expressed and equal
$$B$$
 is a subsequent of A and A

Amenal of Mathematica

The family $\{\mu_{a_1,\ldots,a_n}\}$ is consistent. Conversely, each consistent family of probability measures on spaces R^n $(n=1,2,\ldots)$ defines a c.m. An important method to produce c.m.'s is as follows: Let M be a linear mapping from V' into $L_0(\Omega)$. It is easy to verify that the family $\{\mu_{a_1,\ldots,a_n}\}$ given by $\mu_{a_1,\ldots,a_n}=\mathcal{L}(Ma_1,\ldots,Ma_n)$ is consistent so it generates a c.m. on V. Conversely, every c.m. on V is generated by some linear mapping from V' into $L_0(\Omega_1)$ where $(\Omega_1,\mathcal{F}_1,P_1)$ is an appropriate probability space. The characteristic function of a c. m. is defined by $\hat{\mu}(a)=\int \exp\{it\}d\mu_a(t),\ a\in V'$.

If μ is a c.m. on V then a Radon measure $\overline{\mu}$ on V is said to be a Radon extension of μ if $\overline{\mu}(Z) = \mu(Z)$ for each $Z \in \mathcal{C}$. In this case we say that μ is a Radon measure.

Theorem 1.1 (see [9] p. 296) The c.m. μ on V is a Radon measure if and only if the linear mapping M generating μ is decomposed by a V-valued random vector f in the sense that

$$\forall a \in V'$$
 $P\{\omega : Ma(\omega) = \langle f(\omega), a \rangle\} = 1.$

The following lemma is generally known but for lack of a suitable reference we prove it here

Lemma 1.2. Let $f \in L_V^0(\Omega)$. Then the linear mapping $a \to \langle f, a \rangle$ from V' into $L_0(\Omega)$ is continuous w.r.t. the Mackey topology on V'.

Proof. Given t>0 and $\varepsilon>0$. Let μ be the distribution of f. Since μ is a Radon measure there exists an absolutely convex and compact set K such that $\mu(K)\geq 1-\varepsilon$. Put $U=\left\{a\in V':\sup_{b\in K}|\langle b,a\rangle|\leq t\right\}$. U is a neighbourhood of the Mackey topology. Then for $a\in U$ we have $P\{\omega:|\langle f(\omega),a\rangle|\leq t\}=\mu\{b:|\langle b,a\rangle|\leq t\}\geq \mu(K)\geq 1-\varepsilon$ i.e. $P\{\omega:|\langle f(\omega),a\rangle|>t\}<\varepsilon$. The Lemma is proved.

II. RANDOM OPERATORS WITH SAMPLE PATHS IN A SUBSET OF L(X,Y)

Recall that by a random operator A from X into Y we mean a linear mapping A from X into $L_Y^0(\Omega)$ such that $\forall \varepsilon > 0$, $\lim_{x_n \to 0} P\{\|Ax_n\| > \varepsilon\} = 0$. $L(\Omega, X, Y)$ denotes the set of all random operators from X into Y. Two random operators A and $B \in L(\Omega, X, Y)$ are called a modification of one another if for each $x \in X$,

 $P\{\omega: Ax(\omega) = Bx(\omega)\} = 1$. For each fixed ω , the mapping $x \to Ax(\omega)$ is called a sample path of A.

In what follows, V denotes a Banach space whose members are linear continuous operators from X into Y and it is equipped with a norm stronger than the usual operator norm, base of all all motions and that words of year all it

Example 1 (The class of p-summing operators)

An operator $T \in L(X,Y)$ is said to be p-summing (0 if foreach sequence (x_n) in X such that $\sum_{n=1}^{\infty} |(x_n,a)|^p < \infty$ for all $a \in X'$ we have

 $\sum_{n=1}^{\infty} ||Tx_n||^p < \infty.$ Alternatively, T is p-summing if and only if there exists a constant C such that for each finite sequence (x_n) in X

$$\sum_n \|Tx_n\|^p \leq C^p \sup_{\|a\|\leq 1} \Big\{\sum_n |(x_n,a)|^p\Big\}.$$

The minimal C for which the above inequality holds is denoted by $||T||_{\Pi}$.

An operator $T \in L(X,Y)$ is said to be completely summing if T is p-summing for all p. We denote by $\Pi_p(X,Y)$ and $\Pi_0(X,Y)$ the class of all p-summing operators from X into Y and the class of all completely summing operators from X into Y, respectively. For $p \geq 1$, $\Pi_p(X,Y)$ is a Banach space under the norm $T|_{\Pi}$. In the case X and Y are Hilbert spaces $\Pi_p(X,Y)$ is exactly the class of H-S operators. For more information about p-summing operators, see [9].

Example 2. Let (S, Σ, λ) be a finite measurable space. The symbol L_p will always mean $L_p(S, \Sigma, \lambda)$. Following Linde [7] an operator $T \in L(X', L_p)$ $(1 is said to be a <math>\Lambda_p$ - operator if the function $g: X' \to R$ given by $g(a) = \exp\{-\|Ta\|^p\}$ is a characteristic function of a Radon measure μ_T on X. The class of all Λ_p - operators in $L(X', L_p)$ is denoted by $\Lambda_p(X', L_p)$. The set $\Lambda_p(X', L_p)$ becomes a Banach space under the norm defined by $||T||_{\Lambda} = \left\{ \int ||x||^r d\mu_T \right\}^{1/r}$ where $1 \le r < p$.

Now we are going to introduce the class of H-S type operators and the class of H-S type dual operators which are natural generalizations of the class of H-S operators between Hilbert spaces.

Definition 2.1. 1) An operator $T \in L(\ell_p, Y)$ (1 is said to be aH-S type operator if $\sum \|Te_n\|^{p'} < \infty$, where (e_n) is the sequence of standard unit vectors and p' is the conjugate number of p(1/p + 1/p' = 1). The set of all H-S type operators from ℓ_p into Y is denoted by $S(\ell_p, Y)$.

