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AVERAGING METHOD FOR
HYPERBOLIC INCLUSIONS

HOANG DUONG TUAN

Abstract. We consider the averaging problem for hyperbokic inclusions of arbitrary order.
A theorem s proved on the mutual approzimation between the solution sets of the original and
the averaging inclusions.

1. INTRODUCTION

The averaging method is an asymptotic method that was widely used in
the study of nonlinear mechanics problems. First elaborated by Bogoliubov and
Krylov [2], it was subsequently developed in the works of many authors |1, 3,
‘7, 14, 15]. The basic idea of the method is the use of an averaging operator
to associate with the given original system a simpler one which preserves the
main features of the object, while being easier to study. By averaging one can
reduce a nonstationary system to a stationary one, thus allowing time saving in
the calculations.

In control theory, the foundation of averaging methods for differential inclu-
sions was established first by Plotnikov [16] for ordinary differental inclusions and
subsequently by Vitiuk and Klimenko [23] for second order hyperbolic differential
inclusions with no derivative on the right hand side, by Tuan [18] and Khapaev,
Filatov [9, 10| for ordinary differential inclusions with fast and slow variables. The
proof of these authors is based on the construction of approximating functions to
solutions of the given inclusion on subintervals and applying Filippov’s lemma [6].
That proof is some what complicated and rather of a special character.

A simpler and more general approach to the foundation of averaging method
for differential inclusions was introduced by the author in [19, 20, 21]. This ap-
proach has enabled us to established Bogoliubov’s type averaging theorems for
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various classes of differential inclusions in Banach space, including differential
inclusions in standard form, differential inclusions with fast and slow variables,
differential inclusions with retarded arguments and differential inclusions in semi-
implicit form.

In the present paper we are concerned with the averaging problem for hy-

perbolic inclusions in standard form of arbitrary order which may contain partial
derivatives on the right hand side.

The paper consists of 4 sections. After the Introduction, in Section 2 we
shall present some auxilinary results which may have by themselves an indepen-
dent interest. In Section 3, using the same approach as in [19, 20, 21| we will
establish a theorem on the continuous dependence on a parameter for the solution
set of inclusions with a right hand side integrally continuously depending on that
parameter. Then in Section 4 we shall prove results on the mutual approximation
between the solution sets of the original and the averaging inclusions.

Throughout in the sequel Comp R™ (Conv R™) will denote the collection of
all nonempty compact (convex and compact, resp.) subsets of R", equipped with
the Hausdorff metric o(.,.), ||.|| the norm in R™, p(u, A) the distance from point u
to set A, |A| the modulus of the set 4, i.e. the number «(A,6) where 8 is the null
element of R™. Integrals of multivalued maps are understood in Aumann sense.
For G € Comp R™, L(G) (C(G), AC(G),resp.) will denote the space of Lebesque
integrable (continuous, absolutely continuous, resp.) functions from G into R™.
For D € Comp R", C(G, D) will denote the set of all functions f(.) € C(G) taking
values in D. Finally, I = [0, a] is a segment of the real positive axis Rt = [0, +-00).

2. PRELIMINARY PROPOSITIONS

We begin with some auxiliary results

Lemma 1. Let D € Comp R™, A C R and let F(z,u,)) : "X R"x A — Conv R"
be a multivalued map satisfying the following conditions:

1) F is measurable in z for fixed (u,));
2) F is uniformly continuous in u on D for fixed (z,));

3) There exists an integrable function w(z) on I™ such that

|F(z,u,))| <w(z) forall (z,u,});

4) F is integrally continuous in A at some given limit point Ao € A, i.e.
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z
Jlim a /F (y,u, \)dy, /F(y,u,Ao)dy) 5D
0 0

for every z € I™, u € D.

