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AVERAGII.IG METHOD FOR
HYPERBOLIC INCLUSIONS

HOANG DUONG TUAN

Abstract. We consider the ouerqing prcblem lor hyp.rbolic inchtsioru ol arbitrary order.
A theorcm is proued on the mutuol approximotion betueen the solution sets of the origJinal and
the aaerqing inclusioru.

1. INTRODUCTION

The averaging method is an asymptotic method that was widely used in
the study of nonlinear mechanics problems. First elaborated by Bogoliubov and
Krylov [2], it was subsequently developed in the works of many authors [1, g,
7, 14, 151. The basic idea of the method is the use of an averaging operator
to associate with the given original system a simpler one which preserves the
main features of the object, while being easier to study. By averaging one can
reduce a nonstationary system to a stationary one, thus allowing time saving in
the calculations.

In control theory, the foundation of averaging methods for differential inclu-
sions was established first by Plotnikov [fO] for ordinary differental inclusions and
subsequently by Vitiuk and Klimenko [ZS] for second order hyperbolic differential
inclusions with no derivative on the right hand side, by Tuan [ra] and Khapaev,
Filatov [0, fO] for ordinary differential inclusions with fast and slow variables. The
proof of these authors is based on the construction of approximating functions to
solutions of the given inclusion on subintervals and applying Filippov's lemma [6].
That proof, is some what complicated and rather of a special character.

A simpler and more general approach to the foundation of averaging method
for differential inclusions was introduced by the author in [to, 20, zL]. This ap-
proach has enabled us to established Bogoliubov's type averaging theorems for
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various classes of differential inclusions in Banach space, including differential
inclusions in standard form, differential inclusions with fast and slow variables,
differential inclusions with retarded arguments and differential inclusions in semi-
implicit form.
' In the present paper we are concerned with the averaging problem for hy-

perbolic inclusions in standard form of arbitrary order which may contain partial
derivatives on the right hand side.

The paper coniists of 4 sections. After the Introduction, in Section 2 we
shall present some auxilinary results which may have by themselves an indepen-
dent interest. In Section 3, using the same approach as in [1g, ZO, 2L] we will
establish a theorenl on the continuous dependence on a parameter for the solution
set of inclusions with a'right hand side integrally continuously depending on that
parameter" Then in Section 4 we shall prove results on the mutual approximation
between the solution sets of the original and the averaging inclusions.

Throughout in the sequel Comp .R" (Conv R") will denote the collection of
all nonempty compact (convex and compact, resp.) subsets of, R, equipped with
the Hausdorff metric a(., .),  l l . l l  t tre norm in R', p(u, A) the distance from point u
to set A,lAl the modulus of the set.4, i .e. the number a(A,0) where d is the null
element of Bo. Integrals of multivalued maps are understood in Aumann sense.
For G € Comp R'", L(G) (C(G), AC(G\,resp.) wil l  denote the space of Lebesque
integrable (continuous, absolutely continuous, resp.) functions from G into J?".
For D € comp R", c(G, D) wil l  denote the set of al l  functions /(.) € c(G) taking
values in D. Finally, / : [0, a] is a segment of the real positive axis r?* : [0, +m).

2" PRELIMINARY PROPOSITIONS

We begin with some auxiliary results

Lemma l .  Let  D € Comp Ro,  L C R andlet  F(r ,u , . \ )  :  I *xRn xA - - -+ Conv.Ro
be a multivalued map satisfying the following conditions:

I) .lr is measurable in r for frxed (r, ));

2) F is uniformly continuous in u on D for fxed (2,,\);

3) There exists an integrable t'unction w(r) on I^ such that

lF ( r ,u , ) ) l  !  o ( r )  f o r  a I I  ( r , u , ) ) ;

a) F is integrally continuous in "\ at some given limit pointls € a, i.e.
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for every u € In, u e D.

