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PARALLEL IMPLICIT RUNGE-KUTTA-}IYSTROM
METHODS. OF DIRECT COLLOCATIOI{ TYPE

FOR STIFF,INITIAL.VALUE PROBLEMS

NGUYEN HUU.CONG

Abstract. In this pp.r, we study prcllel iteration of predictor-corretor methorls (PamJlel

PC rnethds) with direct cdlocatio+Dolsed implicit Runge-Kutta-Nystrorn correctors for solving stiff

initial-ualue prcblems for sp.cial seeond-otder, ordinarg differential eguatioru (ODEs) on parcllel

comptters. These iteration rnehtds arc such thot in eoch step, the iteroted rnethd belongs to the

cloqs of diogornllg irnplicit Runge-Kutta-Nystrom rnethds (DIRKN methods). By a suitcrble choiu

ol the parcrneters in the iterction proc,ess, the prallel methds corutructed in this ppr are rather
eficient for solving stifi initial-voJue problems on prallel computers,

1. INTRODUCTION

We shall be concerned with the integrating the initial-value problem for
systems of special second-order, ordinary equations ( ODEs) of dimension d

y " ( t ) :  g ( a ( t ) ) ,  y ( r o )  :  y o , v ' ( t o ) : a L ,  / : R - - +  R d ,  g :  R d  - - +  R d ,  t o  1 t  S t " n a .

Important test examples from this class of problems originate from structural
mechanics. Such problems belong usually to the stiff class. Ideal. method for
solving this class of problems is the method which have, in addition to a high step
point order and the property of .A-stability, a high stage orders, in order to avoid
'n" "Tl,;1,11i'"l:*':ni::,ltJl;,,*, integration methods based on pararel
iteration of fully implicit Runge-Kutta-Nystrom (RKN) methods of direct collo-
cation type. Such RKN methods possess the largest possible stage or{er, so that
we automatically achieve high stage orders if the method is used is sufficiently
accurate (for an extensive investigation of such RKN methods see [8]).
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We shall investigate parallel iteration methods which are such that, after a
finite number of iterations, the method belongs to the class of diagonally implicit
Runge-Kutta- Nystrom methods (DIRKN methods). Adopting the terminology
used for iterating implicit linear multistep methods, we shall call the implicit RKN
method the corrector and the method used for starting the iteration the predictor.
The parallel iteration process will be called parallel predictor - corrector(PC)
method.

. The large number of 
'stages 

of this parallel PC rnethod increases with the
number of iterations and may vary from step to step depending on the con-
vergence criterion but can be computed in parallel on multi-processor comput-
ers. An other advantage is that on each processor, the method behaves as a
single - diagonal - implici, RKN method (SDIRKN), that is, only ope LU de-
composition per processor is required. Thirdly, we can reduce the number of
iterations per step by a suitable choice of the iteration parameters of the itera-
tion process. For three single A stable IRKN correctors derived in [S] by direct
collocation techniques, we have constructed parallel PC methods which are very
efficient for stiff initial-value problems. The use of direct collocation-based ,4-
stable corrector methods guarantees high stage order, so that the phenomenon of
order reduction, exhibited in many problems with large Lipschitz constants, does
not deteriorate the accuracy of the methods. The numerical experimerrts clearly
show that the parallel iteration methods proposed in this paper are much more
efficient than sequential SDIRKN methods.

RKN method

We consider RKN correctors of the form

k

untr : a^ * hyt* * bshz g(y^) + h2 Lbr,(v,),
i : l

- k

y'n+t :  vt* + dohg(y^) + nl a$1v;),
i : 1

k

Yi :  an  - t  c ;hy t ,  *  a ;h2g (yn )  *  h ' L " r i g (Y ) ,  i :  L , . . .  , k ,
i : l

or using the Butcher array notation (cf. [+]).

