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RINGS WITH CERTAIN MODULES CS

PATRICK F. SMITH

Abstract. kt R be a ring uith identity and M a unital lefi R-mduJe. Then M is a CS-

mdule if eaerg submdule is essentiol in a dircct surnrnand, ol M. Our concern is to study when

certoin classes ol left R-mdules cotuist of CS-mdules. In prticular, we coruider when oll

finitelg (rcspectiaelg, countdlg) generated prcjectiue Ieft R-modules arc CS, when all projectiue

teft R-mdules ott CS, when all singular lefi R-mdules are CS and uhen all finitelg generated

left R-mdules arc CS. To help the rcader, we haae included backgrou,nd mateiol, a guide to

the literwtutt and an ertensiue bibliqrqhy.

Throughout, all rings are associative with identity and all modules are unital

left modules (unless stated otherwise). Let.R be a ring and M a left R-module.

A submodule K of M is called closed (in M)provided 1{ has no proper essential

extension in M. The module M is called a C S -module provided every closed

submodule is a direct summand.

Let -R be a ring (with identity). For any (left)

the isomorphism class of M. Let C be a class of
collection of modules such that p0 € C and lM) g

p0 is the zero l?-module. Any module belonging to

R-module M,let  [M] denote

left R-modules, i.e. C is a

C whenevet M € C. where

the class C will be called a

C-rnodule. We are interested in the following general question:

'for which rings ,R, is every module in a given class C C S?'

we shall consider this question in the following particular cases:

( i )  c :  [nn]  u  lao] ,
(ii) c is the class of finitely generated projective left R-modules,

(iii) C is the class of countably generated projective left .R-modules,

(iv) C is the class of all projective left E-modules,

(") C is the class of singular left R-modules, and



(vi) C is the class of all left .R-modules.

As we shall see, it is natural to consider some of these cases when the ring r? is
left nonsingular.

Before embarking on this investigation, we make two comments. The first is
that if R is any ring and C the class of injective (more generally, quasi-injective)
left R-modules then, of course, every c-module is cs. secondly, what about
nonsingular modules? Our first result shows that in the case of left nonsingular
-i?, nonsingular modules will be taken care of in the prograrnme ougined above.
Let M be a left,€*module. Then M is cal led x-cs ( iespectively, f initely x_cs,
countably x-c^g) i f  every (f inite, countable) direct sum of copies of M is cs.

Proposition l. Let R be any ring. consid.er the following statements.
(t) nR is (f initely, countably)X-CS.

(ii) Euery (finitely generated, countably generated) Ttrojectiue left R-module
rs  CS"

(iii) Euery (finitely generated., countably generated,) left R-module is a direct
sum of a projectiue module and a singular module.

(iu) Euery (finitely generated,,
dule is projectiue.

countably generated) nonsingular lef t  R_rno_

Pat,rick F Smitft

g enerated) nonsingular I eft R- modul e

If, in adrlition R is left nonsingular

of a C,S-module is also a C,g-module

(u) Euery (finitely generated, countably
is CS.

. Then (i) ++ (ii) + (;i;) + (iu) + (u).
then the aboue statements are equiualent.

Proof' We shall prove this result in the general case. The proofs for finitely
generated modules and for countabry generated modules are similar.

( i )  + ( i i ) .  Because any direct summand
(see, for example, [32, proposit ion 2.71).

( i i)  =+ (i i i ) .  Let M be any f i-module. There exists a free B-module F and
an epimorphism cp : F -, M. Let K: kerrp. There exist submodules p,pt of F
such that F : P 0 P, and l( is an essential submodule of p. Now

M : p ( F ) : p ( p ) e p ( p , ) ,

where p(P)  = PlK,  so that ,p(F)  is  s ingular ,  and p(pt )  = p, ,so that  w( I r t )  isprojective.

- 
( i i i )  =+ (i).  Let F be any free,R-module. Let K be a closed submodule of 1,,.

By hypothesis, F/l( :  (p lK)@(s I K), for some submodules p, s of F, containing
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K, such Lhat PIK is projective and SIK ls singular. Because, FIP = SlK,\t

follows thal, F I P is singular, and hence P is an essential submodule of F. Therefore

K : P n ,S is an essential submodule of S, and hence K : S. It follows that

FIK : PlK, so that FIK is projective, and K is a direct summand of F. Thus

F is a C^9-module"

(i i i )  =+ (iv) '  clear'

( iv) + (v). Let G be a nonsingular left R-modrrle. Let H be a proper

submodule'of G. Let N denote the submodule of G containirrg H such that N/F/

is the singular submodul e of G I H " It can easily be checked that .t/ is essential in

N and that the module G lN is nonsingular, hence projective. It follows that N

is a direct summand of G. Thus G is a C,S-module.

If  R is a left nonsingular r ing then it  is clear that (v) implies ( i).

In Proposit ion 1, (") + ( i) fai ls in general. I t  is easy to give an example'

Let -R be a commutative local r ing with unique maximal ideal J and suppose that

J is ni lpotent. Then .r? has no non-zero nonsingular modules, so ( iv) and (v) hold

vacuously. On the other hand, it is clear that the .R-module r? is a CS-module

if and only i f  i t  is uniform. For a part icular example, take K to be any f ield. let

S : K @ K and let .R denote the subring of the ring of all? x 2 matrices over ,5

consist ing of al l  matrices of the form

k  ' l
0  k )

with k in 1{ and s in S. Then -R sat isf ies ( iv) but not ( i ) .

We now begin our investigation outlined above by examining when the left

R-module R is CS; i t  is natural  to say that the r ing R is a lef t  CS-r ing in this

si tuat ion. Let -R be a r ing and M a lef t  (r ight)  R-module. Then we shal l  wri te

t n ( * ) : { r € R  :  r m : 0 }  ( r e s p e c t i v e l y ,  r 1 ( m ) : { r € R :  r n r : 0 } ) .

When there is no ambiguity we write (.(m) or ,(*). First we prove a lemma due

essential ly to Utumi f501.

Lemma 2. Let R be a let't nonsingular ring. Then euery closed left ideal of R is a

left annihitator if and only if euery non-essential left ideal of R has non-zero right

annihi lator"

Proof. Suppose first that every closed left ideal is a left annihilator. Let ,,i 
-be

a non-essential left ideal of R. There exists a closed left ideal B such that A is
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essential in B. Clearlg B * R. By hypothesis, B -- lr(B) and hence r(B) I o.
Thus r(A) I o.

Conversely' suppose that every non-essential left ideal of R has non-zero
right annihilator. Let C be a closed left ideal of R. Suppose that C t' Lr(c).
Then C is not essential in Lr(C), and hence C ) D : 0 for some non-zero left
ije.al o in (.r(c). Let E be a complement of D in -R such that c c E. clearly
-E is non-essential and hence, by hypothesis, ,(E) # 0. Let o I r -r@). Then
Ex:0 impl ies Cr  :0 .  Now r  e  r (C)  :  rLr (C)  impl ies that  Dz:  0 .  But  D @ E
is an essential left ideal of the left nonsingular ring ft and (D o E)r:0, so that
r: O, a contradiction. Thus C : (.r(C), as required.

Recall that a ring .R is called a Baer ring if every left annihilator is ge-
nerated by an idempotent, equivalently, every right annihilator is generated by an
idempotent.

Proposition 3. A ring R is a left nonsingular left C S -ring if and only if R is a
Baer ring such that euery non-essential left id,eal has non-zero right annihilator.

ry
Proof. Suppose first that R is'a Baer ring such that every non-essential left ideal
has non-zero right annihilator. Clearly R is left nonsingular and hence R is a
left C,S-ring by Lemma 2. ConverselS suppose that fi is a left nonsingular left
C,S-ring. Then every closed left ideal of -R is a left annihilator, and Lemma 2
then gives that every non-essential left ideal has non-zero right annihilator. Let
'4 be any left annihilator of ft. There exists an idempotent e in r? such that ,4
is essential in "Re. Let 6 e r(A). There exists an essential left ideal tr such thali
Le C ,4 and hence Leb :0. But ,B is left nonsingular, so that eb : a and hence
D e (t - 

")R. 
Thus r(,+) : (f - e)A. It follows that ,4 : tr(A) : Re. Thus _r? is a

Baer ring.

Recall that a ring .R is called a left PP-n ng provided every principal left ideal
of "r? is projective. It is rather clear that Baer rings are left (u"d right) pp-rings
and left PP-rings are left nonsingular. Moreover, a ring R is a left pp-ring if and
only if for each ain R there exists an idempotent e in fi such that (.(a): fie. The
next result is a companion to Proposition 3.

Proposition 4. Let R be a left nonsingular right PP-ring such that euery non-
essential left id'eal has non-zero right annihilator. Then euery closed, teft ideat
of finite uniform d'imension is generated, by an idernpotent. In particular, if in
addition R is a lelt Goldie ring then R is a left C S -ring.

Proof- Let L be a closed left ideal of ft of finite uniform dimension. To prove
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that .L is a direct summand of p.R it is sufficient (by induction) to prove thi's
in the case that .L is uniform. Suppose that tr is uniform and let Q * a € L.
Because.R is left nonsingular and Ro is essential in.L it follows that r(I) :r(a).

But r(o) : eR for some idempotent e, because R is right PP. By Lemma 2,
L : lr(L) : tr(a): f t( l  -  e). The result fol lows.

Next we give a sufficient condition for every closed left ideal of a left nonsin-
gular ring to be a left annihilator. Recall that if -R is a left nonsingular ring then
the injective hull E(nR) has a unique ring structure compatible with its left B-
module structure, and, as usual, we call this ring lhe marimal left quotient ring of
R. Denote the maximal left quotient ring of Rby Q.Let M be a nonsingular left
-R-module. Then the injective hull E(aM) of M can be given the structure of a left

Q-module (see fZO, Theirrem 2.21). Let L be a left ideal of R. Then K : E(aL)
is a direct summand of nQ, say Q : K @ K',for some R-submodrle K' of Q.
Because nQ is nonsingular, I{ is essential in QK and hence K: QK.Similarly,
K' -- QK'. Thus K - Qe for some idempotent e in Q. We shall generalize this
fact in Lemma 12.

Lernma 5. Let R be a left nonsingular ring with marimal left quotient ring Q.
Let X andY be left Q-modules with nY nonsingular. Then

(i) Hornq(X,Y) : HomR (X,Y).

( i i)  I f  X:Y @ Z for Eonte R-subrnodule Z of X then Z is a Q-submod,ule
of x.

Proof .