Tlren for any family of continuous functions {u(a,}), } e A} c C(I'",D)
that converges uniformly with respect to r € I^ to a function u(r, .\e) as ) * )o,
we have: . '

In particular, if E c C(I*,D) is a compact subset of the Banach space C(I^),
then for any n ) 0 t.here exisfs a neighbourhood U(lo) of point "\e such that for
al l  ) e U()o) and u(.) e E

Proof. See [zo].

The argument is similar to that used to establish the corresponding result
i n  [ 11 ]  o r  [ t z ] .

Lemma 2. Assum e that F satrsfes aII the conditions of Lemma 7 and, in addition,

lP(r ,u , ) ) l  S M,  M > 0,  for  every ( r ,u , . \ ) .  Let  E c  C( I* ,D)  be a compact
subset of C (I^) " Then for any 11 > O there exists a neighbourhood U()o) of point
Is sucl? that for all ) € U()o) and aII u(.) € E the following properties hold:

1) For each mea.swable selection u(r) e F(r,u(r),\) there exists a measur-
able selection a(x) € F(r,u(z),.\6) satisfying

2) For each measurable selection O(r) e F(r,u(r),)6) there exists a mea-
surable selection a(n) e F(r,u(r),.\) satrsfying (1)"

r f  f

^r$"o(J ,ro,u,\)d,y, J 
,fu,u,.\e)dy) :o

0 0

r  f  f  ' r

, l im al  I  r fu,r(y,))  , \ )dy, I  r fu,r(y,)o),  \o)dy) =o.
A+ , \o  \  J  J

0 0

r f  f

"(J , fu,u(y), \ )dy,  
J 

, fu,u(y),) ,6)dy) =n.
o o

( 1 )
l  f  r l

l l  / ( , ( v )  -o (v ) )av l l sn  Yr€ I^ .
i l J

o
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Prool.

We need only prove the first assertion because thi proof of the second as-
sertion is similar.

Divide the interval 1 into I equal subintervals by the points ti, i : O,L, . . .;1.
L e t  G i i , . . . , i ^ :  { ( " t  s f i 2 r . . . r r ^ )  €  I m : t i r  1 r p l t i * * r ,  k :  L r ? r . . . r m ) .  T h e n
I* is the union of. t^ subdomains Gir,...,i* corresponding to all possible indices
o : (jtr.. ", jrn). To simplify the notation, whenever convenient we shall write Go
for Gir,...,i^. According to Lemma 1, for arLy rt ) 0 there exists a neighbourhood
D(fo) of point )s such that

l f  f  u
l l  I  , {y)au- I  oo(y)aal l<2^n. Q)
"d" d" 

'|l

Define now a measurable selection A(r),e F(x,u(x), lo) by sett ing

o ( r ) : u o ( a )  f o r  t € G o '

T h e n f o r a n y  s e  I m  ( i . e .  r  e  G o  f o r s o m e  o : ( j r . . . j * ) )  w e d e r i v e f r o m
(2)
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t f  f  r

"(  I  , fu,u(y), \ )d,y,  |  ,@,u(y),) ,s)d,y) =u v.\€rr( . \o),  v '  eI^.
\ J  J  /

o o

Hence, upon simple computation,

" (  [  F@,u(y ) , \ )da ,  [  ,@,u (y ) , \ s )dy \  < r^n .tJ" \s '  \v" '  "  
l "  

- '  - /  -

This implies the existence of a measurable selection uo € F(n,u(c),,\6) {x e G")
such that

t t  f  f  , ,  A  l * . , ,  f

l lJ,totou-lrrrtorl l  =D f" i l  /  (,(v)-ord)dall
O 0  

"  d r :O  d ,o=O G, r l . r _ .

z  L  E t r t

- l l  /  l ( ,(v) 
-utv))dsl l  <( '^z^i*ZMa*ft^.

Ei t tir,"
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To complete the proof it remains to select I

n < qlt^2m*1. !

Lemma 3. Let ? : I^ -r Comp Ro be a
w : I^ --+ Ro a measurable function on I^,
selection g(r) € P(a) such that

l l"(") - s(r)l l  : p(ar(r), P(")) for.almost every r € I^.