0 0 r
a A

( r .2)

bo
d,s'

6r
4r (1 .3 )
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where b : (6i), c : (cd) and d : (4) are lc-dimensional vectors, and A : (aii)
is an k-by-k matrix. We always assume that the matrix A is nonsingular. If the
vector a does not vanish, then (t.Z) presents an (s : /o t l)-stage RKN method
reQuiring k implicit stages and one explicit stage. If o : 0, then (1.2) reducex to
the general (s : /c)- stage RKN method with s implicit stages. For a discussion
of the order of accuracy p and the stage order r of RKN methods, the reader is
referred to ([s], [s]).

In this paper, we shall concentrate on the parallel iteration of the single
.A-stable direct collocation-based IRKN correctors, which are denoted by Dr(f/4,
1) ,  Dr( -1 /5,9/10,  1)  and Dr( -L14,0,9/10,  ts fzo,1) .  Here (314,L) , ( - t /s ,  e f  Lo,
1) and (-L'14,0,9/10, 19f20,1) are the vectors of col location points (more detai l
about this methods and direct collocation-based IRKN r,nethods, please see [8]).
The use of non-.4-stable RKN correctors viiil be investagated in an other paper in
order to exploit the performance in high step point order.

2. PARALLEL ITERATION OF PC METHODS

We shall construct integration methods by diagonal-implicit PC iteration of
fully implicit RKN methods. Thus, assuming that in (1.2) the matrix A - aii
is a full matrix, we have to find the solution of the stage vector equation, the
stage vector V * (Y;). Our aim is to construct solution methods that run fast
on parllel cornputers. In the case where all eigenvalues of the Jacobian matrix
are close to the origin, the stage vector equation in (1.2) can be solved by fixed
point iteration which is well suited for implementation on parallel computer. For
first-order ODEs this has been discussed in [12], [10] and [5]. If there are also
largely negative eigenvalues,-then fixed point iteration would dictate rg,ther small
stepsizes in order to get convergence. We will consider a more powerful class
of parallel iteration processes which leads to the same degree of implicitness as
occuring in SDIRKN methods. These processes are similar to the stif iteration
method, applied in [7] and parallel PC iteration applied in [O].

2.1. Iteration of the stage-vector equation

a4 y0') denote the p-th iterate to Yi and define

X; ::  Yi - r i ,  X[ ') ,- Y;(tt) - r; ,  whete {Ei:* Un * c;hytn * a;hzg(y*). (2.1)

We shall compute iterates X:d, rather than the iterates YrU) , because the quan-

tities X[r) 
"rg 

of smaller magnitude and are therefore less sensitive to rounding
errors. In terms of Xd and r;, the stage vector equation in (t.Z) reads
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' k

x i  :  h 'Da i i g (x i  * ' ) ,  i  :  1 , " ' , 4 '
j = t

For each of these equation, we define the iteration process

(1 .2 ' )

x[*l -hzors1xl,la"r)

w h e r e  i  :  1 , . . . , k ;  F  :  1 r . . .
the 6; are iteration parameters
lemma is evident.

Lemma 2,1. Suppose that the iterotion process (2.2) conuerges, then X[p)
conuerges to the i-th component of the solution of the stage vector equation (l.Z')
i. e. to X;.

Since the /c systems that'are to be solved in each iteration step of (Z.Z) can
be solved in parallel and each has the dimension equal to that of the system (1.1)
the iteration proces (Z.Z) is on an /c-processor computer of the same computational
complexity as an rn,stage SDIRKN method on a one processor computer.

Definition of the step values. Suppose that we adopt Yn(*) : X:'") * r; as a
sufficiently accurate approximation to,the exact stage vector solution Y of the
corrector (1.2).Then, the most naturalway to approximate the step values gn.*l
and yl*t in (1.2) is to define these values according to the formulas (see [S])

5 l

: 76{r-t) - 6;h2g(x[L'-r) +,r) - r*[x{*)
k

- h'D"tio(xlr) * ,)j, e.2)
i : l

, rn. Here, the c..r, are relaxation parameters and
which are a,ssumed to be positive, The follwing

k

ao+L : u^ * hy', * bsl;2 g(yn) * h' LhgI 
^) 

),
r = l

k

y'^+t : vt^ + d,ohs(v") + hlatslVr@)),
r = 1

(2.3)

