonal matrix with diagonal entries §;. Hence, relation (2.8)
easily follows. O

Definition 2.3. The matrix P,,(H(z)) in (2.8) will be called the stage
vector iteration matrix. v

Theorem 2.3. Let the predictor be of order p* and let
Pm(x) - (1 == z)q*Qm—q" (z)a Qm—q' (1) # 0.

Then, for any choice of the matrix D, the order q of the iteration error of
the PC method (2.1)-(2.4) is given by ¢ = 2¢* + p* — 1.

The proof of this theorem is given in [9]
In the following, we use the notation

Un+1 Yn+1
= ) = : 2.9
ke <h“:;+1) ik <hyh+1) -
In terms of these vectors, we can derive an error equation of the form
Wn41 — Un41 = Em(z)vn, (2.10)
where the error matrix E,,(2) is a 2-by-2 matrix determined by the RKN parmeters

and the matrix D.

Definition 2.4. The matrix E,,(z) defined in (2.10) will be ‘called the
iteration error matrix of the parallel PC method (2.1)-(2.4).

In the following section we need specified structure of iteration error matrix
E,.(z) for deriving the stability function of parallel PC methods. We have the
following theorem.
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Theorem 2.4. The iteration error matrix of parallel PC methods E,,(z)
from relation (2.10) assumes the form below: '

| _ ( P Pm(H(2))k
Eulz) = ( )

A TP, (H(2))ks(2)
i o) o J e

1 (
)ki1(2) dTAP,(H(z))ka(2)

wherei) = bTA™1 for nonstiffly accurate correctors, and pT = ef for stifly
- accurate correctors.
For predictor I, ky(z) = [I - zA]“lz.A[e + za] + za, ko(2) = [I —2zA]712zAc
For predictor II, ky(z) ='[I — zA|™[e + za] — [I — 2D]"[zD(e + za) —
zal, ka(z) = {{I— zA]71 = [I — zD| '}e.

P r o o f. From the step value formulae (2.4), (2.4’), (1.2”) and Theorem
2.2 (formula (2.8)) it follows that

Un+1 — Ynst1 = pTPM(H(Z))E(O)a hu:;-i—l o h‘y:z+1 & dTA_le(H(z))E(O)a (2'12)

where pT = bTA~! for nonstiffly accurate correctors and pT = ef for stiffly
accurate correctors. For the predictor I, X(©) = ——zayn, using formula (2.5) we °
have

e® = x — XO) = [I — 24| ' 2A(eyn + chy’, + zays) + zay, =
k1(2)yn + k2(2)hyy, (2.13)

with ky(2) = [I—zA|"'2A[e+ za] +2za, ka(2) = [I — 2A|"zAc. For the predictor
I1, X0 = —zay, + zD[X(0 + z] with z = ey, + chy), + zay,. Hence,

b ol [I — 2D]~'[2D(eyn + chy), + zay,) — zayy,]

e = X~ X = [I - 24] 7 24]ey, + chy), +jza,yn]_.
— [I — 2D) ™ [2D(eyn + chy, + zay,) — zay,] =
= k1(2)yn + k2(2)hy,, (2.13%)

with ky(2) = [I — 24]~[e + za] — [I — 2D|~'[zD(e + za) — za], ka(z) = {|I —
zA]™! — [I — zD]'}c. Relations (2.12), (2.13), (2.13) prove the theorem 2.4. [J

2.4. Choise of iteration parameters
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Before discussing the choise of iteration parameters (matrix D), we denote
the spectrum of H(z) by A(H(z)), and we define

p(2) = Max{|A — 1] : X € A(H(2))},
p:=Max{|A —1|: ) € A(H)},
A(H) :={A(H(2)) : =B < 2 < 0}. : (2.14)

From results reported in Subsection 2.3 (Theorems 2.2, 2.3, 2.4) we choose the
relaxation parameters w, equal to 1 and follow two iteration mode: stiff iteration
approach and Zarantonello iteration approach. (see[7], [9]). O

2.4.1. Stiff iteration. In this case the matrix D is chosen is such a way that
A(H(—0o0)) is contained in a circle with minimal radius p(—oc0) and centered at 1.
The following theorem holds for k = 2:

Theorem 2.5. Let k = 2, then the following assertions hold for the stiff
iteration method:

(a) if det(A) > 0 and if either {a12a5; < 0 and az; > 0} or {a;; > 0 ard
a2 < 0}, then there exists a matrix D with positive entries such that p(—oo) = 0.

