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A SUBGRANENT ALGORXTHM
. WITH SPACE DILATION. =~
FOR SOLVING MINIMAX PROBLEMS

' PHAM TRONG QUAT

: Abstract In this paper an smplementable algorithm using the opzrd:on of space : ddabon
for solvmg the pmblem of ﬁndmg the minimaz of conver functions is investigated. The algonthm 15
based on combmng and modifying the nonsmooth optimization works of Shor [8], Wolfe [9] and the
author [7] [5]. The algorithm is conceptually simple and easy to be smplemented. Global convergence
of the ‘algorithm is shown.

1. INTRODUCTION

This paper presents an algorithm for solving the following minimax problem

min f(z) = min[max f;(z)], s (1)
z € R", z € R", e,

where f; 1 =1,2,...,m are strictly convex real-valued functions defined on R".
Throughout this paper it is assumed that the functions f; (¥ = 1,2,...,m) are
continuously differentiable and :

|z|l—’.”ioof(z) | 2 {2)
This problems is “nonsmooth” in the sense that the function f needs not to be
differentiable everywhere.

" ‘Our algorithm is a modification of the subgradient method with space di-
lation developed by Shor in [8] for solving problem (1). Shor’s algorithm is a
nondescent method. Shor suggested to transform the space metric at each itera-
tion so as to accelerate convergence of the subgradient method. He used operators
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of space dilation of the following type. Let S € R, |S| =1, a > 0. Thena linear?i
operation R,(S) such that -t

 Ro(S)z=z+(a-1)55"z, zeR"

is referred to as the spata:,‘é;d{il’atirgrjl b,pler?,toi'; acting in the direction S with the':{
- coefficient . Shor’s algorithm constructs an iterative process of the type

Tg41 = Tk + agdg,

where dj. is a vector determining the direction and aj is a numerical factor whose
value determines the length of the step in the direction of dx. The method of
choosing oy in Shor’s algorithm is practically impossible since usually the value of
constant u is unknown (see [7]). Therefore, we aim to construct a new algorithm
which modifies the method of choosing the step length. We use the operator
of space dilation for finding direction at each iteration and our choice of the step
length is based on Wolfe’s idea. Global convergence of the algorithm is established.
The algorithm is conceptually simple and easy to be implemented. In particular,
it does not require the solution of an auxiliary problem for generating search.
direction as in [2], [3], [4]... Hence it can be used for solving large scale problems..

In Section 2 we present the algorithm, while its convergence is discussed in
Section 3. In Section 4 we present a simple numerical example. b

2. ALGORITHM

The algorithm uses positive parameters 3, m;, m; satisfying

0<my<m; <05 and 0<f<1. (3)

Initially we have a starting point.z! € R", ¢° =0 € R" and Bo = I, whe
I is an identity matrix. Suppose a point a:"\,}a, vector g"“,lﬁ and a matrix Br-
are known. To find the next point z¥*!, the vector ¢* and the matrix By t
algorithm realizes the following iterative process.

Step 1: Take i(k) € I(zF) ={i : fi(e*) = f(z*)} such that t

i (Bf—lf:(k)(zk)’ gk_l) S m1|g"‘1‘:2’ , (4 4

where f/(z) denotes the gradient of f; at z. If f, (z¥) = 0, terminate. Otherwise,
compute : ey ey 3 o

Pl =By fipy (=) ~ (5
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Step 2. Set

Sk = (=1 g Tt~ . ©)
: Step 3: Compute

gwhere Rg(S ") is the spa.ce dilation operator a.ctmg m the dlrection S i Wlth the
tﬁefﬁCIeﬂt‘ﬂ o} B R S

Step 4+ Compute ¥

g* =B, Fitky (=¥) = Rp(s%)p*1. (8)
. Step 5: Set B
_+d* = Byg* = BeBF ‘f;"(ﬁ) (). ' -9
§ Step 6: Find t* > 0 such that
f(z* — t*d¥) < f(z*) — mat*|g? (10)
d ‘ i
' (Bl'ff:(k+l)(zk — t*d*),g*) <m|g*)?, : (11)

r some index t(k + 1) € I(z — tkd*).
- Step 7: Set zF+1 = gk — tkd* increase k by 1 and go to Step A

Remark 1 To find t* 2 0 satisfying the conditions (10) and (11) we realize
he following process. Initially, we determine -

Psh, =aFy=cme (fll), —a) = (Flaty <@y o = (12)
Now let us consider the following two cases. , crcitad

First case. We have
2k, —dF) > —myg*|P.

