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ON THE MAXIMAL INEQUALITY
PHAN VIET THU

Abstract. Let (O, V) be a pair of Young’s functions and (p, ¥) their density functions
such that ;

sup () =K <o and £(u) = up(u) — ®(u) = ¥[p(u)]
z€ER 4

Let { X} be an integrable martingale. Then, the following mazimal inequality holds:

1
E[E( sup IXkl/pIIanb)] < —
1<k<n / p—1

where p > 1 is a constant and || - ||o denotes the Luzemburg’s norm.

1. INTRODUCTION

Throughout this paper we shall work with a fixed probability space (02, A, P)

and a sequence of o-fields By C B; C --- C B, C --- C A, such that \/ B, =
Bes € A. p

The martingales or submartingales are always supposed to be adapted to
the sequence of o-fields {Bn}neN'

; For a pair of Young’s conjugate functions (®, ¥), we shall denote by ¢ (resp.
1) the density function of ® (resp. ¥), and we shall set by ¢ the increasing function
from R4 to R, defined by

£(u) = up(u) - 8(u) = ¥[p(u)]. : (1)

For a sequence of random variables {'X,,}n en Ve shall set
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Sn = sup |Xkl
1<k<n

Let'“X ” o e the Luxemburg’s norm of the random variable X. Our aim is
to prove that if ® is a generalized Young’s function, that is

sup p(z) = K < 400, (2)
$€R+

and {X"}néN is an integrable martingale such that 0 < || X,|l¢ < 4+o0, then

B oY it 3)

where p > 1 is a constant.

Tt is well known that the inequality (3) was proved by J. Neveu in the case
where ® is a Young’s function, that is

lim o(z) =+

z—+o00
see [3]. In the case ®(t) =tP, 1 < p < oo, from (3) we obtain

p
||Sn”p < ;)—_“I“Xn”p (4)

withp:—g——-
p~1

For ®(t) =t log™(t), we get

E[ sup [an] < —(1+ sup E[|X, ] log*|X.[]). (5)
nelN g =1 nelN

2. YOUNG’S FUNCTIONS
Let ¢ : R4y — R4 be an increasing function, continuous from the leftb

and p(0) = 0. Tts primitive function

: |
2(t) = [ ¢(o)dz (6)
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is a continuous increasing convex function on R and $(0) = 0. Suppose that

lim 1 o(z) = +oo (7)

I—00

and we define a function ¢ : R4 — R, being the inverse of © by

¥(u) = sup{z : p(z) <u} for every u > 0. (8)
It is clear that ¥ is increasing continuous from_the left, ¥(0) = 0 and
lim 9(u) = +oo.

u—-+00

Denote the primitive function of ¥ by V¥, i.e.

U(v) » /w(u)du, vER,. (9)

It is easy to verify that

tv < O(t) + ¥(v), t,veR, (10)

(Young’s inequality) and

tv=90(t) + ¥(v) & v € [p(t),p(t +0)] &t e [Y(),y(v+0)] (11)

for every t,v € R,. Furthermore,

¥(v) = b [tv — ®(t)], (12)
o(t) = uselg) [tv — U(v)]. (13)

The pair (®, ¥) is called a pair of Young’s functions, ® (resp. W) is called
the conjugate function of ¥ (resp. ®). The function ¢ (resp. 9) is called density
of & (resp. V). :

A Young’s function @ is called generalized Young’s function if its density
function ¢ satisfies the condition
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sup p(z) = K < +00. S {(14)
I€R+

In this case the density function 1, inverse of ¢, is obtained by

| (15)

W)= sup{s : ©(s) <t} ift< K
gy g ift > K
and the conjugate function of ® is
P(t)dt ifz< K
U(z) = { ‘ (16)
+o00 ifz> K
The composition
o [y(2)] = 2¥(z) - ¥(z) (17)
can take the value +o0o. But the composition
¥[p(a)] = 2p(z) - 0(2) (18)

is finite for all z € R .

3. ORLICZ SPACES
Let (0, A, P) be a probability space and (®, ¥) a pair of Young’s functions.

Assertion 1. The set L®(0, A, P) of the equi{/alence classes of reals, random
variables X defined on (1, A, P) for which exists, at least one real number a > 0
such that

: X
E{@(—' |)] &y (19)
a
is a subspace of L'(Q, A, P). Furthermore, the expression

|X|e = inf {a : a>0,'E[¢(@)] <1} (20)

a
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defines a norm on L® being the Luxemburg’s norm of X, and there exist positive
constants Cy and C such that

C1[|X|x < [ Xle < Cooll X]loo (21)

for all random variables X € L®.

The space L?® is complete and is called Orlicz space. For more details about
the Orlicz spaces and the proof of this assertion see [2], [3].

4. MAXIMAL INEQUALITY

In this section we will use the notations as introduced above.

Assertion 2. Let ® be a generalized Young’s function and {X"'}nGN be a mar-
tingale satisfying 0 < || X,||¢ < oo, n € N. Then, for every constant p > 1

2le( )] Somr @

Pl Xnll@ p—1

Proof.
It is clear that

£(u) = wp(u) - 8(u) = up(u) - [ w)dt = [ 1dp(t)
for all v € R4. Furthermore, we have
8./
E[E(%)] = E| / tdp(t)] (e >0)
and .
| . S
e -5l | et
: kSh o8, onp

SERERE) )
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o[l (%)) < om[o( 5] +or{ee(32)]}

a a

where 0 < b < 1. From (24) and (25) we have

ple(%)] <onle( )] +omle(%)]

N E[&(%&)] < 400 then

- o) <onfo (221

a a

67

(24)

(26)

(27)

The inequality (27) was proved under the condition (26). We shall show

that it always holds under the condition of the assertion. In fact, we have

1?}?_%‘1; min (le|,C) = min (Sn,C) -~ 8

and by the same reasoning as above we obtain

(28)
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It follows from the Young’s inequality that

B[E(Z20 )] < apfa (Kl et

where 0 < b < 1. g
It is clear that
ele(mR05))] < 5[ ( )] < o
So, for every constant 0 < b < 1,
nos(EO] Cisfe( B
Now, letting C' 1 oo and using the Beppo-Levi theorem we have
ol (B0

which implies that

The proof is complete.
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