2) An operator $T \in L(X, \ell_r)$ $(1 < r < \infty)$ is said to be a H-S type dual operator if the dual operator $T^*: \ell_r' \to X'$ is a H-S type operator. The set of all H-S type dual operators from X into ℓ_r is denoted by $U(X, \ell_r)$.

For $T \in S(\ell_p, Y)$ we put $||T||_s^{p'} = \sum_n ||Te_n||^{p'}$ By the Holder's inequality we set as sample path of the path of the sample |T| and |T| are |T| and |T| and |T| and |T| and |T| are |T| and |T| are |T| and |T| are |T| and |T| and |T| are |T| are

$$||Tx|| \le ||x|| \cdot ||T||_s$$
 and $||T|| \le ||T||_s$ (2.1)

It is easy to check that the function $T \to ||T||_s$ is a norm on $S(\ell_p, Y)$. Moreover $S(\ell_p, Y)$ is a Banach space under the norm $\|T\|_s$.

For $T\in U(X,\ell_r)$ we put $\|T\|_u=\|T^*\|_s$. Again, $U(X,\ell_r)$ is a Banach space each sequence (a.) in Y such that I (x. With the

under the norm $||T||_{u}$.

Theorem 2.2. 1) If $T \in S(\ell_p, Y)$ then T is a compact operator and for each $R \in L(Y, Z)$ we have $HT \in S(\ell_p, Y)$. If Y is separable, so is $S(\ell_p, Y)$.

2) If $T \in U(X, \ell_r)$ then T is a compact operator and for each $R \in L(Z, X)$ we have $TR \in U(Z, \ell_r)$. If X' is separable so is $U(X, \ell_r)$.

Proof. 1) For each n we define a continuous finite rank operator T_n by $T_n x = \sum_{k=1}^n (x, e_k) T e_k$. Then by (2.1) we have $\|T - T_n\|^{p'} \leq \sum_{k=n+1}^\infty |T e_k|^{p'} \to 0$ as $n \to \infty$. Hence T is a compact operator. For $R \in L(Y,Z)$ we have

name of the to see upon (NYX) of these (NYX). Have stoned every flat of gain in size
$$\sum_{n} \|RTe_n\|^{p'} \le \|R\|^{p'} \sum_{n} \|Te_n\|^{p'} < \infty$$
 so $RT \in S(\ell_p, X)$. The stone is a size of the stone of the

one built of a party light with the class of Now let Y be separable and D be a countable set dense in Y. For each finite subset $I=\{d_1,\ldots,d_n\}\subset D$ we define an operator $T_I\in S(\ell_p,Y)$ by $T_Ix=$ $\sum (x,e_k)d_k$. The family $\{T_I\}$ is countable. Given $\varepsilon>0$. There exists n such that Life p & 2) is said to no a An coperated if the function

 $\|T-T_n\|_s^{p'}=\sum\limits_{k=n+1}^\infty \|Te_k\|^{p'}<arepsilon.$ Then for each k we can find $d_k\in D$ such that $\|Te_k-d_k\|<arepsilon/2^{k/p'}.$ Then for $I=\{d_1,\ldots,d_n\}$ we have

Where
$$1 \leq r \leq r$$
 we are $s : \mathfrak{T} > r \leq r \leq r$ which are not $1 \leq s \leq r \leq r$ at one and the class of H-S type dual operators between hithert spaces are not $1 \leq s \leq r \leq r$ generalizations of the class of H-S type dual operators between hithert spaces.

Consequently $\|T-T_I\|_s \leq \|T-T_n\|_s + \|T_n-T_I\|_s < 2arepsilon$

2) The proof is similar to that of the assertion 1).

Theorem 2.3. Let either 1 < p' < r < 2 or $1 < p' < \infty$, r = 2. Then we have $\Lambda_r(\ell_p, L_r) = \Pi_0(\ell_p, L_r) = S(\ell_p, L_r)$.

Proof. By Theorem 3.1 [13] we have $\Lambda_r(\ell_p, L_r) \subset \Pi_0(\ell_p, L_r)$. The inclusion $\Pi_0(\ell_p, L_r) \subset S(\ell_p, L_r)$ is clear. Now it is enough to prove that $S(\ell_p, L_r) \subset$ $\Lambda_r(\ell_p, L_r)$. Let $T \in S(\ell_p, L_r)$ and μ be the c.m. on ℓ_p' with the characteristic function $\exp\left\{-\|Ta\|^r\right\}$ $a\in\ell_p'$. Suppose that $M:\ell_p\to L_0(\Omega_1)$ is the linear mapping generating μ . We have $E=\exp\{iMe_n\}=\exp\left\{-\|Te_n\|^r\right\}$. Hence $\sum_n E|Me_n|^{p'}=K\sum_n \|Te_n\|^{p'}<\infty$ where K is a constant. From this we get $\sum_n |Me_n|^{p'}<\infty$ a.s.. Put $\overline{M}(\omega)=\left\{Me_n(\omega)\right\}_1^\infty$ \overline{M} is a random vector with values in ℓ_p' and $Ma(\omega)=\left(\overline{M}(\omega),a\right)$ a.s. for each $a\in\ell_p$. In view of Theorem 1.1 the c.m. μ is a Radon measure i.e. $T\in\Lambda_r(\ell_p,L_r)$.

Theorem 2.4. Let 1 < r < p' < 2 Then we have

$$\Lambda_r(L_p,\ell_r)=\Pi_0(L_p,\ell_r)=U(L_p,\ell_r).$$

Proof. At first, let us remark that since 1 < r < p' < 2 the space L_p' is of stable type r and embeds into an appropriate space $L_r(S_1, \Sigma_1, \lambda_1)$. By Theorem 3.1 and Theorem 3.5 in [13] we have $\Pi_0(L_p, \ell_r) = \Lambda_r(L_p, \ell_r)$. Hence it sufficies to prove that $\Lambda_r(L_p, \ell_r) = U(L_p, \ell_r)$. A straightforward application of Ito-Nisio's theorem yields that $T \in \Lambda_r(L_p, \ell_r)$ if and only if the series $\sum_n T^* e_n \Theta_n$ converges a.s. in L_p' where $\{\Theta_n\}$ are i.i.d real-valued random variables with characteristic function $\exp\{-|t|^r\}$. Since r < 2 this property is equivalent to $\sum_n \|T^* e_n\|^r < \infty$ i.e. $T \in U(L_p, \ell_r)$.