Proof .

The function r(o) : p(w(x),.P(")) is obviously measurable on /-, so the
map R(r) :  ,(r)+r(r).^9 with ,S : {u e !?" : l lul l  :  1} is also measurable on .I*.
By Lemma 1.7.5 in [Za] ttre rnap I :.1^ =- Comp R' defined by Q(") : P(u)nR(r)
is also measurable on .f- and by Lemma 1.7"7 in [Z+l there exists a measurable
selection g(r) € Q(r) which obviously satisfies the required condition. n

Lemma 4.  Let  qe I r i :L , . . . ,n ' r .  For  natura l  numberf i  we have

Hoang Duong Than

and n so that 2Ma^f L^ 3 nl2,

measurable multivalaed map and
Then there exists a measurable

(4)

l@ + t ) ,

(3)

(5)

(6)

where b : mal3"

Proof .

The inequality (3) is obivious. To prove (4) observe that
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8 t  t 2  A t

i  i r  g  \ n -  i  I  r / -  S  \ n + l
J J (o' * ez + ),,;) ffizdxr : 

J ;i1.(o' * \"')
O O  i : 3  O  i = 2

r  3  1 n * r f  i  1  r  * .  r z + r- ( o ' + t  " ' ) ' l o u , =  J  # ( u ' * f " ' ) ' ' d E L
i :3  b i=2

= ( I  , , )o* '  l@+ r ) (z  +  2)  s  * " ( i , , ) "  
'  
l@ *r ) (z  +  z) .

i =  I  i : l

Since n > t the inequality (a) is proved. By induction the inequalities (5)
and (6) can be easily proved in an analogous manner. n

Consider now a differential inclusion

0^u(r ) lAre F lu l ( r ) ,  r€  I *

with the boundary conditions

u " ( r ) : O  ( i : 7 , 2 , " " . r * ) .  ( 8 )

Here t r ' [u ] (c)  :  F( r , [u ] , ,u( r ) ) ;  lu l , :  (au1Q1aq, . . . r  Tu(r ) f  Er^ ,

0 2 u ( r ) 1 0 r t 0 r 2 , . . . , 0 2 u ( r ) l 0 r ^ - t 0 r ^ , . " " , O ^ - t u ( r ) f 0 n 2 0 r s . . . 6 r , . ) , i . e .  [ u ] ,
is composed of (2^ - 2) mixed derivatives of the function u(r) :  0kuf 0r;, " " . \r i*,
i  <  k  1  m  -  L ,  i a  1  i 1  f o r  I  <  j ;  u i 1 x l  :  u ( * r , " . . , t i - l , 0 , o d + 1 ,  " " . , n ^ ) ,  r  :
( r r r  r r ,  " , .  r f i ^ ) ,  0 n  :  0 r t 0 r 2  " . .  0 r ^ .

By a solution of the problem (7)-(8) we mean any absolutely continuous
function on f^ satisfying the inclusion (7) almost everywhere on -f- and satisfying,
moreov.er, the boundary conditions (8).

D e n o t e  C h : m l l k l ( m - k ) ! ,  H k : o o - , 1 k ,  I I :  i  C # - k H x , b : m a l l ,
/c: I

a: l(b + 1)* - L)lb,  ̂ :  (2* - L)". Then the fol lowing proposit ion holds.

Theorem 1. Assum e the maB F : I* x Rfr x Ro --+ Comp Rn satisfies t-he
following conditions:

1) F is measurable in x for each frxed (y,u) and there exists a function 1(r)
integrable on Im such that

(7)
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lF(r ,y,u) l  S r(c)  for  aI I  ( r ,a,u).

2) F satisfes a Lipschitz condition in (y,u) with constant X, i.e.

