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Abstract. The aim of this note is to examine necessary and sufficient conditions for the
locus of points having the polynomial type bounded above by a constant to be an open set in the Zarisky

topology.

1. INTRODUCTION

U. Daepp and A. Evans [D-E| have given a criterion for the openness of the
Generalized Cohen- Macaulay ( abbr. GCM ) loci of a factor ring of a Cohen-
Macaulay ( abbr. CM ) ring. In particular, from this paper one can easily give
examples showing that Nagata criterion is not valid for the Buchsbaum or GCM
property (cf. [K| ). Inspired of their results we study the openness of loci of points
having polynomial type bounded above by a constant. The polynomial type of a
local ring was introduced first in [C;] and [C3] as follows:

Let (A, m) be a local Noetherian ring with dimA =d , z = {z,,...,z4} a
system of parameters of A and n = (n1,...,nq) a d- tuple of posmve integers. We
-set

Ialnm) = (A/(2]", ... 232} A) — ny . iinge(z, A).

In answering a question of R. Y. Sharp, the first author has shown in [C;] and
[C3] that the least. degree of all polynomials in n bounding above I4(n,z) is a
finite number and independent of the choice of z . We call this new mvarlant the
polynomial type of A and denote it by p(A).
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This invariant shows how far a local ring is from being a CM ring.
Ezample 1. i) A is CM iff p(4) = -1.

ii) Ais GCM iff p(4) < 0.
Let R be a Noetherian ring. We call the polynomial type of R the number

p(R) := sup{p(Rg); Q € Spec(R)}.
For any integer £k > —1 we set

p<k(R) = {P € Spec(R); p(Rp) < k}.

The main result of this paper is the following theorem.

Theorem 1.1. Let R be a homomorphic image of a CM ring. If p(R) < 1,
then p<o(R) (the set of GCM points of R') is open in Spec(R) if and only if every
prime ideal contained in po(R) has only finitely many over prime ideals.

If p(R) > 2, then p<k(R) is never open in Spec(R) for every integer k with
0<k<p(R)-2 '

To prove this, in Section 2 we will study a more general situation, namely
the openness of loci defined by a function f : Spec(R) — Z, where Z is the set
of all integers. In the last section we apply the results of Section 2 to the function
defined by the polynomial types in order to prove the main Theorem.

2. OPENNESS OF LOCI

Let f : Spec(R) — Z be a function satisfying the following properties :

(i) f is bounded below,

(ii) f(P) < f(Q) for any P ¢ Q from Spec(R). Moreover, if f(Q) > ny :=
min{f(Q’); Q' € Spec(R)} , then f(P) < f(Q).

For any integer k > ny we set

f<k(R) = {P € Spec(R); f(P) < k},

f>k(R) = {P € Spec(R); f(P) > k}

and

fk(R) = {P € Spec(R); f(P) = k}.

For any ideal J of R, we denote by V(J) (resp. Viu(J) ) the set of prime
(resp. minimal prime) ideals lying over J. Let Q(R) C Spec(R) denote the
subspace of maximal ideals of R with the induced topology.



Openness of the locus of points ... 73

Theorem 1. Assume that f>k(R) is closed in Spec(R). Then f>k+1(R) N
Q(R) is closed in Q(R). ( >

P r o of. By the assumption, there exists an ideal J of R such that fsx(R) =
V(J). We set
R=¥{J)% (fk+1(R) N ﬂ(R))

Of course, we can assume that fsr41(R) # 0. Then R # 0. Let

&5 nP.

PeR

In oder to prove the theorem we only need to show that

~

foke1(R) N Q(R) = V(a) 0 O(R).

The inclusion C'is clear.

To prove the inclusion D, let P € V(a) NQ(R). Take @ € R such that
Q C P . Since Q € V(J).= f>k(R), then f(Q) > k. If Q # P, from the property
(i) of f we get f(P) > k+ 1. Now let Q@ = P. Since @ € R and Q € Q(R),
then Q &€ fry1(R). Therefore f(P) > k + 1. Also, in both cases we have P €
fsk+1(R) N Q(R). This completes the proof. ‘ .

Theorem 2. Let k > ny be an integer. If f<k(R) is open in Spec(R) , then
every P € fr(R) has only finitely many over prime ideals. The converse is true
under the assumption that f<k—1(R) is open in Spec(R).

Proof. Let D denote the set of all prime ideals having only finitely many
over prime ideals. For an arbitrary P € Spec(R) \ ((R), let I(P) denote the
intersection of all minimal prime ideals properly containing P.

To prove the first statement we will show that f5k(R) is not closed if fx(R) &
D. Take a prime P € fx(R)\ D. Let U be an arbitrary open neighbourhood of P.
Then Spec(R) \ V(z) C U for some element z € R \ P. Note that for any prime
ideal P’ with P' # I(P') each minimal over prime of P! is an associated prime
ideal of I(P’). In particular, it follows that P’ has only finitely many minimal over
primes. On the other hand, if dim R/P’ > 1, it is easily seen that P! has infinitely
many over prime ideals. Since P ¢ D it follows that P = I (P). Hence there exists
a prime Q D P such that z ¢ Q. Since P € fx(R), we get from the property (ii)
of f that f(Q) > k + 1 which implies that Q € f>k(R) N Spec(R) \ V(z) .This
shows that (U N fsk(R)) #0 ,ie. f>k(R) is not closed.