Corollary 2.5. Let 1 < r < 2 < p. A linear continuous operator from ℓ_p into ℓ_r is completely summing if and only if it is a H-S type operator in the case p' < r or it is a H-S type dual operator in the case p' > r.

We return to the problem of sample path properties of random operator.

Lemma 2.6. 1) Let $A \in L(\Omega, X, Y)$. Then A admits a modification with sample paths in V if and only if there is a mapping $\overline{A}: \Omega \to V$ such that $\forall x \in X \ P\{\omega : Ax(\omega) = \overline{A}(\omega)x\} = 1$.

2) In this case, if V is separable then \overline{A} is $(\mathcal{F}, \mathcal{B})$ - measurable.

Proof. The assertion 1) is obvious. In order to prove 2) for $x \in X$ and $y \in Y'$ we denote by $x \otimes y$ the linear continuous functional on V defined by $\langle b, x \otimes y \rangle = (bx, y)$. Clearly, the family $F = \{x \otimes y, x \in X, y \in Y'\}$ separates the points of V. Further, for each $x \otimes y$ the function $\omega \to \langle \overline{A}(\omega), x \otimes y \rangle = (Ax(\omega), y)$ is measurable. Hence \overline{A} is $(\mathcal{F}, A(F))$ - measurable. Thus the assertion 2) follows from the fact that A(F) = B if V is separable.

Theorem 2.7. Let $A \in L(\Omega, \ell_p, Y)$ where $1 . Then A admits a modification with sample paths in <math>S(\ell_p, Y)$ if and only if the series $\sum_{n} ||Ae_n||^{p'}$ converges a. s.

Proof. Suppose that A admits a modification with sample paths in $S(\ell_p, Y)$. By Lemma 2.6 there is a mapping $\overline{A}: \Omega \to S(\ell_p, Y)$ and a set D of probability 1 such that $Ae_n(\omega) = \overline{A}(\omega)e_n$ for all n and all $\omega \in D$. Then for each $\omega \in D$ we have

 $\sum_{n} \|Ae_{n}(\omega)\|^{p'} = \sum_{n} \|\overline{A}(\omega)e_{n}\|^{p'} < \infty.$

Conversely, suppose that $\sum_{n} ||Ae_{n}||^{p'} < \infty$ a.s. Put notes in the second of the second of

$$D = \left\{ \omega : \sum_{n} Ae_{n}(\omega) \|^{p'} < \infty \right\}$$

For each n define a mapping $B_n:\Omega\to S(\ell_p,Y)$ by

For each
$$n$$
 define a mapping B_n . If $B_n(\omega) = B_n(\omega)$ is a point above, and $B_n(\omega) = B_n(\omega)$ is a point above $B_n(\omega) = \sum_{k=1}^n (x, e_k) A e_k(\omega)$.

We have

$$\|B_{n+m}(\omega)-B_n(\omega)\|_s^{p'}=\sum_{k=n+1}^{n+m}\|Ae_k(\omega)\|^{p'}$$

a.s. in L, where (G,) are i.i.d, real valued random variables and

Consequently, for each $\omega \in D$, $\{B_n(\omega)\}$ is a Cauchy sequence in $S(\ell_p, Y)$ so it converges in $S(\ell_p, Y)$ to some $B(\omega)$. Consider a mapping $\overline{A}: \Omega \to S(\ell_p, Y)$ defined by $\overline{A}(\omega) = B(\omega)$ if $\omega \in D$ and $\overline{A}(\omega) = 0$ otherwise. Then for each $x \in X$ $\overline{A}(\omega)x = \sum_{k=1}^{\infty} (x, e_k)Ae_k(\omega)$ for all $\omega \in D$. On the other hand, the series $\sum_k (x, e_k)Ae_k(\omega)$ converges to $Ax(\omega)$ in $L_Y^0(\Omega)$. Hence $P\{\omega : Ax(\omega) = \overline{A}(\omega)x\} = 1$.

Theorem 2.8. Let X be a Banach space with the Schauder basis (h_n) and (h_n^*) be the Schauder corresponding basis for X'. A random operator $A \in L(\Omega, X, \ell_r)$ $(1 < r < \infty)$ admits a modification with sample paths in $U(X, \ell_r)$ if and only if for each k the series $\sum_i (Ah_i, e_k)h_k^*$ is convergent a.s. in X' and $\sum_i \|\sum_i (Ah_i, e_k)h_k^*\|^r < \infty$ with probability one.

Proof. The necessity: By Lemma 2.6 there is a mapping \overline{A} from Ω into $U(X, \ell_r)$ and a set D of probability one such that $Ah_i(\omega) = \overline{A}(\omega)h_i$ for all i and all $\omega \in D$. Then for each k and each $\omega \in D$ we have

$$\sum_{i}(Ah_{i}(\omega),e_{k})h_{i}^{*}=\sum_{i}\left(\overline{A}(\omega)h_{i},e_{k}\right)h_{i}^{*}=\sum_{i}(\dot{h}_{i},\overline{A}^{*}(\omega)e_{k})h_{i}^{*}=\overline{A}^{*}(\omega)e_{k}.$$

Kế hoạch Qáng cáo - Marketing là chia khóa để đạt được thành côi

Moreover since $\overline{A}(\omega) \in U(X, \ell_r)$ we have $\sum_k \|\overline{A}^*(\omega)e_k\|^r < \infty$ for all $\omega \in D$.

