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PROJECTION-REGULARIZATION METHOD
~“AND ILL-POSEDNESS FOR EQUATIONS
INVOLVING ACCRETIVE OPERATORS

' NGUYEN BUONG

" Abstract. The purpose of this paper is to approrimate the ill-posed problems involving ac-
cretive operators in Banach spaces by a sequence of well-posed finite—dimensional problems depending
on small parameter-and to give a necessary condition for sll-posedness, when the operator is Fréchet
differentiable. Some ezamples from theory of integral equations of second kind are also considered.

1. INTRODUCTION

" Let X be a real reflexive Banach space with the norm | - || and X™ be its
adjoint space with the norm [ - ||.. We write (z*, z) instead’ of T (x) for z zhe X "
and z € X. Let A be a m-accretive operator in X, i.e. [10] bl

7 i) (A(z + k) — A(z), J(h)) >0, V:z: h € X
‘where J is a dual mapping of X, i.e. a mapping from X onto X* satlsfylng the
condition A

(J(2),2) = |l=}* = | I(2)|l%,  Vee X

and ,

ii) R(A 4+ AI) = X for each A > 0 where R(A) denotes the range of A and I
is an identical operator in X.

We are interested in solvmg the equation

A=) = o Rlaenips : - .

{:Wxthout addxtmnal conditions on the structure Df A, such as strongly or-uniformly
accretive property, the problem (1.1} is, in general, an ill-posed one [1]. By this'
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we mean that solutions of (1.1) do not depend continuously on the data f. To
solve it we have to use stable methods. An widely used and effective method is the
variational Tikhonov regularization [9] that consists of minimizing the functional

| Fasle)y =A@ <P +allel, 100 (1)
where a > 0'is a parameter of regularization and fs-are approximations-for f:

fs — fll < 6.
The aspects of existence, convergence and stability for the solutions of (1.2) have
been established in [3,9].
For problems involving accretive operators there is another version of
Tikhonov regularization that consists of solving the equation

Az) + olz - 2.) = fs, (13)

where z. is some fixed element of X. i
This equation has been investigated in [1, 7] and [8]. For finding the solution
T45-0f (1.3) one can use iterative methods in infinite~dimensional spaces X-in (2,
5, 6]. But in order to realize them first we must approximate (1.3) by a sequence
of finite-dimensional problems as follows. = * n '
Let X, be a sequence of finite—dimensional subspaces of X such that

and P, be a sequence of projections from X onto Xy and P,z — z, Vz € X. Here

and below, the symbols — and — denote the strong convergence and the weak

convergence, respectively. ' g
Consider the problem

An(z) + oz — Zan) = f5n, zEX, (1.4).

where fsn = Pnfs; Tan = Pnz. and A, = P AP,. It’s easy to see that if A is
accretive, A,, are accretive, too. The existence and the convergence of the solutions
28 of (1.4) to the solution £os of (1.3) for each a > 0 'has been studied in [9).

It is still open the questiosn under which conditions the sequence z8, con-
verges to a solution of (1.1), as @, § — 0 and n — co. We note that for the
 variational Tikhonov regularization this question has been studied in [3]. In (4] it
was shown that the solutions of the variational Tikhonov regularization converge
to a solution zo of (1.1) if |(I — Pn)zoll = o(a(n)) for the case when A is linear
and bounded.

In Section 2 of this paper we prove that this result remains valid for the
operator method of regularization (1.4) and we also give a necessary condition for
ill-posedness for (1.1). In Section 3 we consider an example.
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2. MAIN RESULTS

: We suppose that. A is Fréchet differentiable in some neighbourhood of z,, a
~unique solution of (1.1}, and there exists a constant L > 0 such that Rt

4'(z0) — A'(2)[| < Lllzo — 2|, Yz € §(zo,r), i -

where S(zo,r) is a ball with center z, and radius r > 0. For X we require that J
is weakly continuous.

Theorem 1. If§/a — 0, a(n) — 0 as n — oo and (I = Pa)zol| = o(a(n))
then the solution z%, for (1.4) converges to the solution zo of (1.1).

