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SOME RESULTS ON QUASI-FROBENIUS RINGS

LE VAN THUYET

Abstract. Quasi—Frobenius rings (briefly, QF-rings) form an tmportant class of non—
semisimple artinian rings. Many characterizations of QF-rings by means of small and non-small
tdempotents sn a left and right artinian ring were obtained by Harada [7], [8]. The purpose of this
paper is to give similar characterizations of a QF-ring R satisfying weaker assumptions. We also
obtain a result of QF—quotient rings which extends Theorem 6.18 of [2].

1. DEFINITIONS AND NOTATIONS

We assume throughout that all rings are associative with identity and all
modules are unitary. We first recall some notions used in the paper. For a module
M we denote by E(M), J(M), Z(M) and S(M) the injective hull, the Jacobson
radical, the singular submodule and the socle of M, respectively. For a subset
‘A of a ring R,7r(A) and /{A) denote the right and left annihilators of A4 'in R;
respectively. A module M is called a C'S-module if for every submodule A of M

(denoted by A <+ M) there exists a direct summand A* (denoted by A* &M )
containing A such that A is essential in A* (denoted by A < A*). M is called

a continuous module if M is a CS-module and for every submodule A and B of

M with A = B and B & M implies A A M. A ring R is called left (right)
continuous if R is as a left (right, respectively) R-module continuous.

A module M is called a small module if M is small in E(M), i.e. for any
proper submodule H of E(M), H + M # E(M). If M is not small, M is called
non-small. Let e be an idempotent of R, then e is called non-small if e R is a non—
small module. Dually, M is called a cosmall module if for any projective module I
and any epimorphism f : P — M, ker(f) is essential in P. i.e. for each non-zero
submodule H of P, ker(f) N H # 0. If M is not cosmall, M is called non—cosmall
module (see e.g. [7], [13]). M is called hollow if every proper submodule of M
is small in M. If for any direct decomposition of S(M) : S(M) = Y"®4, there

' I



64 Le Van Thuyet

exists a direct decomposition M = Y.® M, of M such that S(M,) = A, for all

o € I, then we say that M has the e)itending property of direct decomposition of
socle S(M).

Let M be an R-module and I a right ideal of R. We take an R-homomor-
phism f of I to M. Consider a diagram: ‘ '

0———->I—i>,R
fih
M

where ¢ is the inclusion. M is called a mini-injective (uni-injective) module if
there exists h € Hompg(R, M) such that hs = f for every minimal right ideal of R
(every uniform right ideal I of R, respectively). It is clear that injective — uni-
injective = mini-injective. The converse is not true in general (see [8, Example
5]).

In [7], Harada studied the following conditions:

() Every non-small right R-module contains a non-zero injective submod-
ule.

(*)* Every non—cosmall right R~module contains a non-zero projective direct
summand.

In [10], Oshiro defined H-rings and co-H-rings related to (*) and ()" re-
spectively. A ring R is called a right H-ring if R is right artinian and R satisfies
(*). Dually, R is called a right co-H-ring if R satisfies (*)" and the ACC on right
annihilators.

Let R be a ring. R is said to be right QF-2 if S(eR) is simple for every
primitive idempotent e, and R is called right QF-3 if the injective hull E(Rg)
of Ry is projective. Left QF-n (n = 2,3) are defined similarly. N denotes the
nilpotent radical of R. For an ideal I of R we write:

C(I) = {c € R:c+ I is a regular element of R/I}. Hence C(0) is the set of
regular elements of R. Right (left) reduced rank of R is denoted by p(Rg)(p(rR),
respectively) (see [2], [6] for the definition)

We refer, to the books [5] and [14] for other interesting properties of Q F-rings
and their generalizations.

2. WHEN ARE RIGHT H-RINGS AND
RIGHT CO-H-RINGS QUASI-FROBENIUS?

Assume R is right perfect. Then there exists a complete set {g;} of mutually
orthogonal primitive idempotents such that 1 = ) g;. We can devide {g;} into two
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parts {e;}7; U{f;}7L,, where each e;R is non-small and each f;R is small. Now
if we denote the primitive idempotents by e and f, we mean that e is non—-small
and f is small.

First we prove the following Lemma:

Lemma 2.1. If R is a right perfect ring satisfying (*) such that e,Rf; =0
for every non-small e; and small f; and R has ACC for right annihilators, then
R 1s QF.

P r o o f. Since R satisfies (x), to prove that R is right self-injective it
suffices to show that R does not contain any small primitive idempotent.

Assume on the contrary that f is a small primitive idempotent. Then by |7,
Lemma 1.2], we have an exact sequence '

Z&’ekR — E(fR) — 0

for some ey \
Consider the following diagram:

fR

B g
&
Z@ekR — E(fR) — 0,

wheré 17 is the inclusion. Since fR is projective, there exists a hombmorphism h
such that the diagram is commutative. Howewer, because ¢ is monomorphic, so is
h.