(i) Let p € Homa(X,y). Let g € Q, r € X. There exists an essential left
ideal -L of -R such that Lq C R. Let a € L. Then ap(qr) : p(aqr) : aqp(r).
It follows that l(g:(qn) - qp(r)) : O. But Y is a nonsingular -R-module. Thus
p(qr) :  qp(n). I t  fol lows that p € Homg (X,Y).

( i i )  Nowsupposethat  X:  Y@ Z.  Let r  :  X - -+ Y denotethepro ject ion.
Then zr € Homp (X,Y) : Home(X, Y), so Lhat Z : ker n is a Q-submodule of X,

Proposit ion 6.

(;) Let R be a left nonsingular ring with marirnal left quotient ring Q. Then
Q is a regular left self-injectiae ring.

(;;) Let R be a subring of a regular left self-injectiue ring S such that R is
an essential subrnod.ule of the left R-rnodule S. Then R is left ionsingular and
S  :  Q .
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Proof .

(i) Consider any diagram

B exact

of left Q-modules. Since Q is an injective R-module there exists an -R-homomor-
phisml  .  B -+ Qsuch thatp -  a1.  ByLemma5( i ) , r isa lsoaQ-homomorphism.
It follows that qQ is injective.

Let L be a finitely generated left ideal of Q. There exists a Q-epimorphism
p : X --+ .L, where X : Q(") for some positive integer n. Let y : ker gr" Then
R(XlY) is nonsingular and hence Y is a direct summand of the .R-module X. By
Lemma 5(ii), there exists a Q-submodule Y' of X such that X : y @ y'. Then
L = Yt (as Q-modules) so that gL is injective, and hence .L is a direct summand
of Q. Thus Q is a regular ring.

(ii) Let .4 be an essential left ideal of R. Then .4 is an essential submodule
of .a,S. Thus ^9,4 is an essential left ideal of S. Thus S left nonsingular implies
that .R is left nonsingular. Again let Q denote the maximal left quotient ring of E.
The inclusion mapping R --+ Q can be lifted to an R-monomorphism a : S --+ e.
Let t €^9. Define a mapping p :,S - '  Q by

9(" )  :  a(s t )  -  a(s)a( t )  (s  e s) .

Clearly p is an .R-homomorphism and p(P) : 6. Because nQ ir nonsingular, it
follows that p(S) : 0. Thus a : S --+ Q is a ring monomorphism. We identify S
with a(,S), so that S is a subring of Q. Now ,9 is an essential injective submodule
of sQ, so that S : Q.

Lemma 7. Let R be a left nonsingular ring with maxirnal left quotient ring Q.
Suppose further that Rp is an essential subrnodute of Qp. Then every closed left
id,eal of R is a left annihilator.

Proof. Let L be a non-essential left ideal of .R. Then .t is essential in a direct
summand K of pQ. There exists an idempotent 1 * e € Q such that K : ee
by the remarks before Lemma 5. Note that ,q(L) : re(e") : (t - Qq ; O,

Patrick F" Smith

d.

0 --+ A --+

P J
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because the left 8-module Q is nonsingular. Now Rp essential in Qn implies
that ra (L) : R i rq(L) + 0. By Lemma 2, every closed left ideal of R is a left
annihilator.

Let r? be a left and right nonsingular ring R with the property that the
maximal left and right quotient rings coincide. Then Lemma 7 tells us that every
closed left ideal is a left annihilator and every closed right ideal is a right annihi-
lator. In fact, the converse is also true (see [20, Theorem 2.38]). Thus we have the
following result.

Corollary 8. ,4 ring R. is a left and right nonsingular left and right CS-ring if
and only if R is a Baer ring for which the left and right marimal quotient rings
coincid,e.

Let R be a left C,S-ring. What about the left R-module R @ R, is it a
C^9-module? The answer is "no" in general. For any positive integer n, and left
r?-module M,let nM@), or simply tr4@), denote the left rR-module M @ . . . @ M
(n copies) and let M.(R) denote the ring of all n x n matrices with entries in fi.

Lemma 9. Let R be a ring and, n a positiue integer. Then the left R-mod,ule Rfu)
is C S if and only if ihe ring M"(R) is left C S.

Proof. Let T : M"(R). Let e11 denote the matrix with (1,1) entry I and all
other entries 0. Let ,S denote the subring e11Te11 of T and note that R e ,S. Note
further that T:TenT. Let M be a left ?-module and let r( be a ?-submodule
of M. Then it is easy to check the following facts:

(i) K is a closed submodule of M if and only if enK is a closed submodule
of the left ,S-modrle eyM.

(ii) /( is a direct summand of M if and only if enK is a closed submodule
of esM, and,

(iii) rM is CS if and only if s("rtM) is C,S.

The result now follows by takin g M : T.

Corollary IO. Let R be a left Ore domain. Then

(;) nR is a CS-rnod,ule, and

(i;) a(n O n) is a C S -module only if R is risht Ore.
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Proof .

(i) The module n-R is uniform and hence C,S.

(ii) Suppose that R @ R is CS. Then the matrix ring ? - Mz(R) is a
nonsingular left C,9-ring by Lemma 9. Let 0 * o,b € R. Suppose that
n b;R: 0. Let a denote the matrix

l a  6 l
L 0  0 l

in ?. It is clear that r(a) : 0 and hence ?a is essential in ?, by Proposition
3. However, it is easy to check that ?e11 n Ta : 0, a contradiction. Thus
aR n bR + 0. It follows that R is a right Ore domain.

It is not difficult to give examples of left Ore domains which are not right
Ore and thus examples of left C'9-rings E such that the left R-module R O -R is
not c,s (see, for example, [es, t.z.tt Example (ii)]). However, there are easier
examples of such rings ,R as the following result shows"

Corollary 11. The following statements are equiualent for a cornmutative domain
R ,

(;) R is a Priifer domain.

(;;) a(R @ n) is a CS-mod,ule,.

( i i i )  RR is f,nitelyt-CS.

Proof .

(i) =+ (iii). Let z be any positive integer. Then M"(R) is a prime left and
right Goldie left and right PP-ring. By Lemma 7, Mn(R) is a left c,s-ring. Now
4(z) ir a C,S-module, by Lemma g. Thus pR is f initely E-CS.

( i i i )  +  ( i i ) .  C lear .

(ii) =+ (i). Bv Lemma 9, Mz(E) is a left c,s-ring, and hence a left pp-ring
(Proposition 3). Thus every 2-generator ideal of l? is projective, By [18, Theorem
22.L), r? is a Priifer domain.

For example, the polynomial ring R : zlrl, in the indeterminate z with
integer coefficients, is a commutative Noetherian domain such that the r?-module
R e R is not a C,S-module. We shall extend Corollary 11 in Theorem 18 be-
low. Our next concern is with rings .R such that the left R-module R is finitely
t-cs. Recall  that we know, by Proposit ion 1, that pR is f initely D-cs i f  and
only if every finitely generated projective left .R-module is C,S. First we prove the
following result.

Patfick F. SmiCh

left
aR
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Lemma 12. Let R be a left nonsingular ring uith moaimal left quotient ring Q.
Let M be a finitely generated nonsingular left R-module with R-injectiue hull E.
Then E is a left Q-module, E : QM and E embed,s in Q@) for some positiue
integer n.

Proof. We have already remarked that E is a left Q-module. In particular, QM C
E. Clearly QM is a finitely generated left Q-module. There exists a positive
in tege r  n  andaQ-ep imorph ismg:  :Q@)  - -QM.  Le t  X :q@)  and  Y :ke r  p .
Note that XIY =QM,sothat XIY is anonsingular left.R-module. Thus Y is a
closed submodule of the injective left .R-module X. Hence Y is a direct summand
of. X, so that X = Y @ QM. The result now follows easily.

Corollary l.3. Let R be a left sernihereditary ring with maximal left quotient ring
Q such that Q is a projectiue left R-rnod,ule. Then pR is finitely E-C S.

Proof. Any finitely generated nonsingular left R-module M embeds in the projec-
tive left J?-module Q(') fot some positive integer n, by Lemma 12. Because, ,R is
left semihereditary, M is projective. Now apply Proposition 1.

Now we consider the following situation. Let R be a subring of a ring ,9
(with the same identity). Let M be a left .B-module. Suppose lhat M is contained
in a left S-module N. Because ,S is a right R-module we can consider the left
^9-module 58nM. Thereexists anatural mapping p : s &nM --+ N defined by
p(E;s;** r ) :E;s ; rm; ,  for  a l l  f in i te  sets  of  e lements s ;  in ,S and,m;  in  M.  I t  is
easy to check that trt is an ,S-homomorphism.

Lemma L4. Let R be a subring ol a ring S such that R is an essential submodule
ol the left R-rnodule S. Let M be a left R-module such that M is contained in a
left S.medule N, Suppaae lurther that p(SM) ia nonsingular. Then there erists
a natural S-epimorphism p, : S Bn M --+ SM with kernel Zn(S gnM).

Proof. Let z : zn(s an M). It is clear that z C ker p, with p as above. on the
other  hand le t  r :  sr  Sner  +. . .+  sn&rnn € ker  p, r for  some posi t ive in teger  z
ande lemen tss ;  €  S ,m;eM ( l  S i<  r z ) .  The reex i s t sanessen t i a l  l e f t i dea l  t ro f
. R s u c h t h a t . L s ; C n ( 1  < i < z ) .  L e t  a € L .  T h e n

a:E :  asr  I  mt+ . . .  +  asr ,  I  f r r , tu  :  1  I  X; (os;mi)  :  t  g  p(ar)  :  I  I  0  :  0 .

Thus  L r :0  and  r  €  Z .

Let .R be a ring. An ,R-modu,le M is called f,nitely presented, if there exists
an exact sequence G -, F --+ M ---+ 0 with F and G both finitely generated free



10 Pattick F. Smi6h

J?-modules. Recall that a ring R is left coherent if every finitely generated left
ideal is finitely presented. For any R-module M, lhe singular submodule of M
wil l  be denoted Zn(M), or simply Z(M).

Corollary 15. Let R be a left nonsingular ring with marimal left quotient ring Q.
Let M be a nonsingular left R-mod,ule. Then there exists a natural Q-epimorphism
tttd : Q8n M ---+ E(M) with kernel Zn(QAnM). If ,  in addit ion, M is f i ,nitely
presented then p,p1 is an isomorphism.

Proof. The first part follows by Lemma 14. Now suppose that M is finitely pre-
sented. There exists a finitely generated free left .R-module tr', a finitely generated
submodule K of ,F' and an exact sequence

0 - - + K - + F - - + M - - + 0 .

