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ON FINITE CODIMENSIONAL SUBALGEBRAS . .
OF ASSOCIATIVE ALGEBRAS ="'

ABISH MEKEI and ROBERT WISBAUER

Abstract. In this note we consider the mutual influence of properties of algebrd and
their subalgebras of finite codimension. For an infinite dimensional algebra R with finite
codimensional subalgebra A we show: R is semiprime if and only if A is semiprime and
either R has an essential sdeal I which is semiprime asaringand INA#0,or R=K&1
with ideals I, K C R, such that K is a finite dimensional semiprime ring and I C A.

R is right primstive if and only if A i3 right primitive and for every ideal of R contained
in A the right annshslator is zero. '

If A is semiprime with Krull dimension, then R is a Goldie ring.

1. PRELIMINARIES

A subalgebra A of an algebra R over a field F is said to have finite codimen-
ston if the vector space (R/A, +) is finite dimensional.

Similarly, a subring A of a ring R is said to have finite indez if the abelian
group (R/A,+) is finite. :

Properties of finite codimensional left ideals were considered in [1] and [3].
Subrings of finite index were investigated in [2], subalgebras of finite codimension
were studied in [4]. In [1], A.I. Malcev shows that if an algebra R over the field
F has a left ideal H of finite codimension and H is representable by matrices
over some field, then R is also representable by matrices over a field. In (3], S.A.
Amitsur and L.W. Small show that in an affine PI-algebra the finite codimensional
property of a left ideal is equivalent to the algebra R being algebraic over the left
ideal..

The finite codimensional property of an algebra has connections with prop-
erties of representability and finite dimensional (finite) approximability of algebras

(rings).
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Proposition 1.1. Let-R be an-algebra.over aifield F. Then there 1s an R-module
M which is finite dimensional as an F-vector space if and only if R has subalgebras
of finite codimension.

‘One part of the Proposition is well-known, the:converse follows from [4].

From this Proposmon it follows for exampie, that the s1mple F—algébra R
has an R-module M which'is ﬁmte dxmeﬁswnal as an F-vector space If anﬂ only
if B 'is a finite dimensional algebra. over F.' ‘

If R is an infinite dimensional s1mple algebra . over a ﬁeld F then every
R-module M is infinite'dimensional as an F-vector space. :

An algebra may also have:many finite codimensional subalgebras whichiarae -
not approximable by finite dimensional algebras (i.e., are not representable as a
subdlrect product of finite dimensional a.lgehra.s)

For example, let R = F(Zy, .. Far;-:) be a re]atxvely free algebra over
the field F, with the T-ideal T(R) = {zyz}T Recall that an ideal 7 in the free
associative algebra F[X] with X = {z,,...,2,,...} is called fully invariant or a
T-ideal if it is invariant ;jander all algebra. endomorphlsms of F[X ] Consider the
F-1deal M generated by ;

{z2,i € N; all finite sums Z 045TiT;, Where ;€ F with Z,aij’,_;g}\;i o

Then the factor algebra R = R/M also sa,tlsﬁes the 1dent;ty zyz = 0 and
every element of R has the form a = E o ZT; +PT1 T3, For every m €' N, m'> 1 the
algebra R has an ideal Am with dim R/ Ay = m.and R is not ﬁ,m,tely a.ppro;qmable.
because every ideal of Rcept.almi the. element EpIro] 1o sqoit1esas od) sgte fouis

Notice that F[X] ‘has many finite codlmenswnal subalgebras and appro-
ximable finite dimensional algebras.

: 2FINITE COEIMENSION,AL ;SILBA,LGE]BRAS laatls
We now consxder the mutual 1nﬂuence of some pmperties of algebras a.nd
their finite codimensional subalgebras.

4‘1\‘-‘1

Lemma 2.1. Let R be an: mﬁmte dzmenswnal algehra-evover a ﬁeld with. ﬁmte
cod:mengnonal subalgebra A, Then e dbniat

(1) Ithspnme, thenA:s a/pnmaalgsbra. kol shia bt F it
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“(2) If R is semiprime, then A‘is a semiprime algebra. ' - ' ogoTy

Proof.

(1) LetvzAy =0; where 7,y € ‘AL By [4]; A contains an ideal I of the
algebra R of finite codimensmn Then we have ;zIy = 0. From this it follows

that RzIyR 0 and 0 Rzl yR s} R:nRIyR Ris pn;ne, consequently we have
RzR =0 or IyR = 0. From this relatlon we get T = 0 ory =0. This shows that/
A is a prime algebra.