(in order,to avoid confusion, we shall from now on denote ,the corrector solution
values obtained from y," and y'^ by u,"+t and ul*r). However, the presence of the
righthand side evaluations in these formulas may give rise to loss of accpracy in
the case of stiff problems (see [fS]). This difficulty can be overcome by applying a
similar approach as proposed in [7] for the implementation of implicit RK methqds.
For simplicity, we describe this approach for a scalar equation y" : g(a).
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Lemma 2.2. DefiningY: (fd) ond G: (g(f i)),  the'corrector (1.2) can
be written in the form

tlnr-r : u^ * hy'^ * bshzg(Yn\ + hzbr G,

u'n+t : yt* + dollg(y,) + hd,r G, w;th

G : h-2 A-t [Y - eln * 
"hy'* 

- ah2 g(v^)),

where e is k-d,imensional uector with unit entries.

P r o o f. If we use the notation in which for any vector , : (r), the /(u)
denotes the vector with entries /(u;) then the corrector (f .Z) can be written in the
following form:

un*r : a* * hyt* * bsh2g(yn) + hztr g(Y\,

u',.+t : v', + aohg(y") + hdT g(Y),

Y : ean + chyt* * h2ag(y,.) + nz fu1v1

From last relation we deriv e g(Y) : G : n-z n-t lY - ean- 
"hA'*- 

oh2g(An)] tha;
leads us to lemma 2.2. A

This representation shows that we can eliminate the righthand side eval-
uations and that u2.t-1 and u'n*, can be expressed solely in terms of the stage
vector Y. Now we will compute Urr+r and ytn*, according to these formulas with

Y replaced by Y(-). Returning to systems of ODEs and to the notation X[^),
we obtain.

-  (L.2")

(2.4)

k

anir -- 9* * hY'^ * bohzg(Y") + f orx[*) ,
'  

d : l

k

a'n+t : vt* + dohs(v') + h-t f Pnx!*) ,
r : 1

where the a; gad 0; are the components of the vectors

a : :  bT  A - ' ,  g r :  d r  A - r .

In "rnany cases the corrector satisfies the relation of stiff accuracy, i.e., c1, :

1,66 : ap and brA-L - e[.In such ca,ses, the step value u2.r-1 produced by the
corrector is given by the last conrponent of the stage vector, i.e. by Y;r. This leads
us to replacing the formula for Un+r in (2.a) by
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{2.4 ' )an*L : u, * hy'^ * bshz g(y,) + X,!*)

2.2. The predictor

In order to start the iteration (Z.Z), we need a predictor to compute the

initial approximations Xjo). For more detailsabout the predictors we refer to [9].
In this paper we follow two more attractive predictors below:

Explicit predictor I with Xjo) : -o;h2g(yn)

Implicit  predictor II  with Xjo) : -a;h2g(yn) + h26;g,X[-o) + 
"t; .

In view of stability, an important property of these predictors is the degree
of amplification of stiff components (here, stiff components are understood to be
eigenvector components corresponding to large, negative eigenvalues of 0gl0y).
We study this property by applying it to the scalar test equation y" - )8.

Definit ion 2.1. We say that the predictor ;(o) 6 of order p. i f  X '  y(o) -

O(nn'+t1

. Theorem 2.1. The predictor I and pred,ictor Il are of order one, i. e.,

e ( o ) : X - y ( o ) : O U L 2 )

P r o o f. From stage vector equation (1.2'), we derive

X : zA(X * ean + chy'^ * zayn) with z = ),h2, or

X : l I  - zAl-t zA("Ao + chy'* + zaan). (2.5)

From (Z.S) and observing that z : O(h2), Theorem 2.1. easily follows. I

2.3. The iteration error

Definition 2.2. We shall say that the order of the iteration error of the PC
method (2.1)-(2.4) equals s i f

unirL - an*r = O(he+r1ru'n+, - a'o+t: O(ltt+r1, (2.6)

where (un*t,u'*+J and (y,na1tV'*+) denote the step values obtained from the
values (V",yL) by respectively solving the corrector equation and by performing a
finite number of iterations.