Form the diagram:

Q a n K  - - +  Q g n F  - - )  Q a a M  - - )  o

px I t"e I ttpt J
E(K) -+ E(F) --) E(M)

By Lemma L2, p.6 is onto. Also pp is an isomorphism. By a standard diagram
chase, pnt is a monomorphism and hence an isomorphism.

Coroliary 16. Let R be a left nonsingular ring with marimal left quotient ring
Q. Suqtpose further that R is left coherent. Then Q is a fl,at right R-module"

Proof . For any finitely generated left ideal L of R, the multiplication rrrap p :
Q An L --+ QL is a monomorphism by Corollary 15. Thus Qs is flat.

Let R be a ring and let M be a left (right) .R-module. Let m € M and let
/V be a submodule of M. Then we shall denote

N r n - r : { r € r ?  :  r m e  N )  ( * - t N : { r € R :  m r e  N } ) .

Lemma L7. Let R be a subring of a ring S " Then the following statements are
equiualent.

fl fhe natural S-homomorphism p : ,S Bn M --+ S is a monornorphism
for euery submodule M of the left R-module S.
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$;) fhe r;ght R-rnod.ule S is flat andthe natural S-homornorphisrn ̂98aS *
S is a lnonomorphism.

(i i ;)  S : S(Bs-l) for al l  s in S.

Proof .

( i)  =+ (i i) .  Clear.

( i i )  +  ( i i i ) .  Let  s  €,S.  Let  A: .Rs-r .  Def ine a mapping a :  RIA--  SIR
by

a ( r * A ) : r s + R "

Clearly o is an.R-monomorphism. Because ,Sa is flat we obtain another monomor-
phism,SBn (RIA)  - -+,S8n (SlR) .  However ,  i f  . ;L  :  R - -+,S denotes the inc lus ion
map then

1 8 1  t )
,S 8n B --) ,S 8p ^9 --+

is  just  thecanonica l  isomorphism SInf t  =  s .  Thus 1ol  is  an isomorphism.
But ,Sp flat gives the exact sequence

1 8 r
0 --r ,S 8n ft --+ S 8n S -+ ,5 Bn (S lR) ---+ 0.

Thus ,S 8a (SlR) :0.  I t  fo l lows that  ,S An (RIA) :0,  and hence S :  SA.

(iii) =+ (i). Let M be any submodule of a,S. Suppose that r € ker p. There
exist a positive integer n and elements s; € 5 (1 < i I n), rni € M (O < i < n)
such that  u  -  1  I  mo l .s1 8rr )1 +. . .  +  s , -&m,. .  l f .  n  :0  then t r r ,6  :  p( r )  :0  and
hence r : O. Suppose that n ) 1. Let r € Rsnr. Then

r r : 1 8 ( r m s 1 - r s , . m , - )  *  ( r s 1 )  & m r  + . . . +  ( " " , " - r )  & m n - t  a n d  r r  € k e r  p . .

By  induc t ion  on  n ,  i t  fo l lows tha t  rx :  O.  Hence (Es ; l ) r  :0 .  But  ,9  :  ,9 (Rsr l ) ,
and hence s :0. It follows that p is a monomorphism.

Theorem L8. Let R be a left nonsingular ring with marimal left quotient ring Q.
Then the follouing staternents are equiaalent.

(;) nR is finitely X-CS"

(ii) R is left semihereditary and, the left R-rnod,ule RQ) ;s C S.

TI
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(i;;) R is left semihereditary and the right R-module Q satisfies Q : k-t R)Q
for all q in Q.

(iu) R is left sernihered,itary, the left R-mod,ule Q is flat and, the left R-rnod,ule
Q gnQ is nonsingular.

In this case, R is also right semihered,itary.

Proof .

(i) + (ii). Let I be any finitely generated left ideal of r?. Suppose that L
is generated by z elements. By Lemma 9, RR(") CS implies that the matrix ring
M"(R) is left nonsingular left CS and hence left and right PP (Proposition 3). It
follows by a standard argument that ,L is projective. Hence ft is left semihereditary.
This proves (ii). Similarly R is right semihereditary.

(ii) + (iii). Let q € Q. Then fuf - R * Rq is nonsingular and hence
projective (adapt the proof of Proposition 1). Thus there exists a monomorphism
p  :  M  - +  F :  R r  @  R z ,  w h e r e  R i :  R ( j  : 1 , 2 ) . F o r . 1  : 1 , 2 , 1 e t  r i  :  F  - - - +  R i
denote the projection and zi : Ri -r f' the inclusion mappings. Note that
R C M and we le t  r i  :  ( l rp) r1,  nU :  L ,2) .  Let  1  :  1 ,2"  For  a l l  r  in
R, rri : r(Lp)ri : reri, and hence rnri : rnplri for all m € M, because
R is essential in the nonsingular module M; in particular qri : qpri € B and
r i  €  q - rR .  Thus  r i  €  q - rR( j  : 1 ,2 ) .

Now consider the diagram

Q - t

Mtp '-+ M ---+ Q

I
F

where  M ' -+  Q  i s inc lus ion .  The reex i s t samapp ing  0  :  F  - -+  Qsuch tha t the
above diagram commutes. For j : I,2,let q : (1r.1)0 € Q. If is not difficult to
show that |  :  rrqt I  rzQz. It  fol lows that Q : (q-,R)e.

(iii) + (iv). By Corollary 15 and Lemma 17.

(iv) + (i) Let n be any positive integer and let F denote the free left -R-
module p@) . Let K be any closed submodule of F and let M : F lK. Then
M is a finitely generated nonsingular let R-module. By Lemma 10, there exists a
positive integer ft such that F C RQ&). To prove that K is a direct summand of
JI we need to show that M is projective and, because R is left semihereditary, it
is sufficient to prove that M can be embedded in a free left R-module. To prove
this last fact we can suppose without loss of generality that M C e.
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Suppose that M - Rxt + . . .+ Rq for some positive integer I and elements
r ; e  Q  ( 1  <  i  < l ) .  F o r e a c h  I  < i < t , l e t  A ; : r i L R  a n d  l e t

/ : { r € R  :  M r  q A } : A r ) . . . ) A t .

N o t e t h a t  Q :  A ; Q ( r < i  s  r )  b v  L e m m a 1 7 .  T h u s  ( R l A ) a a e : 0  ( 1  < i < t ) .
Now there exists a monomorphism RIA --+ @la) o...@ (RlAr) which gives a
monomorphism

(RlA)  8n Q - -*  (@r3;5 r@lA;) )  8n e 3 @r<;<t ( (RlA;)  aa e)  :  0 .

Thus (RIA)  8aQ:0,  and hence Q:  AQ. There ex is t  a  pos i t ive in teger  s  and
e l e m e n t s  a ;  e  A ; , a ;  €  Q  ( 1  <  i  (  s )  s u c h  t h a t  1  :  a r e r * . . . * a " q " .  D e f i n e
0  :  M  -+  64 ( " )  by  0 (m)  -  ( *o r , . . . ,ma" ) fo r  a l l  m  in  M.  I t  i s  c lea r  t ha t  d  i s  a
monomorphism.

Note that one consequence of Theorem 18 is that, for a left semihereditary
ring R, if the left B-module R O R is C^g then the left R-module R(") is C^g, for
every positive integer n. In particular, this holds if R is (von Neumann) regular.
The question arises for which rings r? does it follow that p(.R o R) c,s implies
that aR is f initely X-CS.

Let r? be a left nonsingular ring with maximal left quotient ring Q. Let
c be a regular element of R; by this, we mean that cr I 0 and rc I o for all
o * r € R. It is well known that if X is an injective left .R-module then X -- cX.
In particular, Q : cQ. Thus, by Theorem 18, if ,R is a left semihereditary ring
such that for each q in Q there exists a regular element c in R such that qc € R
then p.R is finitely t-CS. This is true in particular in R is a semiprime (left and
right) Goldie r ing. This gives:

Corollary lg. Let R be a semiprime left and right Goldie ring. Then the follo-
wing staternents are equivalent,

(;) nR is finitely D-CS.

(i;) RR is finitety D-CS.

(iii) R is left sernihered,itary.

(iu) R is right semihereditary.

Let R be a left nonsingular ring such that p.R is finitely E-CS. Proposition
I shows that in this case every finitely generated nonsingular (projective) left
B-module is C,S. In general, it does not follow that every countably generated
nonsingular (projective) left ft-module is C^9. For example, if Z is the ring of

1 3
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rational integers, then sZ is finitely E-C S (see for example Corollary Ll) but sZ
is not countably E-CS by a result of Kamal and Muller [28, Theorem 5] (or see

[rz, p.fo]). This fact is a consequence of the following result.

Lemma 2O. Let R be a left nonsingular left Goldie ring such that pR is countably
D-C S. Then R is left Artinian.

Proof . By Theorem 18, R is left semihereditary. By [22, p. 563 Theorem] it is
sufficient to prove that any regular element of R is a unit. Let c be any regular
element in .R. Let F be a countable direct sum of copies of aR. Let Q denote
the maximal left quotient ring of .R and recall that c is a unit in Q. Define a map
p : F - - - + Q b V

p ( r t  r r 2 , r s r . . . )  :  1 1  *  r 2 c - r  +  r s c - z  +  . . . ,

for al l  (rt ,rr,rs,.. .) in F. I t  is easy to check that g is an,R-homomorphism. Let
I(: ker gr. Then FIK = im p C nQ.Now the left R-module Q is nonsingular
and hence 1{ is a closed submodule of F. By hypothesis, F is a C,S-module and
hence l( is a direct summand of .F', say F : K O .I(' for some submodule Kt of F.
Clearly, K' = im rp and hence K' has finite uniform dimension.

There exists a finitely generated submodule K't of K' such that Ktt is es-
sential \n Kt. There is a positive integer z such that

K "  g  G  :  R @ . . .  @ R O 0 o o . .  . ( n  R '  s ) .

Thus  K '  C  G .  Cons ide r  t he  e lemen t  e r r11  :  (0 , . . . , 0 ,1 ,0 ,0 , . . . )  o f  .F ,  w i th
( z +  l ) s l  e n t r y  1 .  S i n c e  F :  K  O K ' t h e r e  e x i s t  a :  ( a r  t a z t a y t . . . ) e  K ,  a t  e  K l
such that en*r : a * at. Note that an*r : l ,  at :0 (, > n, * 1) and

a 1  *  a 2 c - l  *  a s c - z  + . . . +  a ' , s - n ] - l  *  c - n  : 0 .