.  a(F(t ,yL,ur\ ,  F(r ,a ' , r r ' ) )  < x( l lyr  -  v2l l  + l l " t  -  
" ' l l )

Yr € I^,  y i  € Rd, ui  e R" ( i  :  L,2)"

Let w(r) be an absolutely continuous function on I^ such that

, ' ( r ) :  w ( n t r . . .  r f i i - L r } r x i + t r . . . r r ^ ) : O ,  i :  l r 2 r . . .  r n ' t , ,  ( 9 )

p(0^w( r )10 r , 'F [w l ( r ) )  < ] ,  t r>0  (10 )

for almost every n € I^. Then there'exists a solution u(r) of problem (7)-(8)
satisfying

l l , (") - ,( ,) l l  < )nb-- '"*p (- ' ( i  , ,)) lxo',  (11)
i : l

l lAku@) l0rr ,  .  .  .  Ar ik -  Akw@) lQr i r  . .  .  d" ;*  l l

<  ̂ Hb^-k - '  
" *p  ( " ' ( i  r , ) )  l xo '  (k  :  1 ,  2 , . .  " ,m -  L )  (Lz)

i : 1

for almost every r € I^.

Proof .

. The method of proof is in many respects analogous to that used in [6].
Fo r  eve ry  , :  ( r t , r z , .  " , , rm)  €  1 -  deno te

G,:frto,ril,- G';'-: 11 ( 
' i1' 

[o,ze]) x fl [O,ry-],
d : l  i = L  2 = i i - r * l  j : d 1 - f l

' 
2.2

where l ( lr
i  =2 t
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D e f i n e .  a  b i j e c t i o n  l " i ' . . . . ; r  :  { 1 , 2 , . ' . . , * -  & }  *  { 1 , 2 , . . . , * } l { i r , . . . , i x }
such that Li.,"'i.r(J) <. Li'...ir,(l) for i < t. Then defini gi'...;, : iy...i* + Rm
by se t t ing  g ' r t " ' ; *Qn- tc1 :  (8 r ,c2 , . . . ,8^ )  fo r  z^ -k :  (z l , zzs . . . , J^ - t ) ,where
7 i :  r r ' i f  j :  i s fo r  sgme l (L  <  t<k) ,  and 4 . -  22otherw ise ,  w i th  lbe ing  the
index such that i : !t,:"'e(l). To each function u(.) e L(I*) let us associate the
function aai1...i1, : G|...d& -> Rn defined by

.  nx , i t . . . ; * ( " * - k )  :  , (O lJ " ' t ,  k * - k ) ) .

tttjls.ro(") 
: w(r), by Lemma 3 we can choose a measurable selection uo(r) e

F[uol(r) satisfying, almost everywhere on .f-,

l lA*uo(x) l0r  -  uo(x) l l :  p(a^uo(r l f  0a,  r [uo] (z) )  S ) .

Then, setting

(13)

u r ( r 1 :

P?,...;*(") :

Pl,...;r(") :

I u ,
G,

I
cir  " ' i *

I
G i r  " ' d r

,)dE,

and not ing that  z ; ,  . . .n ix  < Hph(x) ,  for  s  € I * ,  h( r ) we have

' I

l l " ' ( " )  -  , r0(") l l  < \x1r2.  . .  r tm < ) ,H^h(n),

l l r '1, . . . r -  (")  -  pf l . . . ;*(") l l  S )odr .  . . r ;x 1 ) ,H^-1,h(x).

:  D r ; ,
r : l

(14)

(15)

Now by Lemma 3 we can take a measurable selection ,r(r) € F[urj(r) such that

l l ro(")  -  , t ( r ) l l :  p(uo(x),^F' [ur ] ( r ) )  atmost everywhere on.f-  ( ro)

and since [z]" contai ns Clmixed derivatives of ft-th order, from (f a) and (15) we
have
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l l ro( ')  -  , ' (") l l  5 a(r[uo]("),  r [ul ](r))  < AyHh(r).  ( tz)

G,
I 01i,...;* (z^-k)d2^-&, and

Git  " ' ' r

applying Lemma 4 yields the following estimates from (17);

llu'(r) - ut@)ll S rxa 
I 

npya S ),yHb^-r rr21x1 12,
G,

l lr3,...r- (") - pdr,...d* (c)ll I lxrl 
t 

h@^-k)dzm-k < \yH6m-x-r h2 (r) lz.
t ;  ' i  " i1

Further, choosing a measurable selection az(r) e Ffuzl(r) such that

l l r t ( " )  -  ,2@)l l :  p( r t ( r ) ,F ' [22] (c) )  a lmost  everywhere on I^ ,

we easily see that

l l r t (")  -  rr(r) l l  I  a(r[zt](r) ,  Fluzl(n)) < \y2Hdhz(x)12t.