To prove the second statement we may assume that f>k—1 (R) is closed and
fe(R) € D. Let fok—1 = V(J). We set

b1: n ¢ P ’

PEVm (N\ fr(R)
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b= (] IQ

QEfk (R)\Q(R)

and

b=b;Nb,y. neS (*)

It suffices to prove that fyx(R) = V(b). To prove the inclusion C , let
P € fsi(R). Since P € V(J) , there exists Q € Viu(J) such that Q C P. If
Q¢ fi(R) ,then bC Q C P. If Q € fi(R) , then Q G P and Q € f(R) \ Q(R).
Hence b C I(Q) C P. Also, in both cases we get that P € V (b). ‘

Now we prove the inclusion D. Let P € V(b). First note that fx(R) C
Vim(J). Thus there are only finitely many prime ideals in the right side of (*). If
there exists Q € Vin(J) \ fk(R) such that Q C P, then we are done by using
the property (ii) of f . Otherwise, we can find Q" € fe(R)\ Q(R) such that
Q" C I(Q") ¢ P . By the assumption, Q' € D . From this it follows that
Q" # 1(Q') . Hence Q' @ P which implies that f(P) > f(Q) = k , as required.

3. OPENNESS OF LOCI VIA POLYNOMIAL TYPE

We begin this section with a lemma showing that the function
p:Spec(R) — Z:Q — p(Rg)

satisfies the conditions of functions considered in the Section 2.

Lemma 3. Let P %-Q be two prime ideals of R . Assume that Rqg is a
non- CM ring. Then p(Rp) < p(Rg).

1q Poms 0ob iK1 16 dim(Rq/PRQ) > p(Rg) then by [C2, Corollary 3:6],
(Rq)Pry =~ Rp is'a CM ring. Since'Rq is a non-CM ring, p(Rp) = =1 < p(Rg).
If dim(Rq/PRg) < p(Rgq), then by [Cy, Corollary 5.2], we get

p(Rp) < p(Rq) — dim(Rq)/PRy) < p(Rqg).

Lemma 4. ([Cy, Theorem 4.1] ). Let (A,m) be a homomorphic image of a
CM ring and k a positive integer. Then the following conditions are equivalent:

i) p(A4) <k; % :

i) For any P € SpecA with dim(A/P) > k , Ap is a CM ring.

The following lemma extends [C-S-T, Satz 3.8]. It also gives an inductive
definition for p(A4) when 4 is a homomorphic image of a CM ring.
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Lemma 5. Let (A,m) be as in Lemma 4. Then

p(A) < sup {p(4q); Q@ #m} +1.

Moreover, if A is non- CM , then the equality holds.

P roof Wesetk =sup{p(Adq);Q # m}+1 . The case k =0 has been
proved in [C-S-T, Satz 3.8]. Now we assume that £ > 0 . We will use Lemma 4 to
show that p(A) < k. Let P € Spec(R) with dim(4/P) > k. Choose a prime ideal
Q such that P ¢ Q ¢ m and dim(AQ/PAq)) > p(Ag). Applying Lemma 4 to
Aq we get that Ap is CM. Hence, again by Lemma 4, p(A4) < k.

The second statement of the lemma follows from Lemma 3.

Now we can prove the main result.

Theorem 6. Let R be a homomorphic image of a CM ring . If p(R) <1,
then p<o(R) is open in Spec(R) if and only if every prime contained in po(R) has
only finitely many over prime ideals. If p(R) > 2 , then p<k(R) is never open in
Spec(R) for every integer k with 0 < k < p(R) — 2.

Proof Itis well-known that p_;(R) , the set of CM points, is open in
Spec(R). Therefore the first statement is deduced from Lemma 3 and Theorem
2. To show the second one it should be noted that any prime ideal having only
finitely many over prime ideals must have coheight <1 . Thus, if p<k(R) is open
in Spec(R) , then by Theorem 2 and: Lemma 5 we must have p(R) < k+1. The
proof is complete.

Theorem 6 and Lemma 4 give a criterion for the openness of the set of GCM
points of a factor ring of a CM ring as follows:

’ Corollary 7. Let (A,m) be as in Lemma 4. Then the set of GCM points
of A is open in SpecA if and only if p(A) < 1.

Ezample 2. For d > 1, let By = k[[Y1, ..., Yat1]]/(Y1Ya41, -, YaYay1), where
k is a field and Y3, ..., Y4, are indeterminates. We denote by z; the natural image
of Y;+ Y441 in By, ¢ =1,...,d, then z = {z1,...,zq} forms a system of parameters
for By. It can be verified that

Ip,(n,z) = min{ni,...,nq}.
Therefore p(By) < 1. Hence the set of GCM points of By is open in SpecBy.
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