This  impl ies that  nc :  lwhere t  :  -aLcn- l * . .  . -an €R.  Moreover ,  ( l -cc)c  :  0
gives cc : 1. Thus c is a unit in R.

We shall prove a stronger version of Lemma 20 later. Now we show that
for regular rings R the concepts of finitely E-C S and countably X-C^9 coincide.
Recall that a regular ring is characterised by the fact that all modules are flat.

Theorem 21. The following statements are equivalent for a regular ring R with
marirnal left quotient ring Q.
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(;) RE ts countably E-CS.

(i;) RR is finitely E-CS.

(;;i) Q &nQ is o nonsingular left R-module.

(iu) The left R-module Q is projectiue.

(r) R is left seff-injectiue.

Proof .

(i) =+ (ii). Clear.

( i i )  +  ( i i i ) .  Suppose that  z  e Z(Q 8a Q),  where z  :  ErB yr  + . .  . t  sn8An,
for some positive integer z and elements rit li € Q (1 < i < o). Let Y :
Ryt+ " '* Ryn. Then Y is a projective left .R-module by Proposition I and hence
P(n)  = Y @Y' for  some module Y ' .  Thus

q(n) = e aa p@) = (e on f )  e (q Ba y,) .

I t  fol lows that the left R-module Q &aY is nonsingular, and hence z:0. Thus
Q 8n Q is nonsingular.

( i i i )  + ( iv), (v). By Corollary 15 the mult ipl ication map pg : e 8ne - e
is an isomorphism. Now if t : R --+ Q is the inclusion mapping then

1 8 r  F q

Q g n R  - - +  Q @ n Q  - - +  a

is the natural isomorphism Xdgd I ri + Eiqiri.Thru 1 g z is an isomorphism.

Consider the exact sequence

O - -+  R- - -+  a  - -+  A IR - -+  0

Because Qn is flat, we obtain

0 -+ Q &n R --+ Q enQ -+ e An @lR) __+ e exact.

Thus Q ea (Q lR) : o. But a @ lR) is flat, and hence (r) gives the following
exact sequence

0  _ ,  R 8 n  @ l R )  _ _ +  Q @ a @ l R ) .

Thus  R8n @lR) :0 ,  andhence QIR:0 .  Th isproves tha t  J? :  e ,  f f i  requ i red .

I5

(1)



Patfick F. Smith

(iv) =+ (iii). Suppose that the left R-module Q is projective" Then there
exists a positive integer n such that R(') = Q e P for some R-module P. Now
g(n) = Q an P@) - (Q On q @ @8n P), and hence the left .R-module Q @nQ
is nonsingular.

(v) + (i). Suppose that R is left self-injective. Let M be a countably
generated nonsingular left R-module, say M : Rmt*Rmz+Rms*.. . . It is rather
easy to see that any cyclic submodule of M is isomorphic to a direct summand of
R and hence is both injective and projective. In particular, M : Rmr @ N1., for
some submodule I'r1 of M " Let r : M -- Nr denote the projection mapping. Then
fu f  -  R* r+  Rr (m2)  *  Rn(ms)  + . . . .  Moreove r ,  N r  :  Rn (m2)  ONz ,  f o r  some
submodule N2, and hence M,: Rmt @ Rr(m2) O N2. Repeating this argument,
it follows that M is a direct sum of (a countable number of) cyclic submodules,
and hence &1 is projective. By Proposition 1, pR is countably D-CS.

Let .R be any ring. Recall that a left ,R-module M is called (countably)
X-injective if every direct sum of (a countable number of) copies of. M is injective.
It is well known that for any ring .R, a left R-module M is E-injective if and only
if M is countably X-injective. Moreover, the following statements are equivalent
for a ring R:

(i) aft is (countably) X-injective,

(ii) RE is (countably) X-injective,

( i i i )  The ring ,R is QF,

(see [fS] or [16, Proposition 20.34, Theorem 24.20]). We show next by example
that the corresponding results for X-C,S modules are false in general.

First, recall that an ideal 1 of a ring r? is called let't T-nilpotent if, for any
sequence  & ! ,a2 ta3 t . . .  o f  e lemen tso f  - [ , t he reex i s t sapos i t i ve in tege r rzsuch tha t
ata2. . .an:0.  A r ing R wi th  Jacobson radica l  J  is  ca l led le f t  per fect  i f  J  is  le f t
?-nilpotent a,nd the ring RIJ is semiprime Artinian.

Lernrna 22. The following staternents are equiualent for a ring R.

(i) R is left perfect.

(ii) R has DCC on principal right id,eals.

(iii) Every flat lelt R-module is projectiue.

Lemma 22 is due to Bass (see, for example, ltO, ZZ.Ze and 22.31A] or [ZO,
Theorem 5.71) and the next lemma is due to Chase (see, for example, IfO, ZZ.Stn]
or [20, Theorem 5.15]).

Lemma 23. .The following statements are equiualent for a ring R.
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(i) Every d,irect product of projectiue left R-rnodules is projectiue"

(i;) The ring R is left perfect and, right coherent.

Erarnple 21.

(i) The exists a commutative regular ring R which is (left) C,S such that nR
is not finitely D-C S.

(ii) There exists a regular ring R such that pR is countably r-CS but Rp

is not countably D-C S and pR is not D-C S.

Proof .

(i) Let f' be any field having a proper subfield K. Let Fn : F (n 2 l)

and let ,5 denote the commutative self-injective regular ring f[r, Fn. Let R denote

the subring of ,S consisting of all sequences {4,"} in S with an € K for all but a

finite number of elements n > 1. Note that .9 : E(nR), so that R is commutative

regular but not self-injective. By Theorem 2I, pR is not finitely D-C S. On the

other hand, let A be any ideal of R. Then SA is an ideal of ,S and hence there

exists an idempotent e in S such that S,4 is essential in,Se, because s,S is injective.

It is clear that e € E and it is not difficult to check that A is essential in Re. It

follows that .R is a C,S-ring.

(ii) Let F be any field and V any infinite dimensional vector space over F.

Let .R : End (ry). It is well known that R is a left self-injective regular ring which

is not right self-injective (see, for example, [20, Proposition 2.n])' By Theorem

21, pR is countably D-CS but ,Rp is not countably D-C S.

Now suppose that aR is D-CS. By Proposition 1, it follows that every non-

singular left ,R-module is projective. In particular, because R is left nonsingular,

every direct product of projective left ,R-modules is projective. By Lemma 23, R

is left perfect. But this implies that R is Artinian, a contradiction. Thus a.R is

not D-C,S.

In contrast to this example, we shall show for a given ring .R:

(1) ,? is left nonsingular and pR is D-C S if and only if R is right nonsingular

and.Ea is X-CS, and

(2) it a left nonsingular ring R contains no infinite set of orthogonal idem-

potents then al? countably t'-CS implies that pB is X-CS.

First we state, without proof, a well known lemma.

Lemma 25.

(i) Let R be a subring of a ring S such that S is a fl,at left R-module. Then
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anV fl,at left S-md,ule is a fl,at left R-mod,ule.

(;;) Let R be a lelt (or right) semihereditary ring. Then any submod.ule of a
flat left R-rnodule is flat.

Theorem 26. The following statements are equiualent for a left nonsingular ring
R with maximal left quotient ring e.

(;) nR is X-C^9.

0) F is left hered,itary left Artinian and the teft R-rnod,ule e is flat.

- (;ii) R is teft perfect and right serniherditary and the teft R-rnodule e is
flat.

Proof .

- 
( i)  + ( i i) .  By Proposit ion l  and Lemma23, R is left hereditary and left

perfect, and the nonsingular left R-module Q is projective, whence flat. Let X be
the direct product of any non-empty collection of projective left e-modules. Then
X is a nonsingular left R-module and hence X is a projective left ,B-module. Let
.F be a free left Q-module and let rp : F -- X be a e-epimorphism. Then gr is
an R-epimorphism, so there exists an ,R-homomorphism 0 : x --+ F such that
p0 : lp. But d is also a Q-homomorphism (Lemma b). Thus X is e-projective.
It follows that every direct product of projective left Q-modules is projective. By
Lemma 23, Q is left perfect. But Q is regular by proposition 6, and hence e is
semiprime Artinian.

In particular, the left Q-module Q has finite uniform dimension. It follows
that the left R-module .R has finite uniform dimension. But R is a left hereditary
ring. Thus J? is left Noetherian, by [44, Theorem 2.1 corollary l]. Because, R is
left perfect, R is left Artinian.

(i i)  =+ (i i i ) .  Clear.

(iii) =+ (i). Let Y be any nonsingula.r left B-module. Recall that the ring eis regular and hence the left e-module E(y) is flat. By Lemma 25(i), E'(y) is ;
flat left J?-module. But ,E is right semihereditary and so, by Lemma is 1ii;, r i.
a flat left .R-module. By Lemma 23, the lelft .R-module y is projective.

Theorem 27. T'he following statements are equiualent for a ring R.
(;) fhe ring R is left nonsingular ancl, pR is D-CS.

ft) fhe ring R is right nonsingular and, Rp is X-CS.
(;i;) fhe ring R is (left and right) her'editary Artinian and, the rnaximal left

and, right quotient rings of R eoincide.

1 8
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Proof .

(i) + (iii). Suppose that .R is a left nonsingular ring such that the left R-

module ,R is X-CS. By Theorem 18, R is right semihereditary and hence right

nonsingular. Let Q denote the maximal left quotient ring of R. By Theorem 26,

,R is left hereditary left Artinian and the left R-module Q is flat. Moreover, by

the proof of Theorem 26 the ring Q is semiprime Artinian. Now R is an essential

submodule of the right R-module Q by Theorem 18 (i) <+ (iii). Applying Lemma

6 (ii) we have that Q is also the maximal right quotient ring of .R. Clearly R is left

coherent and hence Qn is flat (Corollary 16). Moreover, R is left semihereditary
and right perfict. By Theorem26 Rp is X-CS and hence (iii) follows.

(iii) =+ (i). Bv Corollary 16 and Theorem 26.

(ii) <+ (iii). By symmetry.

Theorem 28. Let R be a left nonsingular ring which does not contain an infinite

set of orthogonal idempotents. Suppose further that aR is countably D-CS. Then
p.R rs D-CS.

Proof . Note first that because -R is CS with no infinite sets of orthogonal idempo-
tents, .R is a (finite) direct sum of uniform left ideals and hence .R is a left Goldie
ring. By Theorem 18 and Lemma 20, R is a left hereditary left Artinian ring and
the maximal left quotient ring Q of R is a flat left R-module. By Theorem 26, pR
is E-CS.