Then, sett ing rs(") :  
J,o"(e)dz, 

p?,. . . ;r(")  = 
_,. / . , ,  

, r , , , . . . ,u(z^-k)d2*-k, and
G t L " ' ' k

using the same argument as previously we obtain

l l " t(")  -  u2@)l l  < xx, ndb^-L hg(r) f  t t ,  (ra)

lpi , . . . r-(")-  p?,. . . ;r(") l l  < )x2Hdb^-k-Ltt '3(r) lzt .  (1e)

In a general manner once u\(r), p!r...;r(r) have been constructed, we can take a
measurable selection aL(a) e Flutl(x) such that

l luc-t(") - ,2@)ll :  o(rt-r(e,f lut l(r)) almost everywhere on .r-,

and sett in1 uL+r : I  aL(r)n, pt!. l .rr(") :  I  u1,,.. . ,r(z^-k)d7,n-k, we can
G. cir.. . ;r

by induction verify that, similarly to (fa), (fO),

Setting u2(r) : I ur@)n, p\,...;r(") -
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l lrt(") - at-t (") ll S ̂ H d-r (xan@))e I tt for almost all c,

ll"t(") - ut-r(")ll s ^Hb^-t (xar)-, (yd.h(r))t+t 11t + t1t,

l lpf lL,_ (") - p\,.. . ;r(") l l  <  ̂ Hb^-k-'  (xdr)- '  (xan@))2+' 1 1t + t1r
fo r  a lmost  a l l  f i i t ,  j  :  L rZr .  . .  rk ,

p(uL+r @), F[ue](")) < ^H d-t (xan@))t I tt for almost all n.

From (20) it is not hard to see that the sequen c* {ue}io is a Cauchy sequence
in L(I^) and hence converges to some function ,(.) € L(I^) almost everywhere.
From (21) it follows that the sequence {"t}|o uniformly converges on .Im to
some absolutely continuous function u(c). From (22) it follows that the sequence

{ptr.. .r*}[o .onv"rges to some function pir.. . i*(r) for almost al l  r;n, j  :  L,2, .  .  .  ,  k
and for all values of the other variables. By virtue of Legesgue's Theorem (see [te],
p. 302) we then obtain

f f
u( r ) :  

Ju ( t )dz ,  
p i r . . . i * ( " )  :  j  r ) x ; r . . . ; k ( zm-k )d " rn -k .

G ,  G d r . . . i l

These relations show that pir...it(") : 0k u(r) llri, . . . Er;r for almost all z;,. ,
j  :  1,2,..  .  , /c and, taking account of (23) i t  is not hard to see that

0^u(r) l0r e Flul(r) for almost al l  x € In ,

i.e. z(r) is a solution of problem (7)-(8) since the boundary conditions (8) auto-
matically hold according to the definition of u(c).

In view of (21) we have

29

(20)

(21)

(22)

(23)

l l " (")  - , (") l l  s f l lr ' t ') - ue-'@)rl
2 : l
oo

| .laa*- t (xdr)-t (xd.t (r))e+t 11t + t1t
2 : l

^Hb^-t (xa') '-t exp (xdh(c)),

proving (ff). Since the relation (fZ) can be established in exactly the same way,
the proof of Theorem 1 is complete" n
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3. CONTINUOUS DEPENDENCE ON PARAMETER OF THE
SOLUTION SET OF HYPERBOLIC DIFFERENTIAL INCLUSIONS

Consider the hyperbolic differential inclusion

A^u@) l0a € F(r ,u(c) ,  , \ )

with the boundary conditions

u ' ( t ) : 6 ,  f  : 1 , 2 r " ' , n 1 ' ,  x € I ^ ,

w h e r e  F : I d x R ' _  X A - - + C o n v  R " r L C R .