. The iteration error associated with (2.1)-(2.4) can be studied by applying
it to the scalar test equation y't - \y, where ) runs through the eigenvalues of
ogov.
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Theorern 2.2 Defining the iteration error

"(r) 
.- y - yli , where X :: (X;) , X0,)

we have following error relation:

Nguyen Huu Cong

': (xj')), , :  

, , ,

, ( 'n) -  p,-(H(z))6@)

tTl

p, , ( r ) :  
i l  ( t -wun)
l t :L

P r o o f. We can deduce
the recursion

(2.8)

from (2.2) that the iteration error (2.7) satisfies

, tu)  -  l I  -  wrH(z)1e0"- r \ ,H(r ) ' :  [ /  -  zDl* r l l  -  zAl ,  z  : :  Ah2,F :  L , . . . , tn ,

where D is the diagonal matrix with diagonal entries 6;. Hence, relation (2.8)
easily follows. !

Definit ion 2.3. The matrlx P*(H(z)) in (Z.a) wil l  be called the stage
vector iteration matrix.

Theorem 2.S. Let the predictor be of order p* and let

p * ( r ) :  ( 1  -  r )q *  Q^_q- ( r ) ,  Q*_o -  ( t )  I  o .

Then, for any choice of the matfix D, the order q of the iteration error of
the PC method (2.1)-(2.4) is given by q:2q* + p* - L.

The proof of this theorem is given in [9]
In the following, we use the notation

. -  /  , ' * ,  \  , ,  -  . -  /  v '+ ,  ) .wnrLt :  
\h , r r , * ,  ) t  

un+r  t :  
\ t  u ,** r /

In terms of these vectorq we can derive an error equation of the form

(2.e)

w n - f y - u n * L : E * ( z ) u n , (2.10)

where the error matrix n^k) is a 2-by-2 matrix determined by the RKN parmeters
and the matrix D.

Definit ion 2.4. The matrix E^(z) defined in (Z.tO) wil l  be'cal led the
iteration error matrix of the paral lel PC method (2.1)-(2.4).

In the following section we need specified structure of iteration error matrix
E, (r) for deriving the stability function of parallel PC methods. We have the
following theorem.
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Theorem 2.4. The iteration error natrix of panIIeI PC methods E*(z)
from rcIation (Z.tO) assumes the form below:

D ,_,  ._ (  pr  r*(H1r)) f r t  ( r )  pr  p^(H (z))kr(z)  \um\') '- 
\ ara- | r^(u 121)kr(") dr A-r p^(H (z))kr(r) )

(2 .11 )

where pT :' br A-L .for nonstiffiy accurate correctors, and pT : ef for stiffiy
accutate cortectots

For predictor l ,  lc1(") :  l I  -  zAl-L zA[e * za] + za, k2(z) : [ /  - zAl-r zAe,.
For predictor II ,  kt(") :  [ /  - 

"AJ-t le 
+ zal - [ /  - 

"D)-t[zD(e 
* za) -

zal, k2(z) : {[ /  - 
"A]- '  

- V - zDl-L]c.

P r o o f. From the step value formulae (z.q), (2.4'), (1.2") and Theorem
2.2 (formula (Z.a)) it follows that

un]-r - an+r : pr Prr(H(z))e(o) , hu'n+, - hy'n+, : d,T A-r P*(I/(z))et0) , Q.tz)

where pT : bT A-r for nonstiffiy accurate correctors and pT : ef for stiffiy
accurate correctors. For the predictor Ii y(o): -z&Un, using formula (Z.S) we
have

e ( 0 )  -  1 6 - ; ( o ) :  [ / -  z A l - L z A ( e a , * c h y t n l  z a y n )  *  z a a n :

kr(")v* * k2(z)hvt^, (2 .13 )

with /c1 (") :  l I  -  zAl-t zA[e,* za) +va, kz(") :  [ /  - zA]-L zAc. For the predictor
I I ,  X(o)  -  -zaan+ zDlX@) +" ]  wi th  r :  eyn+chgtr*  zayn Hence,

X(o) : [ /  - 
"D)- ' lzD(ey; 