"Then for any family of continuous functions {u(z,)), A € A} c C(I™,D)
that converges uniformly with respect to z € I'™ to a function u(z, o) as A — /\0,
we have: .

z

lim « /F , A)dy, /F(y,u(y,/\o),)_\o)d‘y) 2= {)

)\—*Ao
0 0

In particular, if E C C(I™,D) is a compact subset of the Banach space C(I™),
then for any n > 0 there exists a neighbourhood U()y) of point Ao such that for
all A € U(Xo) and u(.) € E

z z

o [ PN, [ Fuw)d0w) <7

0 0

Proof. See [20].

The argument is similar to that used to establish the corresponding result
in [11] or [12].

Lemma 2. Assume that F satisfies all the conditions of Lemma 1 and, in addition,
|F(z,u,A)] < M, M > 0, for every (z,u,)). Let E C C(I™,D) be a compact
subset of C(I™). Then for any n > 0 there exists a neighbourhood U (o) of point
Ao such that for all A € U(Aq) and all u(.) € E the following properties hold:

1) For each measurable selection v(z) € F(z,u(z),)) there exists a measur-
able selection v(z) € F(z,u(z), Ao) satisfying

“/(v(y) —v(y))dy” w,pldgzaglgings ele (1)

2) For each measurable selection v(z) € F(z,u(z),)o) there exists a mea-
surable selection v(z) € F(z,u(z),A) satisfying (1).
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Proof.

We need only prove the first assertion because the proof of the second as-
sertion is similar.

Divide the interval I into £ equal subintervals by the points t;, 7 = 0,1,...,£.

Let G o = 21,88, cve s Zm) € I 115 < 2k S laids K 7 dadse rsa): Dl
I™ is the union of £™ subdomains Gn,...,am corresponding to all possible indices
= (J1,-.-,Jm). To simplify the notation, whenever convenient we shall write G
for Gy, ,....j,.- According to Lemma 1, for any 7 > 0 there exists a neighbourhood

U(Xo) of point Ag such that

T z

a(/F(y,u(y),,\)dy, /F(y,u(y),/\o)dy) <7 VA €T(Ng), Ve eI,

0 0

Hence, upon simple computation,

a(/F(y,u(y),z\)dy, /F(y,U(y)w\o)dy) <277
Go Geo

This implies the existence of a measurable selection v, € F(z,u(z),Xo) (z € G,)

such that
H/v(y dy—/va dy‘ Ch gl R (2)

Go

Define now a measurable selectlon ¥(z) € F(z,u(z),Ao) by setting

oz} =v,(s) for mE G,

Then for any z € I™ (i.e. z € G, for some 0 = (J;...Jn)) we derive from

(2)

z

| [ ot - / ] < 3 ZH/ (o) = 7))

(0] , #3=0

+H/ / ) — dy”<£"‘2'"n+2Mam/£m

zJn.
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To complete the proof it remains to select £ and % so that 2Ma™ /L™ < /2,
RS mlirnamil.

Lemma 3. Let P : I™ — Comp R"™ be a measurable multivalued map and
w : I™ — R™ a measurable function on I™. Then there exists a measurable
selection g(z) € P(z) such that

lw(z) — g(z)|| = p(w(z), P(z)) for almost every z € I™.

Proof.

‘The function r(z) = p(w(z), P(z)) is obviously measurable on I™, so the
map R(z) = w(z) +r(z).S with § = {u € R": ||u]| = 1} is also measurable on I™.
By Lemma 1.7.5 in [24] the map Q : I™ — Comp R" defined by Q(z) = P(z)NR(z)
is also measurable on I™ and by Lemma 1.7.7 in [24] there exists a measurable
selection ¢g(z) € Q(z) which obviously satisfies the required condition. O

Lemma 4. Let z; € I,1=1,...,m. For natural number = we have

Sm) g, (3)

=2 =1

O\
P
hi
-
8
N
3|
ISW
_!jl
A
N

m

[ [+ da) @mimso(La) i@+, (9
00 e o=

&5 @3 Tk k m " : - i n+l -
/// (Zfl—{— Z 1:,;) dfkdfzdfl Sbk_l(z-xi) /(ﬁ"l" 1)a S
o YU OW & i=k+1 ) Tl -~ (5)

[ [ ] (Sa)dom...cmim <ot (352" 0 )

=1 . 1=1
where b = ma/3.