The sufficiency: Assume that $\xi_k = \sum_i (Ah_i, e_k) h_k^* \in L_X^0(\Omega)$ and $\sum_k \|\xi_k(\omega)\|^r < \infty$ as. Then there is a set D of probability 1 such that $\sum_k \|\xi_k(\omega)\|^r < \infty$ for all $\omega \in D$. From this it follows that the series $\sum_k (x, e_k) \xi_k(\omega)$ converges in X' for each $x \in \ell_r'$ and each $\omega \in D$. Define a linear operator $B(\omega)$ for each $\omega \in D$ by $B(\omega)x = \sum_{k=1}^{\infty} (x, e_k) \xi_k(\omega)$ and let $\overline{A}(\omega)$ be a restriction of $B^*(\omega)$ to X. We have

$$\sum_{k} \|\overline{A}^{*}(\omega)e_{k}\|^{r} = \sum_{k} \|B^{**}(\omega)e_{k}\|^{r} = \sum_{k} \|B(\omega)e_{k}\|^{r} = \sum_{k} \|\xi_{k}(\omega)\|^{r} < \infty.$$

Hence $\overline{A}(\omega) \in U(X, \ell_r)$. By putting $\overline{A}(\omega) = 0$ if $\omega \notin D$ we define a mapping $\overline{A}: \Omega \to U(X, \ell_r)$. It remains for us to prove that $Ax(\omega) = \overline{A}(\omega)x$ a.s. Indeed for each i, k and $\omega \in D$ we have

$$\left(\overline{A}(\omega)h_i,e_k\right)=\left(B^*(\omega)h_i,e_k\right)=\left(h_i,B(\omega)e_k\right)=\left(h_i,\xi_k(\omega)\right)=\left(Ah_i(\omega),e_k\right).$$

Make the Transfer out the less table of the last

So $Ah_i(\omega) = \overline{A}(\omega)h_i$ for each i and each $\omega \in D$. It follows that

$$\overline{A}(\omega)x = \sum_{i} (x, h_{i}^{*})\overline{A}(\omega)h_{i} = \sum_{i} (x, h_{i}^{*})Ah_{i}(\omega)$$

for each $\omega \in D$. But for each $x \in X$, the series $\sum_{i} (x, h_{i}^{*}) A h_{i}(\omega)$ converges to $Ax(\omega)$ in probability. Hence $Ax(\omega) = \overline{A}(\omega)x$ a.s. as required.

III. (V, p) - REPRESENTATION OF RANDOM OPERATORS

A Radon measure μ on V is said to be of order p (p > 0) if $\int ||x||^p d\mu(x) < \infty$. For simplicity of writing we refer to a Radon measure of order 0 as an arbitrary Radon measure.

Definition 3.1. A random operator $A \in L(\Omega, X, Y)$ is said to be (V, p) representable $(p \ge 0)$ if there exists a Radon measure μ of order p on V such that for all $x_1, \ldots, x_n \in X, y_1, \ldots, y_n \in Y'$ $(n = 1, 2, \ldots)$ and for all Borel sets $B \subset \mathbb{R}^n$ we have

$$P\Big\{\omega : [(Ax_1,y_1),\ldots,(Ax_n,y_n)] \in B\Big\} = \mu\Big\{b : [(bx_1,y_1),\ldots,(bx_n,y_n)] \in B\Big\}.$$

In this case μ will be termed the representing measure of A.

Remark 1) If V is separable and there exists a modification of A having sample paths in V then A is (V,0) - representable. Indeed, by Lemma 2.6 there is a V-valued random vector $\overline{A}\in L_V^0(\Omega)$ such that $orall x\in X,\ P\{\omega:Ax(\omega)=0\}$ $\overline{A}(\omega)x$ = 1. Clearly, the distribution of \overline{A} is the representing measure of A.

2) If V is nonseparable then the fact that A admits a modification with sample paths in V does not imply the (V,0) - representation of A as the following $B(\omega)x = \sum (x,e_k)\xi_k(\omega)$ and let $A(\omega)$ be a restriction of $B'(\omega)$ tozwork elements

Counter example: Let H be a separable Hilbert space with the orthonormal basis (e_n) and (γ_n) be a sequence of independent random variables such that

 γ_n obeys to the normal law of $N(0, 1/\sqrt{\log n})$.

Let μ be the distribution of the sequence (γ_n) . It is well known that μ is concentrated on ℓ_∞ and the restriction of μ to ℓ_∞ is not a Radon measure for the norm topology of ℓ_{∞} (it is only a Radon measure for the w^* - topology $\sigma(\ell_{\infty}, \ell_1)$. Further, ℓ_{∞} can be identified as a subset of L(H,H). Namely, every sequence (c_k) in ℓ_{∞} corresponds to an operator $T \in L(H,H)$ defined by $Tx = \sum_{k=1}^{\infty} (x,e_k)c_ke_k$. Define a random operator $A \in L(\Omega, H, H)$ by $Ax = \sum_{k} (x, e_k) \gamma_k e_k$. It is easy to verify that there exists a modification of A whose sample paths belong to ℓ_{∞} . However, A is not (V,0) - representable.

Theorem 3.2. Assume that X and Y are separable. Then a random operator $A \in L(\Omega, X, Y)$ is (V, p) - representable $(p \geq 0)$ if and only if there exists a V-valued random vector $\overline{A} \in L^p_V(\Omega)$ such that

$$\forall x \in X$$
 as $P\{\omega : Ax(\omega) = \overline{A}(\omega)x\} = 1$.

In particular, if A is (V, p) - representable then it is admits a modification with sample paths in V. A. B. V. A. B. V. A. B. V. C. T. A. T. A.