Sett* =0 and i(k+1)=r.

Second case. We have

ff(a:", —dk) < —m«ljgélz.
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There exists t* > 0 satisfying condition (10) and
f(z*—t*d¥).> f(z*) — mith|g* 2. (12)

The finite iterative process to finding t* satisfying conditions (10) ‘and (13) i

proposed in [5], [T}
I The above remark and the following result show that the algorithm is wel

deﬁned

Lemma 1. Assume that cond:ttons (2) (3) are satlsﬁed and let t*‘ bear
positive value satisfying the conditions (10) and (13). Then condition (11) holds.,‘

P roof. From Lemma 2.1 in [5] we have

; (9,d%) < malg®|? ,
for any g € af(z* — tkd¥), where af(z) denotes the set of all subgradlents of ;
at z. It is known that f!(zF — tkd¥) € 8f(z* — tkd*) for any i € I(zF t"d")’}
Therefore, it follows

(Fie* - t5d¥),d*) < my|gF)? (14).
for any i € I(z* — t*d¥). Combining relation (9) and inequality (14) we obtain '
(BF fi(z* — t*d¥),g%) = (Fi(s* - t*d¥),d*) < mi|g*|?

for any i € I(z* — tkd*).
This completes the proof.

3. CONVERGENCE soeg 5 weliol

- In this section we show that if the algorithm generates an infinite sequence
{z*} then {z*} converges to a solution of problem (1). ‘
Lemma 2. If the algorithm terminates in STEP 1, then ':z’:”’scfﬁiesj'pfoble*
From now on we suppose that the algorithm generates an infinite sequen'v

{z¥}. We use the following notation. Let C be a compact convex set and S € R"“
|S| = 1. Two values : 1

d,(C) =min{d : (s,z) -d<0, Vz€C} : %
—~max{d : (s,z)-d >0, Vz e C} |
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nd d(C) = mm 2;\C) are calied 2 Widtn ¢t The st G m e dneckion § ad v

width of the set C respectively. We denote D(C) = sup {lz y : z€C,y€ €}
For6>0a.nde>0wedeﬁne

 pele) = o1 6)U( U Bctz))

z€8f(z)

where 8f(z,6) = conv U{df(y) : |v— z| < 6} is called the Goldstein 6 -
subdifferential and B.(z) ={y € R" - |y — z|'< €}. For any convex set C C R"
we define the following functions: ~ -+ = = - L+ dadd golinems B g

; { d’.(,c) o if e (C)#£0
I : +oo 1 : if 8,(0) =0

F(C) = inf Ks(C).

Lemma 3. Assume that conditions (2), (3) are SatlsﬁEd and let {a:"} b
be the sequence generated by the algorithm. Then

) lim 7)< foo > 1 = i &),
=) |:1:"‘H — gk — 0, as k — +00,
N i e

Proo f From mequahty (10) and condition (2) it is evident that the
‘sequence { f(z }k=1 is nonincreasing and bounded from below, therefore there

?éaxists

lim f(z*) =.foo 2-f* = min f(z).

TER™

“Let us niow prove that |g*+1—gk| = 0, a5’k = +00. Assume, to the contrary,
E%hat |z¥=1 —z¥| 40, as k' — +oo. Then we can always choose an infinite subset

of indices K" C N such that.

|gF+! —z*| > 6 >0, forall keK, - 5 (18)

z* - 2!, ¢! 5 2" and gf(z*) - ¢', as k — +oo and k € K, where

égf(z") = f{(k)(z"). Then

i e st et
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0< f( k) f( k+1) & (gf(zk) x k+1)
= (g5(z*),t*BeBi g5(z%)) = ¢* lﬂ"l2
f(z*) f@*)

— 0, as k-i—.>+oo.,
m2

Thls 1mph&s (g‘ z!—z ’) =0, a.nd g € af(z') f(:z:”) % f(a:’) £ fasy whrchconﬁxcts
with the assumption that the function f is strictly convex. Thus: |gktl =gk =0,
as k — +o0.