Proof. f i
The inequality (3) is obivious. To prove (4) observe that’
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z) z2 m e &1 m s

n ; 1 > n+1
// $1+52+Z$i)' ﬁ2ﬂ1=/ﬁ+1[<$1+zzi)
0.0 =3 ) 0 3=

72 n+1 1 e+l
—<51+Zz,-) ]dflg/ﬁ+l(fl+2x,~) dz,
1=3

(=}
-,
I
13-

(Em:m,)n+2 m+1)(m+2) < ma(ézi)i+l/(ﬁ+'1)(ﬁ+ 2).

g=1

Since 7 > 1 the inequality (4) is proved. By induction the inequalities (5)
and (6) can be easily proved in an analogous manner. [J

Consider now a differential inclusion

"u(z)/dz € Flu](z), zeI™ (7)

with the boundary conditions
ui(z) =0 dé=1R ...,m. (8)

Here Flu](z) = F(z,u]s,u(z)); [u]: = (Ou(z)/dz1,...,0u(z)/dTm,

2u(z)/08z10z2,...,0%u(z)/0Tm-10Zm,.. 0™ lu(z) /022023 . .axm), ie. [u]z
is composed of (2 — 2) mixed derivatives of the function u(z) : 8¥u/dz;, ...dz,,,
i <k<m=1,14<i;for b < j; u'(z) = PR TR L B Sl e
{2125, .o . Bm), 0% = 82103, .. .92,

By a solution of the problem (7)-(8) we mean any absolutely continuous
function on I™ satisfying the inclusion (7) almost everywhere on I™ and satisfying,
moreover, the boundary conditions (8).

Denote C¥, = m!/k!(m — k)!, Hy = a*~'/k, H = Z Cm-*Hy, b= ma/3,
d=[(b+1)™—1]/b, m = (2™ — 1)n. Then the followmg proposmon holds.

Theorem 1. Assume the map F : I™ x R™ x R® — Comp R™ satisfies the
following conditions:

1) F is measurable in z for each fixed (y,u) and there exists a function ~(z)
integrable on I™ such that
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|F(z,y,u)| <~(z) forall (z,y,u).
2) F satisfies a Lipschitz condition in (y,u) with constant ¥, i.e.
5 a(F(z, ylaul)aF(zs y2’u2)) S X(”yl e y2” + Hul = u,2||)
vzelI™, y'€ R™, u' € R (i =1,2).

Let w(z) be an absolutely continuous function on I™ such that

Wbl e O Bty s B =0, {=52.050, (9)

p(amw(x)/ém,' Flwl(z)) <A, A>0 (10)

for almost every £ € I™. Then there exists a solution u(z) of problem (7)-(8)
satisfying

[u(z) — w(z)]| < AHb™ ! exp (Xd(zx,.))/xdz,‘ S gy
|0%u(z)/0z;, . .. 8z;, — B*w(z)/dx;, ... 0z, |

S)\Hbm'k—lexp(xd(iq::z:,'))/xd2 (=2'12,... )< 1) , (12)

=1

for almost every z € I™.

Proof.
The method of proof is in many respects analogous to that used in [6].