+ chyt * zayn) - zaan]

e(o) - ;g.- ;g(o) _ [f - zAl-t zAlean * chytn I zayn]_

II - zDl-L[zD(ey^ + chyt^ I zayn) - zaynl -

= k{z)yn + k2(z)hy'" (z.re')

with tc1 (") :  l I  -  zAl-rfe + zal -  V - zDl-t [zD(e * za) - zol,  kr(") :  { [ /  -
zAl-t -V - zDl-rlc. Relations (Z.tZ), (2.13), (2.13') prove the theorem2.4. J

2.4. Choise of iteration parameters



56 NguYen Huu Qong

Before discussing the choise of iteration parameters (matri* D), we denote
the spectrum of H(z) by L(H(z)), and we define

o(z) : :  Max{1,\  -  1l  ' )  e A(If  (z))},
p : :  Max{l}  -  1l  :  I  e A(//)} ,
A ( f I ) , :  {L (H(z ) ) ,  -0  <  z  <  o ) . (2.14)

From iesults reported in Subsection 2.3 (Theorems 2.2, 2.3, 2.4) we choose the
relaxation parameters (y'p equal to I and follow two iteration mode: stiff iteration
ofuprooch and, Zarantonello iteration approach. (see[7], [9]). n

2.4.I. Stiff iteration. In this case the matrix D is chosen is such a way that
A(//(-bo)) is contained in a circle with minimal radius p(-oo) and centered at 1.
The following theorem holds for k :2:

Theorem 2.5. Let k :2, then the following assertions hold for the stiff
iteration method:

(") if det(A) ) 0 and if either {anazt ( 0 and azz } 0} or tott > 0 arid
&zz 0), then there exists a matrix D with positive enfries such that p(-m) : 0.

(b) it (a) holds, then one eigenualue of H(z) equals 7 for all z.
(r) if (a) holds and if fr@) > -2det(A), then the eisenvalues of H(z) are

real and positive for aII negative z.

P r o o f. (u) For ft : 2 the value of p(-m) vanishes if the matrix f/(-*) -

I : D*tA - f has zero eigenvalues. This can be achieved by choosing

2detA - 6p22

By an elementary calculation assertion (a), (b), (.) can now be verified (more
detai l  see [e]). tr

2.4.2. Zarantonello iteration. When all relaxation parameters equal to 1, the
optimal choice of the set A(.lt/) is a circle centered at L with minimal radius p. This
follows from a lemma of Zarantonello (cf.[15]), stating that the spectral iadius of
P^(H (z)) is minimized if P* ha^s all its zeros at the center of the circle containing
the eigenvalues of H (z). We shall call this iteration mode Zarantonello iteration.

Using Theorem 2.5 for Dr(314,1) we can derive matrix D with p(-oo) : 0.
For two remaining correctors D:(-1/5, 9f I0, 1) and Dr(-l f  4,0, 9/10, Lgl2o, L)
we did not succed in deriving the optimal-matrix D by analytical methods, so
that we used the numerical search techniques. The results of search for both two
iterations modes are listed in Table 2.1. In this table, we list the optimal D-matrix,

o,:#g*rt t  - f f i ) , .d, :
& L r
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the values of p and p(-m) for each corrector.

Table 2.7. "Optimal" iteration parameters 6 and corresponding p(-oo),p values

6" - i teration
C o r r e c t o r s P R K w p ( - o o )  p

parameters

D r ( s l + , t )  2  2  2  ( 0 . 1 6 8 7 5 ,
0.2777777778) 0.000 0.500

Dr(-r /s,9/10, 1) 3 3 3 (0.01545e3016,
0. I I3776443s,
0.1301060266) o.oo9 0,367

Dr( - t1n ,0 ,9 /10 ,L9120,L)  5  5  4  (0 .0073679545, ,
0.0465886564,
0.0508800912
0.0553578642i 0.27s 0.380