By assumption, h(fR)fR < (3.® e;R)fR = 0. Tt follows that k[(fR)?] = 0,
hence (fR)?> = 0. Thus f2 = f = 0. By [5, Theorem|, R is then QF. The proof

of Lemma 2.1 is complete.

Harada [7, Proposition 2.6] characterized QF-rings by right H-rings and
the two—sided artinian rings. This can be extended as follows:

Theorem 2.2. For a ring R, the following conditions are equivalent:

1) R is a QF-ring :

2) R is a right perfect ring satisfying (%) such that e;Rf; = 0 for every
non-small e; and small f; and R has ACC or DCC for right annihilators.

3) R is a right noetherian ring satisfying (*) and I(J) — r(J).

4) R is a left and right perfect ring such that e; R is injective and e;R/e;l(J)
is small whenever e;l(J) # 0 for every non-small e;.

Proof. 1) =3) and 1) = 4) see |7, Proposition 2.6|.
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1) < 2). By Lemma 2.1.

3) = 1). Since R is a right noetherian and R satisfies (%), R is right artinian
by [7, Proposition 2.1]. Note that R satisfies (%), it follows that e;R is injective
for every non-small primitive idempotent e;. Thus R is right QF-3 by using (7,
Theorem 1.3]. By [11, Lemma 3.4], R is a QF-ring.

4) = 1). Assume 4). Then R is right artinian by [10, Theorem 2.11].
Assume that J® = 0 and J*~1 # 0. By condition 4) we see that tR/t{(J*)
is small, K = 1,...,n — 1, where ¢t is a primitive idempotent. In fact, if ¢ = e,
then eR/el(J) is smalll and (eR/el(J).r(J) = 0 by [13, Proposition 4.8], hence
eR.r(J) < el(J) < el(J*),k = 1,...,n — 1; it follows that eR/el(J*) is small.
Similarly, if t = f, then fR/fI(J*) is small, where k = 0,1,...,n — 1. Hence the
claim is verified.

Now, let f be a non-zero small idempotent. Since R is right artinian; E :=
E(fR) can be expressed as E = E; ® -+ @ E;, with each E; indecomposable
cyclic hollow by [10, Proposition 2.10]. Also by [10, Proposition 2.10], there exist
primitive idempotents ty,...t; and integers kj,...,kp € {0,1,...,n — 1} such that
E; = t;R/t;l(J*). Now if there is an 7 with k; = 0, then E; = t;R, therefore t;
is non-small. But the injectivity of t; R yields E(fR) = t;R, a contradiction since
fRis small in E(fR). Thus k; # 0 for every i. However as we showed above, each
t;R/t;l(J*) is small, a contradiction to the injectivity of E;. Thus f = 0.

Using condition 4) and the above claim we see that R is right self-injective,
hence R is QF. Thus the proof is complete.

In terms of continuous rings, H-or co — H-rings, we have other characteri-
zations of QF'-rings.

’

Theorem 2.3. For a ring R the following assertions are equivalent:

1) R is QF.

2) R is right continuous ring such that R has ACC on right annihilators and
Rr ® Rp is a right CS-module.

3) R is a right continuous, right co — H-ring.

4) R is a right continuous, right H-ring.

Proof. 1) = 2) is obvious.
2) < 3). By [9, Theorem 3.4], R is semiprimary. By [12, Theorem IIJ,
2) «"3). -

3) = 1). Assume 3). Then J = Z(Rg) follows from [15, Theorem 4.6].
Hence R is QF by [10, Theorem 4.3].

1) = 4) is obvious.

4) = 1) is similar to 3) = 1).

Note that if R is a right C'S-ring, then every cyclic right R—module is a direct
sum of a singular module and a projective module. However every 2—generated
right R—module does not have this property, in general. Since, if not we can derive



Some results on quasi-Frobenius rings : 67

from this that Rp ® Rg is a CS—module. Then by Theorem 2.3 we see that a right
continuous ring satisfying ACC on right annihilators is Q F. But this is imposible
by Example 3.11 of [9]. If follows that a right continuous ring need not satisfy
condition ()".

The following lemma is essentially stated in [8, Theorem 13.7].

Lemma 2.4. If R 1s a right QF-2 ring and Rg 1s uni—injective, then R is
right self-injective. _ '

Harada (8] characterized QF-rings by using the concept of mini-injectivity
and uni-injectivity for right and left artinian rings R. We extend his results as
follows.

Theorem 2.5. Let R be a ring. Then the following conditions are equiv-
alent: A

1) R is a QF -ring.