For every z = (z1,z2,...,Zm) € I™ denote

m 1;—1

G = H[O,xi], : Gi"“i" = H ( H [O,xg]) ﬁ [0, =4,

=l J=W =00 H1 J=ir+1

= 22
wWieFe IPRDIULE SWAUET 00, PR L2 150, T 8 TP20 Y, 1\,
=4
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Define a bijection L'+ : {1,2,...,m — k} — {1, 2,. ,m}/{zl, <58k}
such that Lii-%(5) < L¥-% (£) for j < 2 Then define g% HiGh- _, R™
by setting gii- ‘k( ey (0, By .sBm) for 2™~k = (zl,zz, yZm—k), Where

Z; = z; if j = 1, for some £ (1 < £ < k), and T; = 2, otherwise, w1th £ being the
index such that j = L***(£). To each function v(.) € L(I™) let us associate the
function vgy,. i, : Gi+% — R™ defined by

Vzi)..ix (Zm_k) o 'U(g;:l"vk (zm—k)).,

Setting u°(z) = w(z), by Lemma 3 we can choose a measurable selection vO(z) €
F[u®](z) satisfying, almost everywhere on I™,

8™ (z) /8 — v°(z)|| = p(d™u’(z)/dx, F[u%)(z)) < A. (13)

Then, setting

) = / o) dz,

G,
Roal@= [ (@m0@)/00),, (" HdzmH,
: Gitik
pgl"jik (z) = / v.'(t)il...‘l:k (zm_k)dzm_k)

Gil tk

m
and noting that z;, ...z;, < Hih(z), for z € I™, h(z) = Y z;, we have
1=1

lul(2) = u®()|| < Az122... Zm < AHpmh(2), (14)
Pk gif2) — B0, ik UL € %0, - 3 i SIAH e b2): (15)

Now by Lemma 3 we can take a measurable selection v!(z) € F[ul](z) such that

[v°(2) — v! (z)]| = p(+°(), F[u'](z)) almost everywhere on I™ (16)

and since [u], contains Ck, mixed derivatives of k-th order, from (14) and (15) we
have
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1v°(2) - v} (@)l < a(F[u°)(z), Flul](z)) < AxHA(z). (a7)
Setting u?(z) = [ v}(@)dZ, P2, 4, (€) = [ vk . (zm*)dz™k, and
Gz Gl itk

applying Lemma 4 yields the following estimates from (17):

lu?(z) — u'(z)]| < AxH / h(Z)dE < AxHb™ 'h2(z) /2,

Gz

192,00 () = 2} @ < OB [ Bem8)damF < AxHEmF1R2(2) 2.

2510k

Further, choosing a measurable selection v?(z) € F[u?|(z) such that

v (z) = v*}(z)| = p(v'(z), F[u?)(z)) almost everywhere on I™,

we easily see that

I} (z) = v*(2)|| < a(Flu'](2), F[u?)(z)) < Ax*Hdh*(z)/2!.

Then, setting u®(z) = [ v%(z)dz, =)= TP e
G, Girik
- using the same argument as previously we obtain

ud(z) — u?(z)|| < Ax2Hdb™ 1h3(z)/3!, (18)
195, .cr (=) — P2 s (@) < AXHAb™*~1h3(z) /31, (19)

In a general manner once ué(z), Pfx...ik (z) have been cbnstructed,'we can take a
measurable selection v(z) € F[u®|(z) such that

o8 (z) — v¥(z)|| = p(v*"!(z), F[uY(z)) almost everywhere on I™,

and setting uft! = [ v¥(z)dz, pfji.l_ik fz) = | ”iip---'k (z'ﬁ“k)dzm_k, we can
G, Gk

by induction verify that, similarly to (18), (19),
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|vé(z) — v 1(2)|| < )\Hd_l(xdh(a:))e/i! for almost all z, (20)
lut(a) - w*~* @)l < BB (xd?) 7" (xdh(2)) /(€ + 1), (21)
o2y, (@) = oo, ()] < AHB™ 4 (xd?) ™ (xdh(=)) ' /(€ + 1)t

for almost all 'z, "7 =1,2,...,k, (22)
p(v¥+1(z), Flu¥(z)) < AHd~ (xdh(z)) /¢! -for almost all z. (23)