2.5. Stabil i ty

Regarding the stability of parallel PC methods, we have the following theo-
rem

Theorem 2.6. (Jsing the notation in Subsection 2.3. i. e. urt*L ::
/ \
( !:f' ) w,h"." an+t is an approximate solution by parallel PC methocl, the
\na i+ r  /
stability rcIation below holds

un*L : lU(r) - E^(")|r", (2.15)

w h e r e m a t r i x M ( " r . _  
( t r  z b s +  z b r ( I  -  A " ) * L [ e +  z a ]  r *  z b r ( I  -  A z ) - r r \

/ ' :  
\  z d o *  z d r ( I  -  A " ) - L l e +  z a l  r *  z d r ( I  -  A z ) - t ,  )

is s,tability matrix of IRKN methods and matrix n, Q) is defined by (Z.lt)

P r  o  o f .  I f  wn41 : :  (u ,n+r  ,hu 'n+t)  where u7i11 is  a  so lut ion by RKN
method, then u. ' ,r. .1 : M(z)un (see [a]). By substitut ing into (2.10) we obtain
(2.15). tr
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Definit ion 2.5. We call  the matrix
,.parallel PC methods and its spectral radius

Nguyen Huu Cong

M(") - n*@) the stability rnutrir of.
tts stability fun.ction R,"("), i. u.

a,"k) p p(lM (27 - n",Q)D.
Since stability plays a crucial role in the overall performance of the PC

methods, it is of interest to compute the minimal value of rn such that the pariillel
PC method is stable for al l  z in the interval (-*,0] and for aU rn equal to or
greater than this value, i. e., the PC methods are , -stable for all rn greater than
or equal this value. Let us denote this critical value of. m by rn",.11 and let rn1
denote the minimal number of systems (of dimension d) that are to be solved per

step and per processor such that the PC method is A-stable. Thus 'frl1 : Trrcrit
for the predictors I and, and rn1 : ffi*it * l for the predictors II. In Table 2.2
the values of m"ri l  are l isted for three paral lel PC methods with three Dr(S/+, t).
Dr( - r /s ,  g f  Lo, ,1 . )  and Dr( - t l+ ,0,9/10,  Lgf20,1 )correctors us ing the predic tor  I
and the predictor II. For each k, the minimal values are indicated by bold flrce.

Table 2.2. Yalttes of rn;"i1 with explicit preddictor I and implicit pre<lictor II

(2"1e)

Correctors
6r ' iteration rn.rlsfor

parameters predictor I

rrlcritfor

predictor II

D r (3 /4 ,  1 ) (0.1687b,
o.2777777778)

Dr(-r /s,  e l10,  1) (0.0154593016,
, 0.Lr37764435,

0.1301060266)

Dr(t ln,0,  e/10, 19l20, L) (0.0073679545,
0.0465886564,
0.0508800912,
0.0553578642) > 1 0

3. NUMERICAL COMPARISONS

In the numerical experiments we restrict the consideration to orrly the tltree
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best parallel PC methods listed in Table 3.1 b-elow and the already available
quent ial  SDIRKN methods (see [9],  [11],  [14]) .

Table 3.1. Survey of new selected paral lel PC methods.

59

se-

,"t;"a 
IRKN corrector k p r Predictor

Iteration
pararneters 5'r 

rrl cr\t

D2(ISt) Dr(s/a, r)

D3(ES4) Dr(-t /s, e/10, 1)

2  2 2  P r e d i c t o r l l

3  3 3  P r e d i c t o r l

(0 .16875 ,
0.277777778)

(o.ors+sso3o16,
0.LL37764435,
0.1301060266)

(o.oo7re zos+s,
0.0465886564,
0.0508800912,
0.0553s78642)

D4(IS8)  Dr( - r14,0,  e /10,
Lel2O, L)

4  5 5  P r e d i c t o r l l

In al l  experiments we used the convergence criterion proposecl in 19], i .  e.,
the number of outer iteration m was determinated dynamically by the stability
criterion m) m"ri l  together with a condit ion on the iteration error as fol lowing:

k

m ) m., i1 and Max; l lX;(rn) -  h 'D"r ig(Xi@) + 
"r)11."  

I  Cttp+1, (3.1)
j : l

where p is prder of local error of the corrector methods, constant C is pararneter
independent of the stepsize h. In our numerical experiments we used C : lO-2.