(24)

Theorem 2. Assume that:

1) For frxed (u,l), tr' is measurable in q

2) For fixed (x,)), .F' satisfes a Lipschitz conditiotn in u with constant 1;

3)  lF(x , r , ) ) l  S M Y(x,u, ) ) ,  where M > o.

Assume, furthermore, that there exists a bounded domain D C R" such
that:

4) For some limit point )o € A we have

uniformly with respect to u € D, x €. I^.

5) There exists a neighbourhood D()o) of point )e suc.h that for any ) €
D(fo) any'solution of problem (zA)-(25) ties in the interior of D.

Then for any 11 > O there exists a neighbourhood y()o) C D(,\o) of point
Ae suc.h that for every solution u(x) of problem (24)-(ZS) with \ € U()o) there
exists a solution uo(r) of problem

(25)

, f  f  \
, l$  o l  I  r fu,u, \ )dy,  I  r fu,u, ) ,s)dy) :o
 + / \ o  \ /  J

o o

O^us(r )  I  0x € F(r ,26(r ) ,  )6) ,

" i o 1 " 7  
- - e ,  i :  L , 2 , . " . , n t .

(26)

(27)

satisfying

l lq(") - ,o(")l l  S 'r Yr € I^, (28)
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and convercely, for any solution uo(s) of problem (26)-(27) the,re exr'sts a solution
u(r) of problem (24)-(25) satisfyins (28).

Proof .

Denote ,by E the set of all absolutely continuous functions. u(c) on .I- that
sadisfy the boundary condition (25) and possess mixed derivatives 0^u(r) l0o such
that lfd-u(r)lArll 3 M for almost every r € In. From the generalized Arzela's
Theorem [13] it follows that -E is a compact subset of C(I^). Let u(z) be an
arbitrary solution of problem (24)-(25), so that u()e E. According to Lemma
2, for every ?r > g there exists a neighbourhood Ur(lo) of point .\6 such that,
whenever I e Ut(.\6), there exists a measurable selection u(c) € F(x,u(r),, \6)
satisfying

ll l,' {u*"(a) lav - a(v)) orll s r, Yr e I*. (2e)

Define now a selection fo(r,u) € F(r,u, )o) by the relation

l la(")  -  fo(r , " ) l l  :  o(o(r1,F(2,u, . \6))"

By virtue of the convexity and compactness of .lr(r, u, )o) such a selection <ixists
and is uniquely defined" Furthermore, by a theorem of Himmelberg [8] /o is
measurable in s for fixed u and since F is continuous in z, it follows from a known
result (see [6], Lemma 5) that /s is continuous in u for fixed c" Using the condition

l l /o1",r) l l  < M Y(r,u), we deduce from the just obtained result that the equation

0* us(x) I  0r :  fotx,ro(")),
u ' o @ )  :  g  ( i  :  1 ,  2 , .  " . , m ) ,

admits a solution uo(r) on I^ which is obviously also a solution of problem (26)-
(27). Furthermore, we have

l la ( " )  -  A*us(r )  la" l l  :  p(u(n) ,  F( r ,u6(z) , , \s ) )
< a( t r ( r ,u( r ) , , \6) ,  F(n,u6(r ) ,  )o) )  S r l l " ( " )  -  uo(r ) l l .
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Hence, taking account of the estimate (29) we obtain
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(30)

(3 1)

(32)

ll,(") - uo(c)il : ll I lu*"{r)lay - a^us(il llaorll
o

, , f  -  2
= ll / la^u1y11aa -o(y)lrrll * ll / trtrl - a^uo(y)tarldull

o o

7 r
S n r+  |  l l a ( y )  -  0 ^us (a ) l au l l da3e t *1  l l l " ( y ) - " o (a ) l l d y .