From (20) it is not hard to see that the sequence {”e}zo is a Cauchy sequence
in L(I™) and hence converges to some function v(.) € L(I™) almost everywhere.
From (21) it follows that the sequence {ue}z_o uniformly converges on I™ to
some absolutely continuous function u(z). From (22) it follows that the sequence
VA oo . .
{pil e }e=o converges to some function p;, .. ;, (z) for almost all Zijy ) = 125005k
and for all values of the other variables. By virtue of Legesgue’s Theorem (see [13],
p. 302) we then obtain

i / o . 5] = / veiriy (27 Y dg™—*,

G, Gil.“ik

These relations show that p;, .., (z) = 9*u(z)/dz;, ... 0z;, for almost all z;,,
J=1,2,...,k and, taking account of (23) it is not hard to see that

0™u(z)/0z € Flu|(z) for almost all z & I™,

i.e. u(z) is a solution of problem (7)-(8) since the boundary conditions (8) auto-
matically hold according to the definition of u(z).

In view of (21) we have

lu(z) —w(=)] <

|uf(z) — w7 (z)]

[\_18

o~
Il

AHB™TY (xd?) ™Y (xdh(z)) T /(£ + 1)!

&%8

~
Il

< X" l(xdz) Lexp (xdh(:z:)),

proving (11). Since the relation (12) can be established in exactly the same way,
the proof of Theorem 1 is complete. [
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3. CONTINUOUS DEPENDENCE ON PARAMETER OF THE
SOLUTION SET OF HYPERBOLIC DIFFERENTIAL INCLUSIONS

Consider the hyperbolic differential inclusion

0™u(z)/0z € F(z,u(z), ) L LA

with the boundary conditions

ui(x)za, i=1,2,...,m, zEIm, : (25)

virhereF:I"‘xR"xA—+Coan",ACR.

Theorem 2. Assume that:
1) For fixed (u, ), F is measurable in z;
2) For fixed (z, ), F satisfies a Lipschitz condition in u with constant ~;
3) |F(z,u,\)| < M Y(z,u,)), where M > 0.

Assume, furthermore, that there exists a bounded domain D C R™ such
that:

4) For some limit point Ao € A we have

z z : .
lim a(/F(y,u,A)dy, /F(y,u,)\o)dy) =z {)
— Ao f
0 0
uniformly with respect touw € D, z € I™.

_ 5) There exists a neighbourhood U(Xo) of point Ao such that for any X €
U(Xo) any solution of problem (24)-(25) lies in the interior of D.

Then for any n > 0 there exists a neighbourhood U()\o) C U(Xo) of point
Ao such that for every solution u(z) of problem (24)-(25) with A € U(Xo) there
exists a solution ug(z) of problem

8™ uo(z)/0z € F(z,u0(z); Ao), (26)
wilzl =¥ t=12...% (27)

satisfying
lu(z) — uo(z)|| <n Vzelm™, (28)
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and conversely, for any solution uo(z) of problem (26)-(27) there exists a solution
u(z) of problem (24)-(25) satisfying (28). ;

Proof.

Denote by E the set of all absolutely continuous functions. u(z) on I™ that
satisfy the boundary condition (25) and possess mixed derivatives ™ u(z)/dz such
that ||0™u(z)/dz|| < M for almost every £ € I™. From the generalized Arzela’s
Theorem [13] it follows that E is a compact subset of C(I™). Let u(z) be an
arbitrary solution of problem (24)-(25), so that u(.). € E. According to Lemma
2, for every n; > 0 there exists a neighbourhood ﬁl‘()\o) of point Ag such that,
whenever A € U;()g), there exists a measurable selection (z) € F(z,u(z), Ao)
satisfying

“ /Oz (0™u(y)/oy — ﬁ(y))dyH <n Vzel™ (29)

Define now a selection fo(z,u) € F(z,u, o) by the relation

[9(z) = fo(z, u)l| = p(v(), F(z,u,0)).