Furthermore, in the table of results, as in [9], M denotes the averaged r]urn-
ber of sequential systems to be solved per unit interval and NCD derrotes rrurnber
of minimal correct digits which is defined as following:

NCD(h) ,:  - loe(l lslobal error at the endpoint of the integration intervarl l loo)
( 3 . 2 )
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3.1. Lincar stiff Kramarz p"obi"*

Consider the model linear stiff problem(see [2 ] ) :

Nguyen Huu Cong

0 < r < 1 0 0 ,  ( 3 . 3 )y" (t) : ( ':n:^ 4ee8 
) y(r),

\ -24ee -4eee )
v(0) : (3),: (j,),y'(0)

wit lr- exact solution VU) : (Zcos(t),-cos(t))r .
For this linear problem, where, per processor, in each step only one New-

ton-iteration is required, the value of M may serve as computational costs. The

results in Table 3.2 show that D3(ES ) is more efficient than sequential three-order

methods, D4(IS8) is the most efficient.

Table 9.9. Values of NCD/M for problem (3.3)

M e t h o d s  k  p  t  h : l - l l  h : 1 / 1 0  h : t l 2 o  h : L l 4 o  h : 1 / 8 0

Norsett2 2
sFB2 2
Norsett3 3
sFB3 3
8 4 4

D2(rs1) 2
D3(ES4) 3
D4(rs8) 4

3 1
3 1
4 I
4 L
3 1
2 2
3 3
D O

o.e/10
0 .6 /10
3 . 1 / 1 5
2.41r5
o,9f 20
o.elL4
t .8 l20
5 . 3 1 4 5

L.8l2o
L.5 l20
3.1/30
3.6/30
r .8 l40
1.4127
2.7142
6.8/eo

2 . 7 1 4 0
2 .4140
4 . r l 60
4 .8160
2 . 7 1 8 0
1.7 l40
3.7/80
8 .3 /180

3.6/80
3 .3 /80
5.2lr2o
6.0l r2o
3.6l160
2.4180
4.6lt6o
e.8/360

4.5 l160
4.2 l160
6.4124o
7.2124o
4.sl32o
3.0/160
5.51320
LL.3172o

3.2" Fehlberg problem

Consider the nonlinear equation (cf.[9]):

y " : J a ( t ) , J : (  - n '
\  2 / r ( , )

where y(t)  :  (yt( t) ,  vr!)) ' ,  l ly(t) l l ,  :  y '
the exact  so lut ion y( t ) :  (cos( t2) ,s in( t2) ) "

(v' (r))'
. In this

- 'z-*p)  
,  " t t l : l ly ( t )  l l , ,  rFpst33r,  (3.4)

TGW. Problem(0.+) has
D3(E54)difficult experiment,
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and the three-order sequential methods are comparable, D4(IS8) is again the rnost
efficient.

Table 9.9. Values of NCD/M for problem (3.+)

PC method  k  p  r  h :1 /10  h :1120  h :1 /39  h : I178  h : r / tS0

Norsett2
sFB2
Norsettg
Ba
D2(rs1)
D3(ES4)
D4(rs8)

2 3 1
2 3 1
3 4 1
4  3 1
2 2 2
3 3 3
4 5 5

o.1l2o
o.Ll20
-o.Ll2e
0.1 /3e
o.olro2
o.r l74
L.3le2

o.Ll3e
0.1/3e
o.4l5e
o.Ll78

-0 .1 /130

o.7lL24
2.e l r8o

0 . 6 1 7 8
0 . 4 1 7 8
r .6 lLL7
0.6 lL57
0 .3 /  188
L.5 l2r2
4.4135r

L . 5 l t 5 7
r .2 lL57
2.71235
1 . 5 / 3 1 3
L.0 l3L2
2.513e8
5.e 1702

2.41313
2.71313
3.e l47o
2.41627
r . 6 1 5 5 2
q  A  / n D , )
i J . ' r /  |  u J

7 .4lr4o4

1 .

2.

3 .

4 .

o .

6.
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