(2)Let R= [ R/ P,, ﬂ P =0, where the P; are prlme ldeals of the algebra
i€l
R. Let R, R/ ﬂ, ¢ € I, and consider the subalgebras

.A (A+ P)/P: = A/(AnP)
of the algebras R, If A + P;=Rforsomei€l, then

Ty R/P, (A+P;),/P; L A/(ANP) .
is a prime algebra. If A+ P; # R then R/P; has a subalgebra“

(A+ P)/P A/(P NA4;) =
of firiite codimension. By (1), A; is prime.

Note that N (P NA) = (O), and A; = A/(P N A;) are prime algebras for all
i yisghol s 3 ' 5ot 5]
1€ 1, congeqqeptly A is semiprime.. - : k
The converse statémerits of this lemima aré not true. For finite dimensional
~ algebras the assertions of Lemma 2.1 are also false'in general. O

Ezample 1. The matrlx algebra M, (F)i is prime, but the subalgebra of t‘,he ‘upper
~ triangular matrices is not prime.

Ezample 2. Let A be an infinite dimensional semlprune (prlme) algebra and B
be a finite dimensional nilpotent algebra. Then the direct’sum R = A @® B shows
that semiprimeness (primeness) of finite codimensional subalgebras does not imply
semiprimeness' (primeness) of the algebra R. ‘

Theorem 2.2. Let R be an mﬁmte dtmcns:onal algebra over a ﬁcld F and Aa
subalgebra of finite codimension. - i

(1) R is a prime algebra if and only if A is a prime izlgc’bri’z and contains an
essential two-sided ideal of the algebra R. :



On finite codimensional subalgebras 97

2), R is semiprime if and only'if A is semiptime-and either * . ... ..
R has an essential ideal which is semtpnme as a ring and has a nontrivial
mtersectzon with A, or '

R has the form R = K @ I where K s a ﬁmte dtmcns:onal sem:pr:me ring
":‘suchthatI K<1R and TC A.

Proof mr R is pnme, then A is prime by Lemma 2.1.

By [4 ] A contains’a ﬁmte codimensional ldeal I of the anebra. R Slnce R
is pnme 1t is clear that 7 i is essentxal :

. Conversely, let. A be pnme and. I < R such that, 7 C A a.nd I is essentlals in
R. Let M, H<R and M-H = (0 ). Then MNI =M, # (0) and H, = Hn L (0)
are ideals in A and M H, = (0). This is a contradlt;tlon to A being prime.
Consequent]y M (0) or H= (0) a.nd R'is a ‘prime a.lgebra, %

v (2) Assume R is semiprime. Then by Lemma 2.1, A is semiprime: a.nd by [4]
A contains an.ideal I of R which has finite: codimension. If I'is not an ‘essential
ideal'of Ry then there is an ideal L; of Risuch that L, nI = (0). Then it is-clear
that Lyl = IL; =(0) and R contains the. 1deal Ly ® 1 = Iy, If the ideal I, is
not essential, we continue the process. After a finite number of steps we, /obtain an
1deal .

K Lm@Lm_g@ ®L1$I

where fOr every : = 1,2,...,m,dimp L; < oo and either K is essential or R = K,
because dimp R/I is finite. ’

In the first case; K is essential and K N A # (0) and K is sem*lprimefas ‘a
ring. In the second case, R has the form R=L® I where L=L,®+++® Ly, Iis
an ideal contained in 4 and of finite codimension, and L is an ideal of the algebra
R which is finite dlmensxonal over F.

Conversely, let A be a semiprime subalgebra of R. Then by [4], A contains
an ideal I of R which is also of finite codimension. By Lemma 2.1, [ is a semiprime
ring. If R has the form R = - K & I where K 4R, 'K is finite dlmenswna.l over
the field F, then R is semxpnme Let R have a non-trivial essential ideal I,
which is’semiprime as-a ring and ‘intersects with ‘4 nion-trivially. - Suppose R is
not semiprime. Then R has a nilpotent'ideal N such that'N #° (0). Sincelyis
essential, Io N N is non-zero and also a nilpotent ideal of the semiprime ring Jy, a
contradiction showing that R'is semlpnme A

Theorem 2.3. Let R be an infinite dimensional algebra over a ﬁeld unth ﬁmte
cod:mens:onal subalgebra A.

Thcn R 35 right pnmmve if and only tf Aidsa nght primitive algcbw,g and

¥
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for every ideal K of 'R contained in A; the right annihilator is zeroy:.e.,
Anh,K ={re R‘| Kr= o} =0.