By virtue of the convexity and compactness of F(z,u,Ao) such a selection exists
and is uniquely defined. Furthermore, by a theorem of Himmelberg [8] fo is
measurable in z for fixed u and since F is continuous in u, it follows from a known
result (see [6], Lemma 5) that fq is continuous in u for fixed z. Using the condition
| fo(z,u)|| < M V(z,u), we deduce from the just obtained result that the equation

d™ug(z)/0z = fo(z,uo(z)),
whizh =8 fi= 1.2 ..8),

admits a solution ug(z) on I™ which is obviously also a solution of problem (26)-
(27). Furthermore, we have

[9(z) — 8™ uo(z)/dz|| = p(v(2), F (2, uo(z), Xo))
< a(F(z,u(z), Xo), F(z, uo(z), Xo)) < llu(z) - uo(2)]].
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Hence, taking account of the estimate (29) we obtain
lu(@) - uo(a)] = | / (9™ u(y) /3y ~ 9™ uo(u)/3y)dy
< “/ (0™ u(y) /Dy = o dy” + H/ 9™ uo(y) /Y] dy”

<m+ / v(y) — 3muO(y)/3y||dy <m+ 7/ llu(y) — uo(y)lldy-

By virtue of the generalized Gronwall’s Lemma [5] we can write

z

Ju(e) = uo(a)ll < m[1+ [ ex (5

0 J=1

’,'_"]3

~y) )dy] < n1(1 + exp(ya™)).

By taking n; < n(l + exp(ya™ )) this proves the first a,ssertlon of the theorem.
The second assertion is proved similarly. OJ

Note that the above theorem includes both Theorem 1 in [22] and Theorem
1 in [11] as special cases.

4. AVERAGING METHOD FOR HYPERBOLIC INCLUSIONS

From Theorem 1 we can now derive a Bogoliubov type averaging theorem
for the problem

d™u(z)/0z € €™ G(z,u), (30)
u(z)=0 (1=1,2,...,m; z€[0,400)™). (31)

Theorem 3. Assume that the right hand side of problem (30)-(31) and that of
the problem

o™ (z)/0z € e™G(i(z)), (32)
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wi(z)=0 (t=1,2,...,m; z€[0,+00)™) (33)
satisfy the following conditions:

1) The map G : [0,4+00)™ x R"® — Conv R" is measurable in z for fixed u
and satisfies a Lipschitz condition in u with constant ; in addition |G(z,u)| < M
V(z,u) with M > 0; ‘

2) The map G : R® — Conv R™ satisfies a Lipschitz condition in w with
constant ~; in addition |G(u)| < M Vau.

Assume also that a compact domain D C R"™ exists such that

3) llm a( [ G(z,u)dz,G(z)) = 0 uniformly with respect tou € D;

[o,T)™

4) Any solution to problems (30)-(31) or (32)-(33) lies in the interior of D.

Then for any n > 0, L > 0 there exists €g > 0 such that on every domain
[0, Le~1]™ with 0 < € < &y, for any solution u(z) of problem (30)-(31) there exists
a solution u(z) of the inclusion (32)-(33) satisfying

Tm

lu(z) —u(z)]| < m, (34)

and for any solution %(z) of problem (32)-(33) there exists a solution u(z) of
problem (30)-(31) satisfying (34).

Proof.
By the change of variable z = z/e the problems under consideration take
the form
mu(z)/0z € G(z/e,u(z)),
ui(z) =§ L=13...,m2€|0,L]™
and e
™u(2)/0z € G(u(2)),
u'(z) =0 (=1,2,.\; 2 € [O,L]m).
Setting

F(z,u,e) = G(z/e,u) ife>0,
F(z,u,e) = G(u) ife=0,

we easily see that F satisfies all the conditions of Theorem 2. The conclusion
follows. O
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Note that Theorem 3 includes the results in [16] and [23] as special cases
when m = 1 and m = 2, respectively.