Proof. The part 'if' is clear. Indeed, the distribution of \overline{A} is the representing measure of A. Now suppose that A is (V, p) - representable. Let V_0 be the support of the representing measure μ . Since μ is a Radon measure, V_0 is separable (see [7] Proposition 1.1.1). Further, we can find an increasing sequence of compact sets $(K_n) \subset V_0$ such that $\lim \mu(K_n) = 1$. Put $K = \bigcup_{n=1}^{\infty} K_n$. Then K is a Borel set with $\mu(K) = 1$. Because X and Y are separable there exist a sequence (x_n) in X and a sequence (y_n) in Y' with $\sup \|x_n\| \leq 1$ and $\sup \|y_n\| \leq 1$ such that b=0 whenever $(bx_n,y_n)=0$ for all n. Consider a mapping $\theta:V_0\to R^\infty$ defined by $\theta(b) = [(bx_n, y_n)]_1^{\infty}.$

 $m{ heta}$ is continuous and one-one. Hence $\Theta(K_n)$ is compact and $\Theta(K) = \bigcup_{n=1}^{\infty} \Theta(K_n)$ is a separable Borel set. By the Kuratowski theorem ([15] p.15) the inverse mapping $m{\phi} = \Theta^{-1} : \Theta(K) \to V_0$ is measurable. Put $\Omega_0 = \left\{ \omega : \left[(Ax_n, y_n) \right]_1^{\infty} \in \Theta(K) \right\}$. We have

$$P(\Omega_0) = \mu \Big\{ b \ : \ \big[(bx_n, y_n) \big]_1^\infty \in \Theta(K) \Big\} = \mu \Big\{ b \ : \ \Theta b \in \Theta(K) \Big\} \geq \mu(K) = 1.$$

Consider a mapping $G: \Omega \to \Theta(K)$ defined by $G(\omega) = [(Ax_n, y_n)]_1^{\infty}$ if $\omega \in \Omega_0$ and $G(\omega) = k_0$ otherwise, where k_0 is a fixed element in $\Theta(K)$. Put $\overline{A}(\omega) = \phi[G(\omega)]$. \overline{A} is measurable and has separable range $\overline{A}(\Omega) \subset V_0$. Hence \overline{A} is a V-valued random vector. For each $x \in X$ and each $y \in (y_n)$ we have

$$P\Big\{(Ax,y)=ig(\overline{A}(\omega)x,yig)\Big\}=P\Big\{(Ax,y)=ig(\phi[G(\omega)]x,yig)\Big\}=$$
 $=\mu\Big\{b:ig(bx,yig)=ig(\phi[\Theta b]x,yig)\Big\}\geq\mu\Big\{b:ig(b=\phi[\Theta b]\Big\}\geq\mu(K)=1.$

Consequently, $\forall x \in X$, $P\{\omega : Ax(\omega) = \overline{A}(\omega)x\} = 1$. Finally

$$\int \|\overline{A}(\omega)\|^p dP = \int \|\phi[\Theta b]\|^p d\mu(b) = \int \|b\|^p d\mu(b) < \infty.$$

Theorem is fully proved. Late that Boyong of a grant and

By $L^{(p)}(\Omega, X, Y)$ we denote the set of random operators A from X into Y for which $E||Ax||^p < \infty$ for all $x \in X$. By the closed graph theorem $L^{(p)}(\Omega, X, Y)$ can be identified with the space of all linear continuous operators from X into $L^p_Y(\Omega)$.

Now to each $A \in L^{(p)}(\Omega, X, Y)$ (p > 1) we associate a linear mapping S_A from $L'_p(\Omega)$ into the set of mappings from X into Y by the following formula.

$$(S_A h)(x) = \int h(\omega) Ax(\omega) dP$$
 (3.1)

Here the Bochner integral (3.1) exists since $Ax \in L_Y^p(\Omega)$. By the Hölder inequality we have

$$\|(S_A h)(x)\| \leq v(A)\|h\|\|x\|$$
(3.2)

where $v(A) = \sup_{\|x\| \le 1} \left\{ E \|Ax\|^p \right\}^{1/p}$. From (3.2) it follows easily that S_A is a linear continuous operator from $L_p'(\Omega)$ into L(X,Y) and $\|S_A\| \le v(A)$.

Let γ be a cylindrical measure on $L'_p(\Omega)$ defined by

$$\gamma\Big\{h\in L_p'(\Omega)\ :\ ig[(h,g_n)ig]_1^N\in B\Big\}=p\Big\{\omega\ :\ ig[g_n(\omega)ig]_1^N\in B\Big\}\ .$$

In other words, γ is the c.m. on $L_p'(\Omega)$ generated by the identical mapping Id: $L_p(\Omega) \to L_p(\Omega)$. It is easy to see that γ is a cylindrical measure of type p i. e. $\sup_{\|g\| \le 1} \int |t|^p d\gamma_g(t) < \infty.$

Theorem 3.3. Let $A \in L^{(p)}(\Omega, X, Y)$. Then A is (V, p) - representable (p > 1) if and only if S_A is an operator from $L'_p(\Omega)$ into V and the image of γ by S_A is a Radon measure of order p on V.

Proof. Suppose that A is (V,p) - representable. By Theorem 3.2 there exists a V-valued random vector $\overline{A} \in L^p_V(\Omega)$ such that $\forall x \in X$, $Ax(\omega) = \overline{A}(\omega)x$ a.s. From (3.1) we have

$$(S_A h) x = \int h(\omega) \overline{A}(\omega) x dP$$

Since the Bochner integral $\int h(\omega)\overline{A}(\omega)dP$ exists, this identity shows that $S_Ah = \int h(\omega)\overline{A}(\omega)dP \in V$. Moreover, for each $u \in V'$ and $h \in L'_p(\Omega)$ we have

$$(S_A^*u,h)=\langle S_Ah,u
angle=\int h(\omega)\langle \overline{A}(\omega),u
angle dP.$$

Hence $S_A^*u(\omega) = \langle \overline{A}(\omega), u \rangle$ a.s.

Denote by $S_A(\gamma)$ the image of γ by S_A . The characteristic function of the c.m. $S_A(\gamma)$ is equal to the model of the probability of the pr

$$\text{mort} \widehat{S_A(\gamma)}(u) = \int \exp\{iS_A^*u(\omega)\}dP = \int \exp\{i\langle \overline{A}(\omega), u\rangle dP \text{ not as a substitution of } dP \text{ and } dP \text{ not as a substitution of } dP \text{ and } dP \text{ not as a substitution of } dP \text{ not as a substitution of } dP \text{ not a substitution$$

This equality shows that $S_A(\gamma)$ coincides with the distribution of \overline{A} . Thus $S_A(\gamma)$ is a Radon measure of order p on V.