From the description of the algorithm we have

p*1 — g~ = |BEL, £y (=*) - Bioafige-n (" )P \
: = |BE_ fly (=) = 2(BE. L1 Py () BE Flge—yy2*Y))
+1g"71 P 2 PP — 2malg™ R + gt T
= [p* 72 + (1 - 2ma)lg* 2.
From condition (3) it is clear that |p*~! — g*~1| > |p’° 15 for all ki Thl&z

completes the proof. : ,
Combining Lemma 3 and Theorem 3. 11 in [8] it is easy to obtam the follow

r..awaﬁﬁéfﬂ

ing.

Theorem 1. Assume that conditions (2), (3)- are satisfied and let
{xk} o D€ the sequence generated by the algorithm. Then for any v € R‘?’i
\/_<u<1 s>0 6 >0, kEN thereemstsk>ksuchthat

i TR

F (conv Dé,e (:z:’-c )) >

where a = 1/8 and conv'C' denotes the convex hull of C.

Theorem 2. Assume that condition (2), (3) are satisfied and 0 ¢ aff 0f(z
forz € My = {z€R" : f(:c) < f(z').z # z*} where aff C is a k-pla.negenera§
by C (k < n— '1) and z* is a minimum point of f. Then. the. sequence generate
by the algonthm {z } k=0 converges to the minimum point z* of f on R™.

Proof. From Lemma 3 we have

hm f( ) foto*

k—+o00



dirent algorithm with space dilaton ... 71

Let us now prove t.ha.t foo = f*. Assume the contrary that fo, > f*. We

a = gt {zgR" f(fc) foo}

| Thus z* ¢ M. From the contmmty of the convex functlon f and condltlon (2) xt
is easy to see that M is a compact set. Let us denote. 4y

mf { }y[ yEaﬁ'af(‘f) xEM}

We shall show that '1 > 0 Indeed if 7 = 0, there exist sequen‘ces { }*_Omd

| TLd _o Such that y* € aff af(z"), z* € M and lv¥] = 0 as k — +00. We know
: that

9f(=) = conv {fl(z) : i€ I(z)}.
EE“ Hence we have P i i :
v =Y bt 6/ Z =1 (16)

tel(z*) - Yeer(aky

Since I(2*) C {1,2,...,n} for any k, there exists a subsequence {*}rex, K C N
- such that I(z ")—IC{12 ,n}foranykéK

{ From relation (16) and the fact that f! (z) is continuous, M is compact,
fi(z) #0atz € M and i € I(z) it is ea.sﬁy seen that there exists an infinite
subset of indices K; C K such that

......

)Ak—’/\uaSk—"-Foo, kEKlandeI

' b) 2% — 2% a5’k — 400, k€ K;.

I Then we obtain

k) —-0= E/\;f{(zo),‘ Z Ay £ T, (17)

iel iel
- as k — 400, k € Ky. Hence 2° € M. We have

‘f,-(zk) =f(zk) = 1?,&%‘,,”("1‘)’ for 1€l wadsli

From the continuity of the functions f and f,, t € I, it follows"

FE) = Jim £ = i () = (%) = max 1),

| This implies .
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Combining (17) and (18) we get 0 € aff of (z°) and z° € M. This contradlctsé
to the assumptlon Thus we have v > 0. Let us denote i

W(n) - {y‘?‘eR" ly - xl <n,zeWc R“}

From the assumption that 0.¢ aff 9f(z), for z € M, it is easy to see that dum
aff 3f(z) < n, for z € M;. Hence d[3f( )(r))] < 2, for any zeEMC M1 Let us
choose r[ >0 such: that S deTlede oWl

2n . vl —1

'7 n a2—1

Since f is the convex functwn, for every y € M there emsts 6(y) > 0 such that

0f(z) cof(w)(3), for 2 € Bsyya(y).