(b) if (a) holds, then one eigenvalue of H(z) equals 1 for all z.

(c) if (a) holds and if Tr(A) > —2det(A), then the eigenvalues of H(z) are
real and positive for all negative z.

P roof. (a) For k = 2 the value of p(—o0) vanishes if the matrix H(—oc0) —
I = D' A — I has zero eigenvalues. This can be achieved by choosing ]

i dEtA(l % s a;i1a22 g 2detA — (51(122

)
y a99 : detA )" 2 ; ay

By an elementary calculation assertion (a), (b), (c) can now be verified (more

detail see [9]). O

2.4.2. Zarantonello iteration. When all relaxation parameters equal to 1, the
optimal choice of the set A(H) is a circle centered at 1 with minimal radius p. This
follows from a lemma of Zarantonello (cf.[15]), stating that the spectral radius of
P,,(H(z)) is minimized if P,, has all its zeros at the center of the circle containing
the eigenvalues of H(z). We shall call this iteration mode Zarantonello iteration.

Using Theorem 2.5 for Dr(3/4, 1) we can derive matrix D with p(—o0) = 0.
For two remaining correctors Dr(-1/5, 9/10, 1) and Dr(-1/4, 0, 9/10, 19/20, 1)
we did not succed in deriving the optimal matrix D by analytical methods, so
that we used the numerical search techniques. The results of search for both two
iterations modes are listed in Table 2.1. In this table, we list the optimal D-matrix,
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the values of p and p(—o0) for each corrector.

Table 2.1. “Optimal” iteration parameters § and corresponding p(—o0), p values

6T — iteration

Correctors e e p(=o0) p
parameters
Dr (3/4,1) ; 2. 2 % HO 16875,
0.2777777778)  0.000 0.500
Dr(-1/5, 9/10, 1) 3 3, 3 (0.0154593016,
= 0.1137764435,
0.1301060266)  0.009 0:367

o
-

Dr(-1/4, 0,9/10, 19/20,1) 5 (0.0073679545,
0.0465886564,
0.0508800912,

0.0553578642) 0.279 0.380

2.5. Stability

Regarding the stability of parallel PC methods, we have the following theo-
rem ,

Theorem 2.6. Using the notation in Subsection 2.3. i. e. Va1 3

(:;,+1 ) where yn41 is an approximate solution by parallel PC method, the
n+1
stability relation below holds

Vot1 = |[M(2). = Em(2)]vn, (2:15)

: (14 2bg +2bT(I — Az)" e+ za] 1+ 2bT (1 - Az)"lc
wherematan(z) = ( Zdo 4+ sz(I___ AZ)_I[C +za] 1 4 ZdT(I = AZ)——lc
is stability matrix of IRKN methods and matrix E,.(2) is defined by (2.11)

Proof If wypy = (unpr,huyi;) where usy; is a solution by RKN

method, then w,,; = M(z)v, (see [8]). By substituting into (2.10) we obtain
(2:15). O
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Definition 2.5. We call the matrix M(z) — E,.(z) the stability matriz of
. parallel PC methods and its spectral radius its stability function R,.(z), i. e.

Run(2) i= p([M(2) = Em(2))). (2.19)
Since stability plays a crucial role in the overall performance of the PC
methods, it is of interest to compute the minimal value of m such that the parallel
PC method is stable for all z in the interval (—oo,0] and for all m equal to or
greater than this value, i. e., the PC methods are A-stable for all m greater than
or equal this value. Let us denote this critical value of m by m, and let m,
denote the minimal number of systems (of dimension d) that are to be solved per
step and per processor such that the PC method is A-stable. Thus m; = mc;
for the predictors I and, and m; = mcit + 1 for the predictors II. In Table 2.2
the values of m,;; are listed for three parallel PC methods with three Dr(3/4, 1).
Dr(-1/5,9/10, 1) and Dr(-1/4, 0, 9/10, 19/20, 1 ) correctors using the predictor I
and the predictor II. For each k, the minimal values are indicated by bold face.

Table 2.2. Values of mgyyy with explicit preddictor I and implicit predictor II

P 6T — iteration Merfor meritfor
parameters predictor I predictor 11
Dr(3/4, 1) (0.16875,
0.2777777778) 2 i
Dr(-1/5, 9/10, 1) ~ (0.0154593016,
, 0.1137764435,
0.1301060266) 4 5

Dr(-1/4, 0, 9/10, 19/20, 1) (0.0073679545,
0.0465886564,
0.0508800912,
0.0553578642) > 10 8

3. NUMERICAL COMPARISONS

In the numerical experiments we restrict the consideration to only the three
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best parallel PC methods listed in Table 3.1 below and the already available se-
quential SDIRKN methods (see [9], [11], [14]).