Conversely, suppose that $S_A(\gamma)$ is a Radon measure of order p on V. Then for all $x_1, \ldots, x_n \in X, y_1, \ldots, y_n \in Y'$ $(n = 1, 2, \ldots)$ and for all Borel sets $B \in \mathbb{R}^n$ we have

$$S_{A}(\gamma)\Big\{b \in V : [(bx_{k}, y_{k})]_{1}^{n} \in B\Big\} = \gamma\Big\{h \in L'_{p}(\Omega) : [((S_{A}h)x_{k}, y_{k})]_{1}^{n} \in B\Big\} = \gamma\Big\{h \in L'_{p}(\Omega) : [(h, (Ax_{k}, y_{k}))]_{1}^{n} \in B\Big\} = P\Big\{\omega : [(Ax_{k}, y_{k})]_{1}^{n} \in B\Big\}.$$

This proves that A is (V, p) - representable. Theorem is proved.

The following theorem gives a sufficient condition for the (V, p) - representation of a random operator A in terms of its associated operator S_A ,

Theorem 3.4. Let $A \in L^{(p)}(\Omega, X, Y)$ and p > 1. If the operator S_A is **p**-summing operator from $L'_p(\Omega)$ into V then A is (V, p) - representable.

Proof. Because γ is a cylindrical measure of type p and S_A is p-summing (p > 1) by Schwartz's Radonification Theorem [9], $S_A(\gamma)$ is a Radon measure of

order p on V. Hence A is (V, p) - representable by Theorem 3.3.

Let $X \otimes Y'$ be the tensor product of X and Y' and α be a reasonable crossonorm on $X \otimes Y'$. Its completion under this norm is denoted by $X \widehat{\otimes}_{\alpha} Y'$. Every member ϕ of the dual space $[X \widehat{\otimes}_{\alpha} Y']'$ corresponds to some $T \in L(X, Y'')$ such that $\langle x \otimes y, \phi \rangle = (Tx, y)$ (see [1], p.230).

Definition 3.5. We say that an operator $T \in L(X,Y)$ belongs to the class V_{α} if the linear functional \hat{T} on $X \widehat{\otimes}_{\alpha} Y'$ defined by

$$\widehat{T}\Big(\sum_{i=1}^n (x_i\otimes y_i)\Big) = \sum_{i=1}^n (Tx_i,y_i)$$

is continuous i.e. \hat{T} is a member of $[X \widehat{\otimes}_{\alpha} Y']'$.

The norm of $T\in V_{\alpha}$ is defined by $\|T\|_{\alpha}=\|\hat{T}\|$. It is easy to check that V_{α} is a Banach space under the norm $\|T\|_{\alpha}$.

Examples 1) If $\alpha = \pi$, the greatest reasonable crossnorm, then V_{π} consists of all linear continuous operators from X into Y.

- 2) If $\alpha = \varepsilon$, the least reasonable crossnorm, then V_{ε} is called the class of integral operators in the sense of Grothendieck. For the properties of integral operators see [1], Chapter VIII.
- 3) If α is the norm d_k (1 < k < ∞) introduced by Saphar [10] then in view of Theorem 3.2 in [10] V_{d_k} is precisely the space of k'-summing operators from X into Y.

Let $A \in L(\Omega, X, Y)$. By the property of the tensor product A induces an unique linear mapping $T_A: X \otimes Y' \to L_0(\Omega)$ with the property $T_A(x \otimes y) = (Ax, y)$. If $A \in L^{(p)}(\Omega, X, Y)$ then $T_A u \in L_p(\Omega)$ for all $u \in X \otimes Y'$. The following theorems give conditions for the (V_α, p) - representation of A in terms of the operator T_A .

Theorem 3.6. Assume that X and Y are separable. For a random operator $A \in L^{(p)}(\Omega, X, Y)$ to be (V_{α}, p) - representable $(p \ge 1)$ it is necessary that

1) $T_A: X \otimes_{\alpha} Y' \to L_p(\Omega)$ is continuous

2) The extension of T_A to $X \widehat{\otimes}_{\alpha} Y'$, which is also denoted by T_A , is a psumming operator.

Proof. By Theorem 3.2 there is a V_{α} -valued random vector f with $E\|f\|_{\alpha}^{p}<\infty$ such that

$$\forall x \in X \qquad Ax(\omega) = f(\omega)x \qquad \text{a.s.}$$
 (3.3)

For each $b \in V_{\alpha}$, \hat{b} stands for the corresponding element in $[X \widehat{\otimes}_{\alpha} Y']'$. From (3.3) we have

 $\forall u \in X \otimes_{\alpha} Y' \qquad T_{A}u = \langle u, \hat{f}(\omega) \rangle \quad \text{in } L_{p}(\Omega). \tag{3.4}$

Hence $\int |T_A u|^p dP \le \Big\{ \int \|\hat{f}\|^p dP \Big\} \|u\|^p$ which shows the assertion 1).

Now from (3.4) we obtain $T_A u = \langle u, \hat{f}(\omega) \rangle$ in $L_p(\Omega)$ for all u in $X \widehat{\otimes}_{\alpha} Y'$. For $u_1, \ldots, u_n \in X \widehat{\otimes}_{\alpha} Y'$ we have

$$\sum_{i} \|T_{A}u_{i}\|^{p} = \int \Big\{ \sum_{i} |\langle u_{i}, \hat{f}(\omega) \rangle|^{p} \Big\} dP \leq \Big\{ \int \|\hat{f}\|^{p} dP \Big\} \sup_{\|\phi\| \leq 1} \Big\{ \sum_{i} |\langle u_{i}, \phi \rangle|^{p} \Big\}$$

which shows the assertion 2).