J J
0 0

By virtue of the gcineralized Gronwall's Lemma [S] we can write

z -
r f r ^

ll"(") - uo(,\l S r, l, * 
J "*p (r fl ("i 

- vi)dol srr(r +exp(1a-)).
o  / = l

By taking nt 1n(r + exp(1 o^))-t this proves the f irst assert ion of the theorem.
The second assertion is proved simila^rly. n

Note that the above theorem includes both Theorem 1 in lZZl and Theorem
1 in [tf] as special cases.

4. AVERAGING METHOD FOR HYPERBOLIC INCLUSIONS

From Theorem 1 we can now derive a Bogoliubov type averaging theorem
for the problem

O^u(n) lAx e e^G(r,u),

u i 1 r 1  :  o  ( i : 1 , 2 , " . . , f f i i  r  e  [ 0 , + - ) * ) .

Theorem 3. Assume that the right hand side of problem (30)-(31) and that of
the problem

a^u@)lar e e*G(u(x)),
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and

a i ( a )  - g  ( i : 1 , 2 , . . . , r n i  r  €  [ 0 , + o o ) * )
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(33)

satisfy the following conditions:

1) The map G : [0, **)* x Ro --+ Conv R' is mea,surable in n for fixed u
and satisfres a Lipschitz condition in u with constant 1; in addition lG(r,")l < tt't
V(r, u) with M > O;

2) The map G : Rn --+ Conv R" satisfres a Lipschitz condition in u with
constant 1; in addit ion lG(u)l3 M Vu.

Assume also that a compact domain D, C Rn exists such that

3) - l iry "(# I G(r,u)dx,G(t)) :0 uniformly withrcspect tou € D;.  ?**oo 
[o, i ]_

a) Any solution to problems P0)-(31) or (32)-(33) Iies in the interior of D.

Then for any 0 ) O, L > O therc exists c0 ) 0 such that on every domain

[0, 16-1]* with o ( e ( es, for any solution u(r) of problem (30)-(31) therc exisfs
a solutionu(r) of t.he inclusion (sZ)-(sS) satisfying

l l " (")  -a(") l l  S'r ,  (34)

and for any solution u(r) of problem (32)-(33) there exisfs a solution u(r) of
problem (30)- (31) satisfying (34) "

Proof .

By the change of variable z : rle the problems under consideration take
the form

O*u(z) l0z € G(zle,u(r)) ,

u i 1 r 1  : o  ( i : r , 2 , , . . . , m i  z e l o , L l ^ )

0*u(z) laz eG(a(z) ) ,

a i  ( z )  :  0  ( i  :  r , 2 ,  .  ; .  tm i  z  e  l o ,  L l * ) .

Setting

we easily see
follows. n

F ( z , u , e ) :  G ( z l e , u )  i f  e  >  o ,

F ( z , u , e )  : G ( u )  i f e : 0 ,

that .F' satisfies all the conditions of Theorem 2. The conclusion
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Note that Theorem 3 includes the results in [fO] and [ZS] as special ca^sies
when nt,: I and m : 2, respectively.

Consider now the differential inclusion

0*u( r ) l0 r  ee^F(n , [u l , , r ( " ) ) ,  o  (  e  (Ee (35)

with boundary conditions

u ( " ) l r , = o : g ; ( o ) , ,  i : L , 2 , . . . , f f i  ( 3 6 )

where , (c)1" , :o  :  u( t t , . . . , f i i - r t  O,  r i r . , . r r^) .  We assume the funct ions g; ( r )

to be differentiable in each variable and such that g;(")lrr:o: gi@)lr,:s for all
; r j .