P roof. From (1.4) it follows

a”zin = xon”2 < 6”32,‘ e $0n” B (fn = Pn'Athm Jn"(-'ézn = xOn)) H

i a<$*n — Zon, Jn(zin -‘zOn», (2;2)

where o, = P,z¢ and J,, is a dual mapping of X,,.
Since
A(Pnz0) = A(zo) + A'(z0) (P = I)zo + 1y,
with | . _ din s
liredl < 5 12 = Pa)zol|?
the inequality (2.2) implies 4 ‘ ‘s

allzfn = onl < 6+ eall = Pa)aol| + all( — P)aol®)

X “zgm o zo"” + a(z*n = Zon, Jn (xgm —:zOn))., € >0, 1= l‘i‘z-

- {2.3)

Due to this inequality we obtain the boundedneslsf of the sequeﬁcé z8,.. Now, let

6 ;
Toig s By, asn — oo.

Then, the inequality (1.4) gives ,

A,,;(zfmf) — f, asn — oo.
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Because A,, is accretive

(AMED) L8 (28,), T (2n = 2an)) S 0, VEE X, 3 < Pr:
Since J,,(z) = J(z) for z, € X, [8] the last inequality is equivalent to

(A(2) = An(28)s Tn(@5 — Zan)) > O.

By letting n — 0o we get

(A(:;) Zfi z-5))>0, VreX.

Therefore A(z;) = f [10]. By our assumption that (1.1) has a unique solution, the
sequence zfm converges weakly to the solution. Finally, the strong convergence of
z8  follows from (2.3) and the conditions of the theorem.

Remark. We can consider the case, when instead of A we know only its
approximations A, which also are accretive.

Now consider the relation between nonlinear ill-posed problems and their
linearizations. This relation is not strong as one might think for linear ill-posed
problems. A nonlinear ill-posed problem may have a well-posed linearization at
certain points, even at a point where the nonlinear problem is ill-posed. On the
other hand, a well-posed nonlinear problem may have ill-posed linearizations. In
[3] H. W. Engl gave a sufficient condition for ill-posedness for nonlinear problem’
in the case where A is compact. Here, we present'a necessary condition for ill-
posedness in the case when A is Fréchet differentiable.

Definition. An operator A in X is called strongly accretive if there exists
a constant m > 0 such that

(A(z + h) — A(z),J(h)) = m||h||?, Vz,h € X.
We prove the following result.

Theorem 2. Ifin some neighbourhood of a point zo at which problem (1.1)
is ill-posed and the operator A has a Fréchet derivative A'(zo) at zo, then A'(zo)
can not be a strongly accretive operator ' : : s - |

P ro of. Indeed, if A’(zo) is strongly accretive, from
A(z) = A(zo) + A'(z0)(z — o) + 70,

with g 4 ; ’:é
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iroll € Flla = 2ol

we have
(A(z) — A(zo), (& — zo)) = (A'(20)(z = gn),_J(z ~ 20)) + {ro, J (z = zo)).

Therefore,

L
14(2) — A(=o)[|. 2 m|z — zol| - S ]|z - Zol|.
For z in a ball with the center zo and the radius r < m/L

1 A(z) — A(zo)|| 2 mllz — zol|/2,
_i.e. Problem (1.1) is well-posed at the point zo contradicting the hypothesis.

3. EXAMPLE

We consider the linear integral equation of the second kind
z(s) — / k(s,t)z(t)dt = f(s),
Q

where f(s) € L,[01], the space of p - summable functions in o - finite measure set
1 C R™. Let the kernel function k(s,t) be such that the operator K in L,[0]
defined by

(Kz)(s) = / k(s,t)a(t)at
B ¢

has an eigeinvalue X = 1 and ||K|| = 1. Then the operator I — K is accretive.
Indeed, :

{((I-K)(z+h)—(I-K)z,J(h)) =((I - K)h,J(h)) = r

= ||l|* = {Kh, (k) > ||AlI*(I - | K]]) > 0,

where J is a dual mapping of L, (0]
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m

We consider the subsets Q;, j = 1,2,...,m, such that |J Q; = 1 and

b ;

denote by f;(t) the characteristic function of {2;. Then we can choose

“ 1
: me=j§W‘! f(t)dt,

where p~1 + ¢~ ! = 1 (see, e.g. [10]).
We can also apply the results obtained in Section 2 to solve the nonlinear
integral equations of Hammerstein’s type

()~ [ Ko, )Pl = 1(6)

Q

under the condition
|F(t)] <a+ bit|, a,b>0.

In this case the operator G defined by

Gla)(s) = [ koOF (el

Q

maps L,[Q] into L[] [11]. If we suppose, in addition, that F is LlpSChltz con-
tinuous w1th Lipschitz constant ||K||~!, then it is easy to verify that I — G is
accretive.
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