For any module M, the second singular subrnodule Zz(M) is defined as fol-
lows:

zz(rrt) I z (M) : z (M I z (M)).

Lemma 29. Let R be a ring and, M an R-module. Then M is C S if and' only
;f M : Zz(M) @ N for some subrnodule N such that Zz(M) and N are both CS
and Z2(M) rs N-rnf ectiue.

Praof. See [28, Theorem L].

Using Lemma 29 we can now prove the following corollary to Theorem 28"

Corollary 3O. Let R be a ring which does not contain an inf,nite set of orthogonal
idempotents. Suppose further that nR is countably t-CS. Then euery nonsingular
left R-module is C S.

Proof. Let Z : Zz(nR) and let l i  denote the ring RlZ.Note that the.R-module
R is CS. By Lemma 29, there exists a left ideal .L of R such that R : Z @ L.

1 9
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Now ,S is a left nonsingular ring with no infinite set of orthogonal idempotents and
sS is countably t-CS. By Theorem 28, s,S is E-CS" If M is a nonsingular left
-R-module then Z M : 0, and M is a nonsingular left ,9-module. By Proposition
t, M is a C^9-module.

Let R be any ring and M any R-module. A submodule .L of M is called
small (;n M) if, whenever N is a submodule of M such that M -- tr + N, then
M : N. The module M will be called a dual C S -module if for every submodule
H of M there exists a direct summand K of. M such that 1{ C N and HIK is
small in MlK.

We saw in Proposition I that a ring R has the property that every projective
module is C,S if and only if every module is a direct sum of a projective module
and a singula.r module. Recall that a module M is singular if and only if there
exists a projective module P and an epimorphism 9r : P --+ M such that ker 9r
is essential in P. Dually, a module M is called small if there exists an injective
module .E and a monomorphism 0 : M -' -E such that im d is small in E.

The next result is due to Oshiro. The proof is somewhat long and technical,
and is therefore omitted.

Theorem 31. The lollowing statements are equiualent for a ring R.

(i) Euery projectiue left R-module is a CS-module.

(ii) Euery injectiue right R-module is a dual CS-module.

(iii) Every left R-module is a direct sum of a projectiue module and, a singular
mtdule.

(iu) Euery right R-rnod,ule is a direct surn of an injectirse module and a small
rnodule.

(r) (") R satisfies ACC on left annihilators, and

(b) euery left R-rnodule is singular or contains a non-zero projectiue
direct summand.

(ui) (a) R is right Artinian, and

(b) euery right R-mod,ule is srnall or contains a non-zero injective sub-
module.

Recall that our concern is with the general question of when every module
in a given class C of modules is C,S. So far we have considered different specific
classes C, but we now will prove a result for a general class C. In order to prove
this theorem, we shall require a number of preparatory lemmas. The first lemma
follows easily from [39, Theorem 1].
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Lemma 32. Let R by any ring and let M be a f initely generated R-module such

that every quotient of euery cycl ic submodule of M is C S . Then euery quotient of
M has finite uniform dimension.

Proof. By [fO, Theorem 1], every quotient of every cyclic submodule of M has
finite uniform dimension. By an easy induction on the number of generators of 1\1,
we obtain that M has finite uniform dimension. Then apply the same argument
to the quotients of M.

Our next lemma extends a result of Okado [34], which states that any C,S-
module over a left Noetherian ring is a direct sum of uniform modules, A non-
empty family A; : i € /) of submodules of a module M is called a local direct
summand of M if D,4; is direct and f .4; is a direct summand of M for any finite

subset F C I. .q, *aut" M is calle dlorolly Noetherian if every finitely generated
submodule of M is Noetherian.

Lernrna 33. Let M be a locally Noetherian CS-module. Then euery local direct
sum,mand of M is a direct summand, and M is a direct sum of unit'orm modules.

Proof .  Let  m€ M. Let  ( . (m):  { r  €  R:  rm -  0} .  Then Rl l (m) = Rm, so that
Rlf@) is Noetherian. Now apply [32, Theorem2.lT and Proposit ion 2.18].

If the direct sum of two modules is quasi-continuous, then these modules are
relatively injective (see, for example, [32, Proposit ion 2.10]). This fai ls for a CS
direct sum, but we have the following which is still very useful when dealing with
C,S-modules. It  could be deduced from [3, Lemma 81, but we give a short direct
proof here for completeness.

Lemma 34. Let A and B be uniform mod,ules with local endomorphism rings such
that  M: ,4,O B is  CS.  LetC be a submod,u le of  A and le t  0  :  C - -+ B be a
hornomorphisrn. Then the following hold.

(;) If 0 cannot be ertended to a hornomorphism from A to B, then 0 is a
tnonon'torphism and B is embedd,ed in A.

(i;) If anV ntonomorphism tp : B --+ A is an isomorphism, then B is A-
inj ective.

ft;;) A B is not embedd,ed, in A, then B is A-injectiue.
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Proof .

(i) Suppose 0 cannot be extended to ,4. Let
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U : { ( r , - 0 ( r ) )  :  r € c } g  A @ 8 .

Then u is a submodule of M and clearly u n B:0. since M is cs, there is a
direct summand (J* of M such that Lr is essential in U*. By the Kruil-Schmidt-
Azumaya Theorem (see, for example, [2, corollary L2.T]), we have M - u* @ A
or M : U) @ B.

Suppose that  M:(J*  @8.  Let  r  :  U*@ B - -  B bethepro ject ion.  Then
it is easy to see that zrlo extends 0 : c --+8, a contradiction. Thus M : (J* @ A
which implies that 0(r) I  o for r * 0, i .e. 0 is amonomorphism. since (J* iB : o,
clearly B is embedded in A. .

(ii) As in the proof of (i), given any homomorphism 0 : C -- B with C C A,
suppose that M : U* @ A. Let ,h : U* @ ,4, -+ ,4 be the projection. Then clearly

tlr-tt 
a monomorphism (because U is essential in U*), hence an isomorphism by

the hypothesis. It follows easily that M : (J* O B, so that, as in (i), d .ur, b"
extended to a homomorphismfrom.4 to B.It fol lows that B is,4-injective.

(iii) Immediate by (i).

Corollary 35. Let M be a uniserial module with unique composition series M )
U ) V ) O. Then M @ (UIV) is not a CS-mod,ule.

Proof . clearly M and, u f v have local endomorphism rings. suppose that M @
(UlV) is C^9" Let r : (J --+ UIV be the canonical homomorphism. Since r.is
not a monomorphism, by Lemma 34(i), 7r can be extended to a homomorphism
p :M - -+U lV .S ince  U IV  i s  s imp le ,  ke r tp :  f / o r  M ,acon t rad i c t i on .

This corollary shows that the direct sum of a uniserial module of length 3
and a simple module need not be C^9. However, the direct sum of a module of
length 2 and a simple module is always C,S. In fact, the following more general
result holds. The proof uses some techniques from Kamal-Miiller [zo]. n".ull that
a family {M; ;i e I} of modules is called rocally semi-T-nitpoieni if, fo1. u'y
countable set of non-isomorphisms

{ f " :  M ; b ) * M ; @ + l }

with.i(") * i(m) in -I, for n * m, andfor any r e M;, there exists k (depending
on c)  such that  f  *  .  . .  f rh(" ) :  0  (see lzg, ,  p .LT4)) .
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For a module M of finite length, the composition length of M is denoted by
length M.

Lemma 36. Let a module M : @;etM; be a direct sum of submodules M; (i e I),
each of composition length at most 2. Suppose further, that Mi is Mp-injectiue for
all i,lc € I with Mi, Mx both of length 2. Then M is a CS-module.

Proof. First we show that every maximal uniform submodule of M is a direct
summand of M. Let D be any maximal uniform submodule of M. Let 0 I r € D.
Then there exists a finite subset I' of. I such that r € @;er,M;. Since Rx is
essential in D, it is easy to see that D can be embedded in @;er, M;rand, hence D
is finitely generated. Thus there exists apositive integer z and i(f) e / (1 < j S 

")such that
D  C  M ; 6 1 @  . . . O  M ; @ ) :  N ,

and we choose n minimal.

For each L < j ( z, let ri : N -- M;U) denote the projection. Since )r<iSn
ker(nilo) :0 and D is uniform, without loss of generality, we can suppose that
ker  (zry l r )  :  0  and hence Dn(M;p1@.. .@ M;@)) :  0 .  Thus D can be embedded
in M;g1, so D is simple or has length 2.

Suppose first that D has length 2. Then n(D) : M;0) and hence N :
D @ M;py O "'@ M;@). Now suppose that D is simple. By the choice of z,
Tj(D) + O (l < i < 

"). 
Suppose that there exists I < & ( n such that M;111

is simple. Then rk(D) : M;@), and hence N : D e {@17xM;6,}. Otherwise,
length M;U) :2 (r S j < n), and, by hypothesis, N is N-injective, and hence C,S

[32, Proposition 2.1]. Thus, D is a direct summand of N, and hence also of M.

Now we claim that any closed submodule C of M contains a nonzero uni-
form direct summand of M.Indeed, there is a nonzero uniform submodule K in
C. Then .t{ has a maximal essential extension K' in C. Clearly Kt is a closed
submodule of C, and since C is a closed submodule of M, Kt is aclosed submodule
of M (see [9, Proposition2.2l). Because.[f is uniform, Ktis a direct summand of
M, by the above argument.

Now let A be any closed submodule of M. By Zorn's Lemma, there exists
a maximal local direct summand {Ao , a € O} of M such that Ao C A and
Ao is uniform for all a € O. Since End M; is local and length M; 12 for each
i € I, the family {Mt, i e I) is locally semi-T-nilpotent by lZ+, Lemma 12], and
hence every local direct summand, of M is a direct summand (see [23, Theorem
7.3.15]) .  Thus OoeoAo is  a d i rect  summand of  M" Now.4:  (eo.Ao)  OB for
some submodule B of A. \f B * 0, again by [9, Proposition 2.21, B is a closed
submodule of M. hence ,B contains a nonzero uniform direct summand At of M.
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Then {{,q": a € o},.4'} is a local direct summand of M,which contradicts the
maximality of {A- : a € o}. Thus B :0, and A: @nA* is a direct summand of
M. Therefore M is a C,S-module, and the proof is complete.