Theorem 3.7. Assume that X, Y are separable. For a random operator $A \in L^{(1)}(\Omega, X, Y)$ to be $(V_{\alpha}, 1)$ - representable it is necessary and sufficient that

1) $T_A: X \otimes_{\alpha} Y' \to L_1(\Omega)$ is continuous

2) The extension of $T_A: X \widehat{\otimes}_{\alpha} Y' \to L_1(\Omega)$ is a nuclear operator.

Proof. The necessity: By Theorem 3.6 T_A : $X \widehat{\otimes}_{\alpha} Y' \to L_1(\Omega)$ is continuous and there is a Bochner integrable function $f: \Omega \to V_{\alpha}$ such that

$$\forall u \in X \widehat{\otimes}_{\alpha} Y', \quad T_{A} u = \langle u, \widehat{f}(\omega) \rangle \quad \text{in } L_{1}(\Omega). \tag{3.5}$$

By Corollary to Pettis's Measurability Theorem [1] there exists a sequence (g_n) of countably valued functions such that $\lim g_n(\omega) = f(\omega)$ uniformly on a set of probability. Accordingly we shall assume that $\lim g_n(\omega) = f(\omega)$ uniformly on Ω . Moreover by discarding (if necessary) some of the members of the sequence (g_n) we can assume that $||f(\omega) - g_1(\omega)|| < 1/2$ and $||g_n(\omega) - g_{n-1}(\omega)|| < 1/2^n$ for all ω and all $n \geq 2$. Next write $g_0 = 0$ and

$$g_n - g_{n-1} = \sum_m b_{n,m} I_{A_{n,m}}$$

where $(b_{n,m})$ is a sequence in V_{α} , $(A_{n,m})$ is a disjoint sequence in Ω $(n \geq 1)$ and I_A indicates the characteristic function of the set A.

Since $f(\omega) = \sum_{n} [g_n(\omega) - g_{n-1}(\omega)]$ uniformly we have

$$orall u \in X \widehat{\otimes}_{lpha} Y', \quad \langle u, \widehat{f}(\omega)
angle = \sum_n \sum_m \langle u, \widehat{b}_{n,m}
angle I_{A_{n,m}}(\omega) \quad ext{in $L_1(\Omega)$.}$$

From this and (3.5) we get

$$\forall u \in X \widehat{\otimes}_{\alpha} Y', \quad T_{A} u = \sum_{n} \sum_{m} \langle u, \widehat{b}_{n,m} \rangle I_{A_{n,m}}(\omega) \quad \text{in } L_{1}(\Omega). \tag{3.6}$$

On the other hand

$$\sum_{n}\sum_{m}\|\hat{b}_{n,m}\|P(A_{n,m})=\sum_{n}E\|g_{n}-g_{n-1}\|\leq E\|g_{1}\|+\frac{1}{2}<\infty.$$
 (3.7)

The representation (3.6) with the property (3.7) shows that T_A is a nuclear operator

The sufficiency: Suppose that T_A is a nuclear operator. Then there exist a sequence (ϕ_n) in $[X \widehat{\otimes}_{\alpha} Y']'$ and a sequence (f_n) in $L_1(\Omega)$ such that $\sum_n \|\phi_n\| E|f_n| < \infty$ and for each $u \in X \widehat{\otimes}_{\alpha} Y'$

$$T_{A}u = \sum_{n} \langle u, \phi_{n} \rangle f_{n}(\omega) \quad \text{in } L_{1}(\Omega). \tag{3.8}$$

Put $S_n(\omega) = \sum_{k=1}^n \phi_k f_k(\omega)$. We have $E\|S_n - S_{n+m}\| \leq \sum_{k=n+1}^{n+m} \|\phi_k\| E|f_k|$ so it converges to 0 as $n, m \to \infty$. Hence, there exists a Bochner integrable function $S: \omega \to [X \widehat{\otimes}_{\alpha} Y']'$ such that $E\|S - S_n\| \to 0$. This implies that for each $u \in [X \widehat{\otimes}_{\alpha} Y']' \langle u, S_n(\omega) \rangle$ converges to $\langle u, S(\omega) \rangle$ in $L_1(\omega)$. In virtue of (3.8) we get

 $\forall u \in X \otimes_{\alpha} Y' \qquad T_{A}u = \langle u, S(\omega) \rangle \quad \text{a.s.}$ (3.9)

Now for each ω , $S(\omega)$ corresponds to an operator $B(\omega) \in L(X,Y'')$ such that $\langle x \otimes y, S(\omega) \rangle = (B(\omega)x,y)$ for $x \in X, y \in Y'$. Taking $u = x \otimes y$ from (3.9) we obtain $(Ax,y) = (B(\omega)x,y)$ a.s. Since Y is separable from this it follows that $Ax(\omega) = B(\omega)x$ a.s. for each $x \in X$. To complete the proof we have to show that $B(\omega)$ maps X into Y for almost all ω . Indeed, let (x_n) be a countable set dense in X. Then there is a set D of probability 1 such that $Ax_n(\omega) = B(\omega)x_n$ for all $\omega \in D$ and all n. Thus $B(\omega)x \in Y$ for all $x \in X$ and all $\omega \in D$. This completes the proof.

For the case p = 0 we have the following theorem

Theorem 3.8. Assume that X, Y are separable and two random operators $A, B \in L(\Omega, X, Y)$ are symmetric, independent in the sense that for all $x_1, \ldots, x_n, x'_1, \ldots, x'_m$ in $X, y_1, \ldots, y_n, y'_1, \ldots, y'_m$ in Y' two random vectors $\left[\left(Ax_i, y_i\right)\right]_1^n$ and $\left[\left(Bx'_i, y'_i\right)\right]_1^m$ are symmetric and independent.

Then if C = A + B is (V,0) - representable so are A and B.