Table 3.1. Survey of new selected parallel PC methods.

PC Iteration
Predict I
Method IRKN corrector kpr redictor E— Merit
D2(IS1) Dr(3/4,1) 2 272" Predictor 11°7'(0.16875; 1

0.277777778)

D3(ES4) Dr(-1/5,9/10,1) 3 33 Predictor I (0.01545593016,
* ' 0.1137764435,
0.1301060266) 4

D4(IS8) Dr(-1/4,0,9/10, 4 55 Predictor II = (0.0073679545,
19/20, 1) 0.0465886564,
0.0508800912,

0.0553578642) 8

In all experiments we used the convergence criterion proposed in [9], i. e.,
the number of outer iteration m was determinated dynamically by the stability
criterion m > m,iy together with a condition on the iteration error as following:

k
m > meyy and Max;|| X;(m) — h? Z aig( Xi(m) + =)l < Chp*', {81)
J=1

where p is order of local error of the corrector methods, constant C is parameter
independent of the stepsize h. In our numerical experiments we used C = 1072,

Furthermore, in the table of results, as in [9], M denotes the averaged num-
ber of sequential systems to be solved per unit interval and NCD denotes number
of minimal correct digits which is defined as following:

NCD(h) := —log(|/global error at the endpoint of the integration intervul”éo)
» (3.2)
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3.1. Lincar stiff Kramarz probiem

Consider the model linear stiff problem (see [2]):

y'(t) = (_2;339 _43339> y(t), y(0) = ( 21), y'(0) = (g), 0 <t <100, (3.3)

with exact solution y(t) = (2cos(t), —cos(t))T.

For this linear problem, where, per processor, in each step only one New-
ton-iteration is required, the value of M may serve as computational costs. The
results in Table 3.2 show that D3(ES4) is more efficient than sequential three-order
methods, D4(IS8) is the most efficient.

Table 3.2. Values of NCD/M for problem (3:3)

 Methods k p r h=1/5 h=1/10 h=1/20 h=1/40 h = 1/80

Norsett 2 3.1 09/10 18/20 2.7/40 3.6/80 4.5/160
SFB; 2 3 1 06/10 15/20 2.4/40 3.3/80 4.2/160
Norsett; 3 4 1 3.1/15 3.1/30 — 4.1/60 5.2/120 6.4/240
SFBs 3 4 1 24/15 36/30 4.8/60 6.0/120 7.2/240
B, 4 3 1 09/20 1.8/40 2.7/80 3.6/160 4.5/320
D2(IS1) 2 2 2 09/14 14/27 1.7/40 2.4/80 3.0/160
D3(ES4) 3 3 3 18/20 2.7/42 3.7/80 4.6/160" 5.5/320
D4(IS8) 4 5 5 5.3/45 6.8/90 '8.3/180 9.8/360 11.3/720

3.2. Fehlberg problem

Consider the nonlinear equation (cf.[9]):

—4t2  —2/r(t)

v =30, 3 = (it THE) = e, VAR e sn 6

where y(t) = (y1(t),v2(¢))7, ly®)ll2 = V/(v1(t))? + (v2(t))?. Problem (6.4) has
the exact solution y(t) = (cos(t?),sin(t?))T. In this difficult experiment, D3(ES4)
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and the three-order sequential methods are comparable, D4(IS8) is again the most
efficient.

—

Table 3.3. Values of NCD/M for problem (3.4)

PC method k p r h=1/10 h=1/20 h=1/39 h=1/78 h=1/156
Norsett; 2 3 1 0.1/20 0.1/39 0.6/78 1.5/157  2.4/313
SFB, 2.3.1 0.1/20. 0.1/39 . 0.4/78 1.2/157 2.1/313
Norsetts 3 4 1 -0.1/29 0.4/59 1.6/117 2.7/235 3.9/470
By 43 1 01/39 0.1/78 0.6/157 1.5/313 2.4/627
D2(IS1) 2 2 2 0.0/102 -0.1/130 0.3/188 1.0/312 1.6/552
D3(ES4) 3 3 3 0.1/74 0.7/124 1.5/212 2.5/398 3.4/733
D4(IS8) 4 5 5 1.3/92 2.9/180 4.4/351 5.9/702 7.4/1404
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