For any module M, we denote by o[M] the full subcategory of -R-Mod whose
objects are all submodules of M-generated modules. In other words, N € o[Ml if
and only if N is a submodule of a quotient of a direct sum of copies 

"f 
V. tt it

well known that o[M] is a locally finitely generated Grothendieck category (see,
for example, [St]).

Let C be a Grothendieck category. A short exact sequence

0 - - - + X - - + Y - + Z - - + 0

in c is cal led a pure sequence when the induced morphism p: Hom6r(F,y) *
Hom6r(F, Z) is an epimorphism for every flnitely presented object F' of C. In this
case X is cal led a pure subobject of  Y .  An object E of C is cal led pure- inject iue
when i t  has the inject iv i ty property with respect to al l  pure sequences in C. A
local ly f in i tely presented Grothendieck category C is cal led pure semisimple i f  each
of its objects is pure-injective. It is well known that C is a pure semisimple category
if and only if every object of C is a coproduct of indecomposable Noetherian
subobjects with local endomorphism r ings (see [as]) .  The next lemma gives, for
a given module M, a necessary condition for the category olMl to be a pure
semisimple category. ( In this case, M is cal le d a pure semisimple module (see
l 51 l ) )  .

Lernma 37. Let M be a module such that for each module X in 
" lMl, 

euery local
direct summand, of X is a direct summand ol X. Then olMl is a pure semisimple
category.

Proof. By u result of simson [4s, Theorem 1.g], a locally finitely presented
Grothendieck category C is pure semisimple if and only if the direct sum of uny
family of pure-injective objects in C is pure-injective. Note first that, by hypoth-
esis, o[M] is locally f initely presented; for, every module in o[Ml is a direct sum
of indecomposable modules, hence o[M] is locally Noetherian and hence locally
finitely presented" Let {,4; : i e I} be any family of pure-injective objects in ofMi,
and let A : @;er Ad. we claim that ,4 is also a pure-injective objec t in olMl.

Let P be the (categorical) direct product of {A; : i  e I} in o[M). since olM)
is a Grothendieck category, P always exists and in fact is the largest submo,:lule
of the usual direct product frrcrA; (in fi-Mod) which belongs to olM) (see, for
example, [51, 15.1, 13.b1). A standard argument shows that p is also a pure-
injective object in ofMl" Clearly P contains A as a local direct summand. Bv



Rings with certain modules CS

hypothesis, ,4 is a direct summand of P, hence .4 is pure-injective in 
"lMl. 

Thus
olMl is a pure semisimple category, by [+s].

We are now in a position to prove the following result. Note that if C is any
class of R-modules which is closed under direct sums, quotients and submodules
and X is the direct sum of an isomorphic copy of all cyclic modules in C then
C : olXl. Given a class C of .R-modules, an .R-mod:ule M will be called C-
injectiue if M is X-injective for each module X in C.

Theorem. 38. Let R be any ring and, let C be any class of R-modules uhich is
closed under direct su,n'ts, quotients and subrnodules. Then the following statements
are equiualent.

(i) Euery module M in C is a CS-module.

(ii) Euery rnodule M in C has a module decomposition M : @;61Mi, where
each module M; has length 2 and is C-injective or M; is simple.

(iii) Every (cyclic) module M in C is a direct sum of a C-injective module
and a semisimple module.

Proof .

( i)  + ( i i) .  Suppose that every module M in C is a C,S-module. We proceed
in two main steps.

Step 1. First we wil l  prove that every f initely generated module M in C is
Noether ian.

Let M € C, M f initely generated. Suppose f irst that Soc(M) is 0. By Lem-
ma 32, M is a f inite direct sum of uniform modules, so without loss of general i ty,
we may assume that M is uniform. By the definit ion of olMl,clearly olMl C C.
Let M be the injective hull of M \n 

"lMh 
then Iy' e olMl, iI i" quasi-injective

and M is essential in M (see, for example, [51, 17.9]).

Let ? be any simple module which is a quotient of a submodule of M. Then
T € C und, Ifu S I is CS by hypothesis. We have that End M and End ? are local,
and since Soc(M) : O, T is not embedded \n M. Thus, by Lemma 34, T is i [-
injective. It follows that M is a V-module, so M is also a l/-module. By Lemma
32, every quotient of M has finite uniform dimension. Thus M is Noetherian by

[27, Corol lary 3].

Now let M be any finitely generated module in C, and suppose that M is not
Noetherian. By Lemma 32, A4 is a finite direct sum of uniform modules. Without
Ioss of generality, we suppose that M is uniform. By the above argument, M has
a nonzero simple socle.^1i. Again, i f  Soc(MlAr) :0, then Mf A1, is Noetherian,
hence M is Noetherian, a contradiction. Let A2 be a submodule of M such that

25
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AzlAt: Soc(M1.41). Then Az *./,1 and, by Lemma 32, Mf AL has f inite uniform
dimension, so A2 is of finite length. By induction, we obtain a strictly ascending
sequence

0  :  A o  C . A r  C  A z  C  " . .  C  A n  C  A n + L  C  . . .  g  M

with.4,n.., .1 lAn: Soc(Mf Ar) (" 2 0). Set A: (Jo>r.Ao; then because each An
is of finite length, ,4 is.locally Noetherian. Then every module L € olAl is locally
Noetherian (see [51, 27.3]) and C,S, so that, by Lemma 33, every local direct
summand of .L is als.' a direct summand. By Lemma 37, o[A] is a pure semisimple
category, so every module in o[,a] is a direct sum of Noetherian modules (see [+S]
or [51, 53.4, 53.5]). Thus, because .4 is uniform, A must be Noetherian. But
in this case the ascending chain 0 c -4r C Az C .. . C ,4 cannot be infinite, a
contradiction. This shows that M is Noetherian.

Step 2. We will show next that every module M ln C is a direct sum of
modules of length at most 2.

Let M € C.aird consider the category olMl C C. By Step 1, every module
N € o[M] is locally Noetherian and C,9, hence, by Lemma 33, every local direct
summand of N is also a direct summand. Thus by Lemma 27, olM) is a pure
semisimple category. Every module in o[Ml is a direct sum of indecomposable
Noetherian modules with local endomorphism rings (see [+5]). Since an indecom-
posable Cs'-rhodule is uniform, it follows that M : @;etM;, where each M; is a
uniform Noetherian moduie with End M; local.

Next we show that every uniform module L e A is quasi-injective. By the
above argument, End .L is local. Let N be a countable direct sum of copies of
L, i .e. N : @;>r.L;, with L; = L for al l  i .  Since N is locally Noetherian and
C.9, every local direct summand in N is a direct summand, bv Lemma 83. Also,
because End ,L; is local for each f, the family {L, , i > l} is locally semi-?-
nilpotent (see [2t, Theorem 7.3.15] or [32, Theorem Z.2S]). Let 0 : L --+ L be
any monomorphism. Suppose that 0 is not an isomorphism. By the local semi-?-
nilpotency of {L;: f 2 1}, it follows easily that, for any r € -L, there is a positive
integer n such lhat 0" (") : 0, which implies that r : 0, a contradiction. Thus
any monomorphism 0 : L --+ tr is an isomorphism. Since L@L is C,g, by Lemma
34(ii) it follows that L is quasi-injective.

Now we show that the uniform module L in A is uniserial. Let A and B
be any submodules of .L. Since ,4 and B have local endomorphism rings and the
external direct sum A @ B is C,9, either B is ,A-injective or B is embedded in A, by
Lemma 34(iii). If B is A-injective, then since C : AaB is an essential submodule
of A, the identity map in C can be extended to a monomorphism from A ta B.
Thus either ,4 is embedded in B or B is embedded in A.

We may assume that there is a monomorphism g 1. A --+ B " Since ,L is
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quasi-injective, tp can be extended to a homomorphism ,lt, L -- L, and clearly

ry' is an isomorphism (see above). But ,4 is a quasi-injective essential submodule

of tr, so it is well-known that {(A) C A for any homomorphism € : L ---+ L. In

particular, this implies A : ,b(A) : e@) E B. Hence ,L is uniserial.

We claim now that length L < 2. Since -L is uniform, we know that .L is

Noetherian. Suppose that .L is not simple, then ,L contains a non-zero maximal
submodule Lt. If .L1 is not simple, then .L1 contains a non-zero maximal submo-
dule.L2.  LetLsbea(possib lyzero)  maximalsubmodule of  L2.  Then Lf  Ls isa
uniserial module of length 3, and, by Lemma 35, the direct strr' (Ll Le) e (L1l L2)
is not a CS-module, a contradiction" This shows that .L1 is simple, and so length

L  < 2 .
Thus we have shown that every module M in C is a direct sum of modules

of length at most 2. To complete the proof of the theorem, it remains to show
that i f  T e C and length T:2, then T is X-injectivefor any X€ C. Indeed, X
has a decomposit ion X: OceoXo, with length Xo 12,for each a € n. I f  Xo is
simple, clearly ? is Xo-injective. If Xo has length 2,we consider the C^9-module
T @ Xo. Let tr' and G be any direct summands of ? CI Xo with F )G : 0, then
by the Krul l-Schmidt theorem, F and G have length 2, hence F@G: ?O X". I t
follows that ?6lXo is a quasi-continuous module, hence ? is Xo-injective (see [eZ,
Proposition 2"10]). Therefore ? is X-injective (see, for example, [32, Proposition
1.5]), which completes the proof of ( i)  + ( i i) .

( i i )  + ( i i i ) .  For every module M in C, M: (@;e rN;) 0,S, where each N;
(i € 1) has length 2 and is C-injective and ,S is semisimple. Let N : @;erN;.
Then for every module X € C, since X is locally Noetherian, N is X-injective
(see, for example, [32, Theorem 1.11]). Thus N is C-injective.

(iii) + (i). Suppose that every cyclic module in C has the form -ltr O S,

where N is C-injective and ,S is semisimple. Let M be any cyclic C-module.

Every quotient of a cyclic submodule of M is a direct sum of a quasi-injective

module and a simisimple module of finite length. Thus, by [20, Theorem L.3], M

has finite uniform dimension. In particular, M - M1O ' ' ' O Mn, where each M;
is cyclic indecomposable, hence each M; is simple or uniform quasi-injective. If,
for 1 { i 1 n, M; is not simple, then any cyclic proper submodule C; in M; is
simple because C; cannot be M;-injective. Thus each M; (l < i < n) is either
simple or of length 2, and M is Noetherian. It follows that every cyclic module in

C is Noetherian, hence clearly every module in C is locally Noetherian.