Proof. Let us remark that each $u \in X \otimes Y'$ may be regarded as a member of V' (namely, $u = \sum_{i=1}^{n} (x_i \otimes y_i)$ corresponds to the linear continuous functional

 $b \to \sum_{1}^{n} (bx_{i}, y_{i})$. We claim that $X \otimes Y'$ is dense in V' with respect to (w.r.t) the Mackey topology. Indeed if this is not true then by Hahn-Banach theorem and the fact that the Mackey topology is compatible with the duality (V', V) there is $b \in V$, $b \neq 0$ such that $\langle b, u \rangle = 0$ for all $u \in X \otimes Y'$. A contradiction. Now by Theorem 3.2 there exists a V-valued random vector \overline{C} such that $\forall x \in X$ $Cx(\omega) = \overline{C}(\omega)x$ a.s. From this we have $\forall u \in X \otimes Y'$ $T_{C}u = \langle \overline{C}(\omega), u \rangle$ a.s. In view of Lemma 1.2 the linear mapping $T_{C}: X \otimes Y' \to L_{0}(\Omega)$ is continuous w.r.t. the Mackey topology (induced on $X \otimes Y'$). Because for each u in $X \otimes Y'$ two random variables $T_{A}u$ and $T_{B}u$ are symmetric and independent, by Levy's inequality we have

$$P\Big\{|T_Au|>arepsilon\Big\}\leq 2P\Big\{|T_Au+T_Bu|>arepsilon\Big\}=2P\Big\{|T_Cu|>arepsilon\Big\}.$$

From this it follows that T_A is continuous w.r.t the Mackey topology. Similarly, this holds for T_B . Consequently, T_A , T_B and T_C admit extensions to the entire V'. Moreover for each $u \in V'$, $T_A u$ and $T_B u$ are symmetric, independent and

$$T_A u + T_B u = T_C u. \tag{3.10}$$

Let μ , λ and ν are cylindrical measures on V generated by T_A , T_B and T_C , respectively. In view of (3.10) we have $\nu = \mu * \lambda$. Because $\nu = \mathcal{L}(\overline{C})$ is a Radon measure by Proposition 3 in [4] both μ and λ are Radon measures. Now it is easy to verify that A and B are (V,0) - representable with the representing measures μ and λ respectively.

Theorem 3.9. Let $A \in L^{(p')}(\Omega, \ell_p, Y)$ and Y be separable where $1 Then A is <math>[S(\ell_p, Y), p']$ - representable if and only if $\sum_n E \|Ae_n\|^{p'} < \infty$.

Proof. Suppose that A is $[S(\ell_p,Y),p']$ - representable. According to Theorem 3.2 there exist a random vector \overline{A} with values in $S(\ell_p,Y)$ of the strong p'-order such that $\forall x \in \ell_p$, $Ax(\omega) = \overline{A}(\omega)x$ a.s. Consequently

$$\sum_{n} E \|Ae_{n}\|^{p'} = \sum_{n} E \|\overline{A}(\omega)e_{n}\|^{p'} = E \sum_{n} \|\overline{A}(\omega)e_{n}\|^{p'} = E \|\overline{A}\|_{s}^{p'} < \infty.$$

Conversely, suppose that $\sum_{n=1}^{\infty} E \|Ae_n\|^{p'} < \infty$. For each n we define a $S(\ell_p, Y)$ - valued random vector B_n by $B_n(\omega)x = \sum_{k=1}^n (x, e_k)Ae_k(\omega)$. Then $E \|B_{n+m} - B_n\|_s^{p'} = \sum_{k=n+1}^{n+m} E \|Ae_k\|^{p'}$ tends to 0 as $n, m \to \infty$. Hence there exists a $S(\ell_p, Y)$

- valued random vector \overline{A} with $E\|A\|_s^{p'}<\infty$ such that $E\|B_n-\overline{A}\|_s^{p'}$ tends to 0 as $n\to\infty$. This implies that for each $x\in\ell_p$, $B_n(\omega)x$ converges to $\overline{A}(\omega)x$ in probability. Since $B_n(\omega)x$ converges to $Ax(\omega)$ in probability we conclude that for each $x\in\ell_p$, $Ax(\omega)=\overline{A}(\omega)x$ a.s. Thus A is $\left[S(\ell_p,Y),p'\right]$ - representable by Theorem 3.2.

2201/HTOOM REFERENCES

- 1. J. Diestel, J. J. Uhl, Jr. Vector Measures, A. M. S. Math. Surveys No 15 Providence 1977.
- 2. N. Elezovic, Cylindrical measures on tensor products of Banach spaces and random linear operators, Manuscripta Math. 60 (1988), 1-20.
- 3. N. Elezovic, Product of random linear operators, Glasnik Mathematicki 44 (1989), 639-648.
- 4. D. J. H. Garling, Functional central limit theorems in Banach spaces, Ann. Probab. 4 (1976), 600-611.
- 5. S. Kwapien, On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193-201.
- 6. N. Kono, Recent development on random fields and their sample paths. Part 1: Sample path continuity of random fields, Soochow Journal of Math. 16, 2 (1990), 123-161.
 - 7. W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner-Texte zur Mathematik. Band 58, Leipzig 1983.
- 8. M. D. Perlman, Characterizing measurability, distribution and weak convergence of random variables in a Banach space by total subsets of linear functional, J. Multivar. Anal. 2, 3 (1972), 174-188.
- 9. L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press, London 1973.
- 10. P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications lineaires, Studia Math. 38 (1970), 71-100.
- 11. A. V. Skorokhod, Random Linear Operators (in Russian), Kiev, Nauk 1979.
- 12. D. H. Thang, Random operators in Banach spaces, Probab. Math. Statist. 8, 2 (1987), 155-167.
- 13. D. H. Thang, N. Z. Tien, On the extension of stable cylindrical measures, Acta Math. Vietnamica 5, 1 (1980), 169-177.
- 14. N. N. Vakhania, Probability Distributions in Linear Spaces (in Russian), Mecnereba, Tbilisi 1971.

Department of Mathematics, University of Hanoi Khoa Toan Dai hoc Tong hop Hanoi Hanoi, Vietnam