Consider now the differential inclusion
YRRE B o eI A Yy g pidasaid (35)
With bounda;ry conditions
u(@)|,. g =9i(2)y  i=1,2,..,m | (36)

where u(z)l = u(zy,...,%i—1, 0, Z;,...,Z,n). We assume the functions g;(z)

Z;=0 :
to be differentiable in each variable and such that gi(z)|zj=0 E gj(:z:)lz‘:o for all

Yok

Setting
9o(2) =) gi(z) - % : 1 ( "M gig(m)) puho T+

i1=1 1-1=1 "‘2=.1
tg#%)
m

lnli i (A (SERISE mado Pl sonbe R

i =1
|',_,,,¢\'j‘ 7= 1 Fenvyme=1

we associate problem (35)-(36) with the following one:

8™u(z)/dz € e™F (u(z)), (37)
ﬁ“(x)lz‘=o=9, t=1,2,...,m, (38)
where i
Flu) = Jim = / F(lH6 + g(z))dz. (39)
TR

From the results in Section 2 we can derive the following averaging theorem
for problem (35)-(36):

Theorem 4. Assume that the set-valued map F : [0,00)™ x R™x R™ — Conv R"
satisfies all the conditions of Theorem 1 and, furthermore, |F(z,y,u)| < M (M >
0) for all (z,y,u). Let D € Comp R™, D; € Comp R™ be two domains such that:

1) the limit (39) exists, uniformly with respect to u € D;



Averaging method for hyperbolic inclusions 35

2) any solution of problem (35)-(36) or of problem (37)-(38) lies, together
with its derivatives, in the interior of D x D;.

Then for every n > 0, L > 0, there exists an €y > 0 such that on any
[0, Le=]™ with 0 < & < € : for every solution u(z) of problem (35)-(36) there
exists a solution %(z) of problem (37)-(38) satisfying :

li(z) - g(2) —a(2)]| <, - (40)

and conversely, for every solution u(z) of problem (37)-(38) there exists a solution
u(z) of problem (35)-(36) satisfying (40).

Proof.

If suffices to prove the first assertion of the theorem, since the second asser-
tion can be proved in an analogous manner.

Let u(z) be any solution of problem (35)-(36). It is easily seen that, by
_means of the substitution u,(z) = u(z)— g(z), problem (35)-(36) can be converted
into the following form:

0™uy(z)/0™z € €™ F (z,[u1]s + [g]ss ua(2) + g(2)), (41)

=9, i=1,2,...,m. (42)

z2:;=0

uy(z)
Consider also the problem

0™ uy(z)/0z € €™ F(2, 9]z, uz(2) + g()), (43)
'“'2("’3)‘1'.:0:03 pang B0 m, ‘ (44)

-

From the fact that the map F is bounded by the constant M we get the following
estimate on [0, Le~!]™: '

|0%u;(z)/0z;, ... 0z, || < L™ *ebM, 5 =1,2.

Hence,
||[‘U,]']$“ S EE', ] e 1,2, (45)

m—1 . o
Wi e o L ~

1=1
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- Let uy(z) = u(z) —g(z), i.e. u1(z) is a solution of problem (41), (42). Then
in view of (45) we can write: '

p(8™u,(z)/0z, smF(:z:,.[g]z,u,l (z) + g(z))
< e™a(F(z, [u1]z +{gle, u1(2) + 9(2)), (2, 9], w1 (2) + ¢(2)))
< e™x|[u1]fl < ™+ xE.

Thereforé, by Theorem 1 we can find a constant ¢, independent of €, L, for which
there exists a solution u;(z) of problem (43)-(44) such that on [0, Le~1]™ we have

[ui(2) = ua(2)|| < ce. | (46)

By Theorem 3, for n/2 there exists an €; > 0 such that on any [0, Le!]™ with
0 <& < &, there exists a solution %(z) of problem (37)-(38) satisfying

luz(z) - u(z)]| < n/2. (47)
Combining then (46) and (47) yields

lu(z) = g(=) - w(2)|| = llua(z) — @(2)] < [|lui(2) - uz(a)]

t [Juz(2) - w(e)|| < ce +n/2.

- The proof of the Theorem is complete by choosing €5 = min {51, En—}
¢
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