2) R is a right artinian ring and every projective right R-module and every
projective left R—module has the extending property of direct decomposition of
the socle. )

3) R is a right and left QF-2, right artinian ring and right self-mini-injective.

4) R is a right self-mini-injective, right H-ring.

5) R is a right noetherian ring satisfying ()" and R is right self~mini-
injective.

6) R is right QF-2 ring satisfying ACC on right or left annihilators and Rp
is uni-injective.

P roof. 1) =2) see [8, Theorem 13|,

2) = 3). By (8, Theorem 3|, R is right QF-2 and right self-mini-injec-
tive. Since every projective left R-module has the extending property of direct
decomposition of the socle, R is left QF-2.

3) = 1). If Rg is artinian and mini-injective, then by [8, Theorem 5],
I(J) — r(J). Since R is right artinian and R is left and right QF-2 we see
that both R and pR are direct sum of uniform modules. This together with
I(J) < r(J) and [11, Theorem 3.5] shows that R is QF.

1) = 4) and 1) = 5) are obvious.

4) = 1). By [10, Proposition 2.10], R is semiprimary @F-3. Moreover,
[(J) < r(J) follows from [8, Theorem 5|. Hence R is QF by [11, Lemma 3.4].

5) = 1). By [10, Theorem 3.18|, R is semiprimary QF-3 ring. Hence R is
right artinian because R is right noetherian by assumption of 5). Moreover, from
[8, Theorem 5| it follows {(J) <> r(J). Hence R is QF by [11, Lemma 3.4].

1) => 6) is obvious.

6) = 1). By Lemma 2.4 and [5, Theorem 24.20], R is then QF.
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Note that the ”two-sided QF-2” condition in 3) of Theorem 2.5 cannot be
reduced to a one-sided QF-2 ring. Harada (8, Example 5. 2] gave an example of
an artinian, right self-mini-injective, left QF-2 ring R which is however not right
QF-2. This moans that R is not QF.

3. QF-QUOTIENT RINGS

Following [2, Theorem 6.18] we consider the following property (P) of a ring
R. A ring R is said to satisfy (P), if

(i) 'R contains a direct sum of uniform right ideals which conta.ms a right
regular element.

(ii) F contains a direct sum of uniform left ideal which contains a left regular
element.

(iii) ((N) < r(N), where N is the nilpotent radical of R.

Theorem 3.1. Let R and R/N be right and left Goldie rings such that
p(RR) is finite and R satisfies left Ore condition. Then R has QF-quotient ring
if and only if R satisfies (P).

P roof. If R has QF-quotient ring then R satisfies (P) can be proved
easily. Conversly, assume R satisfies (P). Since R and R/N are right Goldie
together with i) and by [2, Lemma 6.14], it follows that the elements of C(N)
are right regular. But right-left symmetry we also obtain that elements of C(N)
are left regular. Thus C(N) C C(O), where C(N) is the set of regular elements
modulo N. By [6, Exercise 10.F|, C(O) € C(N). Hence C(O) = C(N). Also by
[6, Exercise 10. GJ,. R has a right artinian right quotient ring Q. However Q is
also a left quotient ring of @ because R satisfies left Ore condition.

What properties does @ have ?. First note that (i) and (ii) also hold in
Q. But right and left regular elements of Q are units of Q, therefore Qg and
oQ are direct sums of uniform right ideals and uniform left ideals, respectively.
Moreover, let J’ be the Jacobson radical of Q. Then by [2, Theorem 9.2}, J' =
NQ = QN. We want to prove that lg(J') < rg(J’). In fact, if ¢ € Q,¢J' =0,
then gN = 0. Write ¢ = ac™! = d7'b for some regular elements ¢, d, then bN = 0,
ie. b € I(N) — r(N). Thus Nb. =0 or QNb = J'b = 0. It follows that
J'dac=! = 0, hence J'da = 0 or NQda = 0. Thus NQd~!'da = NQa = 0. Then
NQac™! = NQq = J'q = 0. This shows ¢ € rg(J’). Since Q is semiprimary,
IQ(J') = Soe(Qq) = rq(J') = Soc(qQ)-

Now, by [11, Theorem 3.5] R is then QF, completing the proof of Theorem
Bl :

Corollary 3.2. Let R have right and left Krulll dimension and satisfy ACC
and DCC on right annihilators. Then R has a QF -quotient ring if and only if R
satisfies (P).
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Corollary 3.3.([2, Theorem 6.18]). Let R be a left and right noetherian

ring then R has a QF —quotient ring if and only if R satisfies (P).

By the same argument of proving Theorem 3.1, we obtain:

Proposition 3.4. Let R and R/N be right non—singular ring having finite

Goldie dimension. Moreover, p(Rr) < oo and R satisfies left Ore condition, then
R has QF-quotient ring if and only if R satisfies (P).
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