Proo/ Let R be nght pnrmtlve a.nd M a falthful n:reducxble R-module By 4], A
contains an ideal I of R, and it is clear that M is a faithful A- and I-module. It is .
well known that M is an irreducible I-module, gonsequently M is an 1rreduc1ble
A-module and A is right prlmltxve

Moreover for every non-zero ideal K <1R M = M K= mK for. SOme meM.
If there exists an non-zero z € R with Kz = 0, then Mz ='mKz = 0 and so
the' R-module M s not faith ul “This contradiets ‘the prlmmvrty of the algebra,
consequently Ann,(K) =0. 4 ' R0 LU LS N A

Conversely, let A be a right prmuf ve subalgebra of the algebra R a.nd M
‘a faithful, irreducible A-module. By [4], A contains an non-zero ideal I of the
algebra R (of finite codimension). As an ideal of Ay I is primitive-and, for some
m e M, M= MI = mI is a faithful irreducible F-module. "From the 'condition
“Anny(I) =(0) it follows that M ='mIis a faithful R-module: Irreducibility follows
from the condition A C R. Consequently M is a faithful irreducible' R-module*a‘nd
Ris rlght primitive. O

Note that the condition Ann,(K) # (0) is necessary: Consider an algebra
R = A ® Fe, where A is a right primitive algebra and Fe is a nilpotent ideal,
one-dimensional over F. Then R is not primitive, and Ann,(A) # 0.

CorOHary 2:4. Let R F[:cl, : ,a:,,],:»n >'2; be a finitely generated free asso-
- ctative algebra. Then - 3 : ;

Fics Gip sk

(i) every finite codimensional subalgabra of R :s przmztwe and i
(¥s) every finite cod:mcns:onal subalgabra of R contams a T-zdeal of R |

Proof. Statement (i) follows from (7], [4] and Theorem 2.3, whlle (u) is also a
consequence of [4] and properties of polynomial identities. 0

. Now we consxder theinfluence of subalgebras of finite codtmensxon thh Krull
dlmensxon We denote the Krull dimension-ofian R-module M by K (M ) Note

T_:

K (M) = sup{K(N), K (MIN)}
for any submodule N e M (see [5]) ; ;

Theorem 2.5. Let R be an infinste dtmenszonal algebra over the ﬁeld F and Aa
subalgebra of finite codimension. ' :
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If A is semiprime and: has: Kmuz;dimgusion,-'-the;nz;R.-v_is a Goldie ring and R
can be embedded in an artinian algebra. . Sraee e 5o

Proof. Let the A-module A have Krull dimension. By {4}, A contains an:ideal [
gebra R with finite codimension. Then ; ol

_ K (A) = sup{K(AfT); K(al)}s oot oot oot 10
Sinéé dimip AT < co; we'have K(AJT) 20'and K (4)= K(,I). Considér T a5
an R-module. Then K(R) = sup{K(R/I),K(rI)}. Since dim'R/ I' < 00, weé have
K(R) = K(rI)- '
Every R-submodule of the R-module I is an: A~module; consequently. K(rI)
exists, and it is well known that K(rI)}<K{(ad). oo omeind serianiond
Since A is a semiprime algebra with Krull dimenision, then by [5],A is a
semiprime Goldie ring. :

Assume R be a semiprime algebra. Since it has Krull dimension, R is a
semiprime Goldie, and an order in an artinian ring. - . wablE 2@aus

Now consider the case when R is not semiprime. Then R has a nontrivial
nil radical N(R), and by [5], N(R) is a nilpotent algebra over the field F. Being a
semiprime algebra as an ideal, I is semiprime as a ring, consequently N(R) NI =
(0). From dimp R/I < oo follows dimp N(R) < co. Then R is a subdirect sum
of the two algebras R, = R/N(R), which is a semiprime algebra, and R; = R/I
which is a finite dimensional algebra. Consequently R is a subalgebra of a direct
sum of algebras, R = R/N @ R/I.

‘It is not difficult to show that the algebra R has the ACC(Ann). Then
the subalgebra R also has the ACC(Ann) [6]. It is well known, if an R-module
has Krull dimension, then it has finite uniform dimension [5]. Consequently, the
algebra R is a Goldie ring. R/N is a semiprime Goldie algebra, hence it is an
order in an artinian algebra. R/I is finite dimensional, therefore it is artinian.
From this it follows that R can be embedded in an artinian algebra. [J
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