Setting

fTL

g ( n ) :  \  o ; , ( " )  -
i r : l

, ( - 1 ) ' '- * l

(37)

(38)

1 $
q t L

t r : 1

( (

(p ,  gu"4)1" , ,=o* . . .
i 2 + i  I

f
d r : l

,71

\-
L

i m  =  I
i o t * i i ,  i = L , 2 , . . . t t u - l

o;, , .@)) 1", ,o_,  =o. . .) r,,, :o,

we associate problem (35)-(36) with the following one:

S*u(r) lar e e^F(a(r)),
u ( r ) l r , : o  :  0 ,  f  :  1 ,  2 , " . . , r n ,

where

r@):rr51# 
I  

F@,ls l , ,u+s(x))dx.  (se)
[0 ,?] '

From the results in Section 2 we can derive the following averaging theorem
for problem (es)-(e0):

Theorem 4. Assum e that the set-valued mapF : [0, m)- x R x R^ --- Conv .R'
satisfes aII the conditions of Theorem 1 and, furthermore,lF(x,y,u)l S M (M >
0) for aII (r,y,u). Let D € comp Rn, Dr € comp Rfr be two domaiins suclr that:

t) the limit (39) exists, uniformly with respect to u € D;
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2) ^ny solution of problem (35)-(36) oq of problem (37)-(38) Iies, together
with its derivatives, in the inteilor of D x D1.

Then for every I ) O, L ) O, there exists &rr es ) 0 such that on any

[0,tre-11- witho ( e ( es : for every solationu(r) of prcblem Ps)-G6) there
exists a solution u(n) of problem (37)-(38) satisfying

l l " (")  -  g(r)  -a(") l l  S'r ,

and conversely, for every solution u(r) of problem G7)-PB) therc exists a solution
u(r) of proble,m (35)-P6) satisfying (40).

Proof"

If suffices to prove the first assertion of the theorem, since the second asser-
tion can be proved in an analogous manner.

Let'u(u) be any solution of problem (35)-(36). It is easily seen that, by
means of the substitution u1(c) : u(r) - g("), problem (35)-(36) can be converted
into the following form:

O^ur ( r )  l0^  r  e  e^  F( r ,  [ r r t ] "  +  [s ) , ,u t ( " )  +  g ( r ) ) ,

(40)

(41)

(42)u r ( r ) 1 , , : o :  d i  f  : 1 , 2 , . . . , m .

Consider also the problem

O^uz(r )  lAr  €  e^ F(r , [s l , ,uz(" )  +  g(" ) ) ,
u r ( r ) 1 " , : o  :  , ,  i  :  1 , 2 , .  . .  , m .

From the fact that itre map F is bounded by the constant M we get
estimate on [0, Lu-t]^.

(43)

(44)

the following

l lAku i@) lQr i t  .  " . f l r i x l l  <  L^ -kekM,  j  :  L ,Z .

Hence,

l l [ " i ] , ] l  1 c e ,  j : r , 2 ,

m - L
with c : M D clnL,n-iri-r "

i : l

(45)
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Let u1(r)  -  
" (c)-9(c),  

i .e.  ur(s)  is  asolut ionof problem (ar) ,  (42).  Then
in view of (45) we can write:

o(0* u r(Q /  0 r ,  e^ F (x, ls l , ,  ut(")  + o("))

< r^ xll["t], l l  1 e^+L yv.

Therefore, by Theorem 1 we can find a constant c, independent of e, L, for which
there exists a solution ur(r) of problem (+r)-(++) such that on [0, Lt-r)^ we have

l l " t ( " )  - uz ( r ) l l  < . ' .

By Theorem 3, for qfZ there exists 3.rr a1 ) 0 such that on any [0,.Le-l]- with
0 < e ( e1 there exists a solution u(r) ot problem (97)-(98) satisfying

(46)

(47)l l" '(") -a(")ll s qlz.

Combining then (46) and (a7) yields

l l " ( " )  -g( r ) -u( r ) l l  :  l l r , ( " )  -a( " ) l l  S  l l r , ( " )  - r r ( " ) l l
+ l lu2(x) -a(") l l  < r,  + q lz"

The proof of the Theorem is complete by choosing e6 :  min { tr ,  *} .
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