Since the set M is compact and M C U Ba(y) /4(y), it follows that there exist '

a

finite points {y!,y?,. .y¥%} € M such that

g
M c | Bsgyiyaly)-

=1

i
ﬂ%
|
?‘
|
fg
Let us set § = lxgu<1t 36(y') > 0. Then we can always choose some finite Kff

sufficiently large and every z*, k > K we find y*, 1 < 1 <t such that

zk € Bg(yi)/z(y‘) and Bs(zk) C Ba(yi)(y‘).'
Thus for € > 0, 0 < € < n/2:we have

conv Ps ,‘y(zk) caof (y")(n), for k > f

Assume that a vector a(z) € R", |a(:z:)l =1is orthogona.l to aff 8 f (z) From th
definition of the width of the set we obtain

a(y.)[conv Ps ,(z )] < da(y;)(af r])) <2n, k>K.
Then

% ds[conv Ps,; (z")‘]

k) = il
Fioowr Pl )] |SI=1 es[conv Pj,.(z*)] S |
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£} s 2y

a(y‘ ,{COHV P& e( )3< 14 ’
a(y.)]conv Ps e(z")i

g eonverges to® the" mi“ﬁfmmﬁ zpbmt # of f oﬁ Rr : Tlfe%hebre%n“fisﬁproved

uy Remgrk 2. We know, that. 1f the Yéctofs f (:L‘) K E I (:z:) are dme@r)y xndepm—
dent, then 0. g aﬁ' af ,'v)

4 EXAMPLE

$ 0

The objective functlon to be mxnumzed is

1L ERERT), . ek ot

‘where z € R?, f,(z) = 4.7,1 + (z2 —4)?; fa(z) = (221 —4)? + z2. For this problem,
‘the optimal . solutlon is z* = (1,2) with f(z*) = 8. Let IP denote the number of
‘calculations of the function values.and IG that of the function subgradients.

Our algorithm used the starting point z° = (2,0) with f(z°) = 32. For
f =0,3, m =0.25, my = 0.1, we obtained

K =41, IG =43, IP =622
; X$! = 1.00011606083, X3! = 2.0023198041
. f(z*') = 8.0000164193.

REFERENCES

1. Demjanov V. F., Vasiliev L. V., Nondifferentiable Optimization (in Russian),
Moscow, 1981.
2. Kiwiel K. C., An aggregate subgradient method for nonsmooth convex min-
imization. Mathematical Programming 27 (1983), 320-341. ;
© 3. Lemarechal C., Nonsmooth Optimization and Descent Methods RR-78-4.
' International Institute for Applied Systems Analysis, Laxenburg, Australia,
1978. -
4. Mifflin R., An algorithm for constrained optimization with semnismooth func-
tion. Mathematics of Operations Research 2(1977), 191-207:



74

Pham Trong Quat

Pham Trong Quat. Methods with space dilation for solvmg nonsmooth con-
vex optimization problems: and them appligatlons Ph ‘D. thesis, Technical
University of Warsaw (in Pohsh), 1985

ion algorithm using the operation -

of svplace dilation for constrained optlmlzatldn with convex function. Control |

and Cybernetics, Vol 16(1987). N .2, 103-112.

Pham Trong Quat. A subgradient method with space dilation for mlmmlzmg

convex function. Control and Cybernetics; Vol 13(1984) N 4, 399-408. -

Shor.N.. Z., Methods for Minimizing Nondifferentiable Functions and" Thelr

Appllca.tlons Kiev, Naukova Dumka 1979 (in Russnan)

. 'Wolfe P., Method of conjugate subgradients for minimizing nonrf“fferentlable

functlons In M.L. Balinskii and P. Wolfe eds. Nondifferentiable Optimiza-
tion. Math. Programming Study 3, Amsterdam, North-Holland, 1975, 145-

173.

Faculty of Mathematics, Mechanics and Informattcs

Hanoi State University

Nguyen Tras Str. 90

Hanos, Vietnam - % s