Now let K be any module in C. By Zorn's Lemrna, there exists a maximal
family of independent modules .Lo (a e n) in K such that Lo is C-injective.
Then .L :  Oaeo .Lo  i s  C - in jec t i ve  ( see  [ t 2 ,  Theoremf . f f ] ) .  Thus  K :  L@?fo r
some submodule ? of K. Take any cyclic submodule D of T; then D : N @ ,S,
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where N is C-injective and ,S is semisimple. By the maximality of the family
{L . ,  a€  O} ,  weobserve  tha t  N :0 ,whence  T  i s  semis imp le .  S ince  t r  i s  l oca l l y
Noetherian and quasi- injective, by Lemma 33, L: @;etH; with each Hi ( i  e. I)
uniform. By a similar argument as above, if 11; is not simple, then every cyclic
proper submodule of H; is simple, so .[/; has length 2" In this case clearl-v 11; is
cyclic and ff is C-injective. Thus K is a C^9-module by Lemma 36.

Since the class of all singular modules over a ring ft is closed under di-
rect sums, quotients and submodules (see, for example, [20, proposit ion r.22]),
Theorem 38 gives iminediately the following result.

Corol lary 39. Let R be any r ing. Then the fol lowing statements are equiualent.

(i) Every singular R-module is C S.

( i i )  Euery singular R-module M has a decomposit ion fuf  :  @;e rM;,  where
each M; is simple, or M; has length 2 and is X-injectiue for each singular R-
module X.

(iii) Euery (cyclic) singular left R-rnodule M has a decornposition M :
NO,S, where N is X-injectiuet'or all singular left rnodules X, and S is semisimple.

I f  R is a lef t  nonsingular r ing, then the.class of al l  s ingular ( lef t)  B-modules
is closed under essent ial  extensions (see, for example, [20, Proposit ion 1.23]).  In
this case, if N is a singula.r ,Il-module such that N is X-injective for every singular
.R-module x,  then N is E(N)- inject ive, and ir  fol lows t i rat  N :  E( l / ) ,  i .e.  N is
an inject ive module. This gives at once the fol lowing result .

Corollary 40. Let R be a left nonsingular ring. Then the following statements
are equiualent.

(a) Euery singular lelt R-module is C S .

(b) Euery singular left R-module is a direct sum of an injectiue module and
a -"emisimple module.

(c) For et)ery essent ial  lef t  ideal K ol  R, RIK: N O S where N is an
injectiue module and S a semisimple module.

Example 41. Let K be any field and let n be a positive integer. Let T*(K)
denote the ring of all upper triangular n x n matrices with entries in K. Then
T"(K) is a (left and right) hereditary (left and right) Artinian (left and right)
ser ial  r ing for every posit ive integer n. I f  n:  2 then T"(K) is a ( lef t  and r ight)
,9/-ring. lf n :3 then T^tK) is not a left ,S/-ring but every singular left module
is C,S.
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Proof. It is well known that T"(K) is hereditary Artinian serial, and hence, in
par t icu lar ,  nonsingular .  I f  n :2thenT, . (K)  is  an,5/ - r ing by f tO,  Theorem 3.11] .
Now suppose that n : 3. Let R : Ts(K) and let ,S denote the left socle of /?.
Then ,S consists of all matrices in ,R with last two rows zero, and ,S is obviously an
essential left ideal of .R. Note that R I S = T2(K). Thus .R is not a left ,9/-ring, by

[19, Theorem 3.1L]. However, RIS is an Art inian serial r ing with J(RlS)2 : g.

By [Zs, Theorem 2.6], every ( left) (/?/S)-module is a direct sum of an injective
module and a semisimple module and thus every (A/S)-module is a C,S-module
by Theorem 38. It follows that every singular /i-module is C,9'

Now we shall study rings for which every finitely generated (left) module is
CS. By [aO, Corollary 1], over such rings every finitely generated (left) module
is a direct sum of uniform modules. As was remarked in [30, p" 3a5], the ring Z
of integers is an example to show that the converse is false. Our aim is to give
ideal-theoretic characterizations of rings whose finitely generated left modules are
C S .

For the next result, we recall that a ring R with Jacobson radical J(l?) is
called semiregular it RIJ(R) is a von Neumann regular ring and idempotents can
be lifted over J(.R).

Theorem 42. The following conditions are equiualent t'or a ring R with Jacobsan
radical J.

(;) E(RR) is projectiue and euery Z-generated left R-module is CS.

(ii) R is semiregular and euery 2-generated left R-rnodule is C S.

(iii) Euery left R-module is C S.

(iu) R is (left and right) Artinian serial and J2 : O.

(v) The right-handed versions of (i), (;i) and (;;i).

Proof .

(i) + (ii). Since every cyclic left .R-module is CS, by Lemma 32, there
exists a complete family of orthogonal idempotents e1 ,.. . ,€n of R such that each
-B-module Re;\s uniform. Consider the injective hull  E(Re;) of Re;; then E(Re;)
is indecomposable injective and projective, hence there is an idempotent f; of R
such that E(Re;) = Rh (see, for example, [16, Theorem 20.15]). Because End

@f;) is local, ,Rfi contains a unique maximal submodule (namely J ft)" Thus
every quotient of Rh is indecomposable and CS, so is uniform. Clearly .Rfi is
a uniserial module. Since .Re; is isomorphic to a submodule of Rf;,Re; is also
uniserial. Therefore B is a left serial ring, so it is well known that R is semiperfect
(see, for example, [sf , ss.f]). In particular .R is semiregular.
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(ii) =+ (iv). By Lemma 32, Rf J has finite uniform dimension , so Rf J is
semisimple. Since the idempotents are lifted over J, R is semiperfect. Thus
there are orthogonal idempotents e1t...ren of R such that each .Re; has local
endomorphism ring. Since each quotient of .Re; is CS, we can apply the same
argument as in the proof of (i) + (ii) to show that each Re; is uniserial. Thus -R
is a left serial ring.

Now we claim that each .Re; has nonzero socle. Suppose, on the contrary,
that Soc(J?";) :0 for some i ) 1. Take any simple r?-module U; then the 2-
generated module .R.; e U is CS. Since U cannot be embedded in Re;,[] is
^Re;-injecdive by Lemma 34. Thus Re; is a l/-module, so in particular Re; has
zero radical (see, for example, [5], 2B.l]). Thus Je; : 0 and Re; is simple, a
contradiction. Therefore Soc(,Re;) t' o for each i, so I has finitely generated
essential left socle. For any two-sided ideal K of R, Rf K is also a left serial ring,
and it is easy to check that every 2-generated left (RlK)-module is C^9, so by the
above argument, RIK has finitely generated essential left socle. Then bv a result
of Beachy [a], it follows that .R is left Artinian.

Suppose that J2 10. Then there is a positive integer yr such that J2ei I O.
Since .Rey is uniserial, we have a composition series

R" j  >  Je i  )  J ' r i  >  J" r i  >  . . .

T1"". Reif Jsei is uniserial of length B and so, by Lemma 35, (ReilJse) @
(Jei lJ2ei) is not cs, a contradict ion. Thus J2 : o, and hence al l 'Ri l , .  .  . ,  Re'
have leng th<2 .  I f  l eng th  Rep :  l eng th  Re1  :2 , thens ince r?e ; ,  @Re1 isC ,g , i t
is easy to see that l1el @ Re1 is quasi-continuous (see the last part of the proof
of Theorem 38 (i) =+ (ii)), and it follows that Rep and Re1 are relatively injective
(see [32, Proposition 2.10]). Thus, it is clear that if fte1 has length 2, then Re1"
is (r?e1 o "' o Ee")-injective, i.e. Rer is an injective .R-module. Now by [25,
Theorem 2.6] it follows that R is (left and right) Artinian serial (with J, : Oj.

(iv) + (iii). If ft is (left and right) Artinian serial with J2 : 0, then every
J?-module is a direct sum of an injective module and a semisimple module (sel
[25, Theorem 2.6]). Thus, by Theorem 38, every,R-module is C,S.

(iii) + (i). This follows easily by Theorem 38, but we give here a short
direct proof. By Lemma32, R: @Re;, where each.Re; is uniform. Since every
free -R-module is C^9, we know by Proposition 1 that every .B-module is a direct
sum of a projective module and a singular module. In particular, E(Re;) must
be projective or singular. But ,E(Pe;) contains the projective submodule Re;, so
clearly !(Rei) is not singular. Thus ̂ E(Re;) is projective for each f, which implies
that .E(s,B) is projective.

(") <+ (iv). Since (iv) is left-right symmetric, clearly (iv) is equivalent to the
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right-handed versions of (i), (ii) and (iii). This completes the proof of Theorem
42 .

The ring fs@) of upper triangular 3 x 3 matrices over a field K has the
property that every singular module is C,S (see above). However, Theorem 42
shows that not every ?s(K)-module is C,S.

Recall that a ring.R is called left SI if every singular left R-module is injec-
tive. If R is a domain which is left ^9.I, then R is called a left Sl-domain. Examples
of non-Artinian simple left and right Noetherian left and right S/-domains can be
found in [fZ].. However, it is still unknown whether a simple left Noetherian left
,Sl-domain must be right ^91.

Theorem 43. The following statements are equiualent for a ring R.

(;) R is left nonsingular and euery U-generated lelt R-mod,ule is C S.

(i i)  R: Rr @ "'@R," is a direct surn of r ings R; (1 < i  1n), each Morita
equiualent to an upper triangular 2 x 2 matrir ring over a d,iuision ring, or to a
simple (left and right) Noetherian (left and right) S I domain.

Moreover, in this c&se, et)ery finitely generated left (and right) R-module is
C S .

Proof .

(i) =+ (ii). Let L be any cyclic singular left R-module, and consider fu[ -

L @a R. Then M is a C,S-module by hypothesis. Since R is left nonsingular,
we have Zz(M) : Z(M) : tr, so by Lemma 29, L is R-injective. Thus every
cyclic singular left ,R-module is injective, so by [39, Corollary 5] every singular left
-R-module is injective, i.e. .B is a left S/-ring.

By [fO, Theorem 3.11], there is a ring direct decomposition ,B - Ro g> Br 6;
. . . @ B^o such that Ro I So is semisimple, where ̂ 9s is the left socle of the ring Rs,
and each Bi Q S r S rn) is a simple left Noetherian left ^9.I-ring. Since every cyclic
left ft-module is C S, R has finite left uniform dimension by Lemma 32, whence
R6 is left Artinian. Since every 2-generated E6-module is C5, by Theorem 42
(ii) <+ (iv), Rs is left and right Artinian serial and J(Ee)2 :O. Note that Rs is
left nonsingular, and all nonsingular left .R6-modules are projective, hence Ro -

Ar O . . .@ An, where each A; is Morita equivalent to a full upper triangular matrix
ring fl over a division ring D; (see [20, Theorem 5.28]). Each indecomposable
module over Rs (and henc" l,;) has length S 2, thus by [ZO, Proposition 5.25,
Theorem 5.27), it follows easily that each 7;a is an upper triangular 2 xZ matrix
ring over D;"

Now we consider the simple left Noetherian rings Bi 0 < j 3 nz). Choose
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any 1 < j S m. Since Bi is left nonsingular and Br.@ Bi is CS, it is easy to
see that every 2-generated nonsingular left Bi-module is projective. Hence, by the
proof of Theorem 5.3 in [Sf], the left classical quotient ring Qi of Bi is also the
right classical quotient ring of Bi, thus Bi is also a right Goldie ring ([10, Theorem
1.28]). Also, since Bi is left hereditary left Noetherian, Bi is right semihereditary
( [ t o ,Coro l l a ry8 .19 ] ) .  S inceBy is le f t  S I ,B j lK j  i ssemis imp le fo reve ryessen t i a l
left ideal Ki of Bj ([19, Proposit ion 3.1]), thus Bi is r ight Noetherian (see [12]).
Sin B, is Morita equivalent to a simple left ,S.I-domain r', ([lg, Theorem 3.11]),
it follows that F; is :ight Noetherian and hence ,F, is right ^9I by [12, Theorern
6.26).

( i i)  =+ (i).  Suppose that R - Rr O " 'O R,, where the R;'s are as in ( i i) .
Since the property of being a left ,9.I-ring is a Morita invariant, each -R; (1 S i < z)
is (two-sided) ̂ 91. Hence R is (two-sided) 51. In particular, B is left and right
hereditary ([to, Proposit ion 3.3]). Since every (two-sided) hereditary Noetherian
prime ring is C,S (see [9, Proposition 6.8]). it follows that each h 0 < f < n) is
left and right CS. Hence ,R is (two-sided) CS.

Now let M be any finitely generated left E-module. Then Z(M) is injec-
tive, so fu[ - Z(M) @ N, and clearly N is nonsingular finitely generated. Since
fi is hereditary c5, by [t t ,  Theorem 4.1], every nonsingular f initely generated
left .Il-module is projective, hence it follows easily that every nonsingular finitely
generated left ft-module is CS (Proposition 1). Therefore, we have that N is a
CS-rnodule. Thus, by Lemma 29, M is C.9. By symmetry, we can show that
every finitely generated nonsingular right .R-module is C,S. This improves Theo-
rem 43.

Corollary 44. Let R be a commutatiue ring. Then the following statements are
equiualent"

(i) Euery 2-generated R-module is C S .

(ii) Every R-rnodule is C S .

( i ; i )  R:  f i r  @.. .@ f i , ,  is  a  d i rect  sum of  r ings R;  (1  < i  1n) ,  each a QF
ring of length 2 or a field..

Proof .

( i)  =+ (i i) .  Denote by N(r?) the prime radical of R, and let E: A1W1A1"
Then R is a semiprime commutative ring, hence E is nonsingular (see, for example,

[10, Lemma 1.3]). Clearly every 2-generated E-module is C,S. By the proof of
(i) =+ (ii) in Theorem 43,8 is an S/-ring. Becaur" fi is commutative, it follows
by Iro, Theorem 3.9] that E is lron Neumann regular. But every cycl ic R-module
is CS, so by Lemma 32, E has finite uniform dimension, hence E is semisimple.
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I t  fol lows that N(.R) : J(f i) ,  and since the idempotents l i f t  over N(R), B is
semiperfect. Therefore, by Theorem 42, every .R-module is CS.

(i i)  + ( i i i )  and (i i i )  + ( i) are immediate by Theorem 42.

BACKGROUND

Any f initely generated Abelian group (i .e. Z-module) is a direct surn of a
torsion group and a torsion-free group, i .e. for any f initely generated Abelian group
.4, the torsion subgroup 7 is a direct summand of A. Rotman [43] proved that
a commutative domain ,R has the property that the torsion submodule of every
R-module is a direct summand if and only if R is a field. In an attempt to extend
Rotman's result,  Cateforis and Sandomierski [6, 7] characterized commutative
rings R with the property that every /?-module is a direct sum of a singular
module and a nonsingular module; in this case, the r ing R is said to have the
splitting property (or ^9P, for short). It turns out that these rings are precisely
the commutative rings ,R for which every singular module is injective, i.e. 51-
rings. We also should note here the work of Al in and Dickson I l ]  involving derived
functors.

Goodearl [19] characterized general rings for which every singular left mo-
dule is injective and called such rings left Sl-rings. Clearly every left ,S/-ring
has SP. Another class of rings with ,SP is provided by the rings .R for which
every nonsingular left R-module is projective. Again there is a characterization
by Goodearl [19] when .R is left nonsingular. For another account of this work see

[20]. In both these cases of rings with 5P, the rings are left hereditary. In genera,l,
if a ring ft has SP for its left modules then the left global dimension of r? is at
most 2, but can be 2 (see [46], [19]). For a recent account of developments in this
area see [47].

The relevance of these investigations to when certain projective modules are
C,9 is given in Proposition 1. Proposition 3 is due to Chatters and Khuri [10,
Theorem 2.1]. They characterize in [1L, Theorem 4.1] when a left nonsingular r ing
r? whose identity element is a sum of orthogonal primitive idempotents has the
property that 6fi is finitely E-C S, and show that this is the case precisely when
J? is a left and right semihereditary left and right CS-ring, equivalently, ll is a
left and right semihereditary ring with a two-sided classical quotient ring which is
(left and right) Artinian hereditary serial. In particular, for such a ring .R, -Rp is
f initely X-CS" Proposit ion 0(i) is due to Gabriel [ fZ, p.+ta Th6orbm 11. Lemma
9 and Corollary 10 are due to Tercan l+81, but based on work of Chatters and
Khuri [11]. Theorem 18, and much of the material leading up to i t ,  can be found
in IZO] (see [20, Theorems 3.9 and 5"18] in part icular), and is based on [5, Theorem

33
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2.3], [19, Theorem z.s], [4o, Th6orbm 8.1] and
is taken mostly from [20, Theorem 3.12] which
Proposition 3] and [19, Corollary 2.61.
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[at, Th6ordme 2.7]. Theorem 2l
is based on [5, Theorem 2"11, [13,

Cateforis, Sandomierski and Goodearl are also responsible for Theorems 26
and27. Theorem 26 is.taken from [20, Theorem 5.21] (see also [8, Proposit ion 3.2]
and [19, Theorem 2.11]). Theorem 27 is [zo, Theorem'S.2a] whici is jerived from
[8, Theorem 3.1, Proposit ion 3.2].

The work on when, for a given ring R, the left .R-module .R is countably
D-C S is motivated by the corresponding results for injective modules (see [rsi,
[10J). Lemma2o, Theorem 28 and Corollary 30 can be found in {rs]. In view of
Theorem 28, it is natural to ask if it is the case that rings r? which do not contain
an infinite set of orthogonal idempotents and for which pr? is countably X-CS
have the property that afi is X-C^9. In other words, is Theorem 28 true without
the hypothesis that fi be left nonsingular. Corollary 30 represents a first step in
this part icular direction.

Harada and his students have studied C,9-modules in detail. They use the
term "extending module" where we have followed lgl and used the term ,,C,S-
module". For Harada (and others), dual C,S-modules are cal led "l i f t ing modules,,.
Theorem 31 is due to Oshiro [ss, :o], and these papers of Oshiro with their bib-
liographies give a good introduction to the work of Harada and his school on
C,S-modules. Leonard [s0] considered small modules, and proved that a module
M is small if and only if M is small in some module Mr, which contains it.

The rest of the discussion is taken from [14]. Corollaries 39 and 40 answer
the question raised in [3.9, p. 351] of characterizing those rings whose singular
rings are C,S. Goodearl 119] characterized left,Sl-r ings and Rizvi and yousit l+21
showed that a ring B has the property that all its singular modules are quasi-
continuous if and only if all singular .R-modules are semisimple. It follow, ty [to,Proposition 3.1] that a ring rt is a left ,91-ring if and only if R is left nonsingular
and every singular r?-module is quasi-continuous.

Now consider Theorems 42 and 43. A rirtg .R is semiprime Artinian if and
only if every cyclic module is injective ([rz], [aa]). tn [s-0, proposition 2 and
Corollary g], information is obtained about rings with the properties that every
cyclic module is quasi-continuous or continuous. Now suppose that ft is a ring
such that every 2-generator left module is quasi-continuous. Let M be any cyclic
R-module. Then, by hypothesis, M @ R is quasi-continuous, and hence M is an
injective -R-module ([32, Proposition 2.10]). By the result of osofsky mentioned
above, it follows that l? is semiprime Artinian. on the other hurrj, we do not
know in general the structure of rings for which every finitely generated module
is cs. If, for a given ring B, every cyclic left .R-module is c,g then every cyclic
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left R-module is a direct sum of uniform modules. It would be interesting to know
when the converse is true. For example, it is certainly true for commutative rings
( [ to ,  Coro l lary  6.6] ) .

Theorem 43 (see also Theorem 27) should be compared with Goodearl's
theorem which states that the following statements are equivalent for a ring -R:

(i) r? is left nonsingular and p.R is D-C,9,

(ii) n is left nonsingular and every nonsingular left R-module is projective,

( i i i )  n  .  f i r e " ' @ f t , ,  i s a d i r e c t s u m o f  r i n g s f i ;  ( 1  < i  1 n ) , , e a c h M o r i t a
equivalent to an upper triangular matrix ring over a division ring, (see Proposition
1 and [20, Theorem 5.28] or [19, Theorem 2.15]).

Let R be any ring. An .R-module M is called Goldie torsion if M : Zr(M).
ln llZ,, Theorem 3.10], Rizvi and Yousif prove that the ring .R is left ,S1 if and only
if every torsion .R-module is quasi-continuous. If R is left nonsingular then every
torsion module is singular. Thus , for any field 7(, the ring f"(K) has the property
that every torsion module is C,S but 7s(1{) is not an S.I-ring. Moreover, let p be
any pr ime inZ and le t  ,9 :  Z lZp ' .  Then the r ing ? of  a l l  upper  t r iangular  2x2
matrices with entries in ^9 has the property that every singular module is C,S, but
the ?-module I is torsion but not C,S.
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