RINGS WITH CERTAIN MODULES CS

PATRICK F. SMITH

Abstract

Let R be a ring with identity and M a unital left R-module. Then M is a CSmodule if every submodule is essential in a direct summand of M. Our concern is to study when certain classes of left R-modules consist of CS-modules. In particular, we consider when all finitely (respectively, countably) generated projective left R-modules are $C S$, when all projective left R-modules are CS, when all singular left R-modules are CS and when all finitely generated left R-modules are CS. To help the reader, we have included background material, a guide to the literature and an extensive bibliography.

Throughout, all rings are associative with identity and all modules are unital left modules (unless stated otherwise). Let R be a ring and M a left R-module. A submodule K of M is called closed (in M) provided K has no proper essential extension in M. The module M is called a CS-module provided every closed submodule is a direct summand.

Let R be a ring (with identity). For any (left) R-module M, let $[M]$ denote the isomorphism class of M. Let C be a class of deft R-modules, i.e. C is a collection of modules such that ${ }_{R} 0 \in \mathbf{C}$ and $[M] \subseteq \mathbf{C}$ whenever $M \in \mathbf{C}$, where ${ }_{R} 0$ is the zero R-module. Any module belonging to the class \mathbf{C} will be called a C -module. We are interested in the following general question:
'for which rings R, is every module in a given class C CS?'
We shall consider this question in the following particular cases:
(i) $\mathbf{C}=\left[{ }_{R} R\right] \cup\left[{ }_{R} 0\right]$,
(ii) C is the class of finitely generated projective left R-modules,
(iii) C is the class of countably generated projective left R-modules,
(iv) C is the class of all projective left R-modules,
(v) C is the class of singular left R-modules, and
(vi) C is the class of all left R-modules.

As we shall see, it is natural to consider some of these cases when the ring R is left nonsingular.

Before embarking on this investigation, we make two comments. The first is that if R is any ring and C the class of injective (more generally, quasi-injective) left R-modules then, of course, every C-module is CS. Secondly, what about nonsingular modules? Our first result shows that in the case of left nonsingular R, nonsingular modules will be taken care of in the programme outlined above. Let M be a left R-module. Then M is called Σ-CS (respectively, finitely $\Sigma-C S$, countably $\Sigma-C S$) if every (finite, countable) direct sum of copies of M is $C S$.

Proposition 1. Let R be any ring. Consider the following statements.
(i) ${ }_{R} R$ is (finitely, countably) $\Sigma-C S$.
(ii) Every (finitely generated, countably generated) projective left R-module is $C S$.
(iii) Every (finitely generated, countably generated) left R-module is a direct sum of a projective module and a singular module.
(iv) Every (finitely generated, countably generated) nonsingular left R-module is projective.
(v) Every (finitely generated, countably generated) nonsingular left R-module is CS.

Then $(i) \Leftrightarrow($ ii $) \Leftrightarrow(i i i) \Rightarrow($ iv $) \Rightarrow$ (v). If, in addition R is left nonsingular then the above statements are equivalent.

Proof. We shall prove this result in the general case. The proofs for finitely generated modules and for countably generated modules are similar.
(i) \Rightarrow (ii). Because any direct summand of a CS-module is also a CS-module (see, for example, [32, Proposition 2.7]).
(ii) \Rightarrow (iii). Let M be any R-module. There exists a free R-module F and an epimorphism $\varphi: F \rightarrow M$. Let $K=\operatorname{ker} \varphi$. There exist submodules P, P^{\prime} of F such that $F=P \oplus P^{\prime}$ and K is an essential submodule of P. Now

$$
M=\varphi(F)=\varphi(P) \oplus \varphi\left(P^{\prime}\right)
$$

where $\varphi(P) \cong P / K$, so that $\varphi(P)$ is singular, and $\varphi\left(P^{\prime}\right) \cong P^{\prime}$, so that $\varphi\left(P^{\prime}\right)$ is projective.
(iii) \Rightarrow (i). Let F be any free R-module. Let K be a closed submodule of F. By hypothesis, $F / K=(P / K) \oplus(S / K)$, for some submodules P, S of F, containing
K, such that P / K is projective and S / K is singular. Because, $F / P \cong S / K$, it follows that F / P is singular, and hence P is an essential submodule of F. Therefore $K=P \cap S$ is an essential submodule of S, and hence $K=S$. It follows that $F / K=P / K$, so that F / K is projective, and K is a direct summand of F. Thus F is a $C S$-module.
(iii) \Rightarrow (iv). Clear.
(iv) $\Rightarrow(\mathrm{v})$. Let G be a nonsingular left R-module. Let H be a proper submodule of G. Let N denote the submodule of G containing H such that N / H is the singular submodule of G / H. It can easily be checked that H is essential in N and that the module G / N is nonsingular, hence projective. It follows that N is a direct summand of G. Thus G is a $C S$-module.
us V If R is a left nonsingular ring then it is clear that (v) implies (i).
In Proposition $1,(\mathrm{v}) \Rightarrow$ (i) fails in general. It is easy to give an example. Let R be a commutative local ring with unique maximal ideal J and suppose that J is nilpotent. Then R has no non-zero nonsingular modules, so (iv) and (v) hold vacuously. On the other hand, it is clear that the R-module R is a $C S$-module if and only if it is uniform. For a particular example, take K to be any field, let $S=K \oplus K$ and let R denote the subring of the ring of all 2×2 matrices over S consisting of all matrices of the form

with k in K and s in S. Then R satisfies (iv) but not (i).
We now begin our investigation outlined above by examining when the left R-module R is $C S$; it is natural to say that the ring R is a left $C S$-ring in this situation. Let R be a ring and M a left (right) R-module. Then we shall write

$$
\left.\ell_{R}(m)=\{r \in R: r m=0\} \quad \text { (respectively, } r_{R}(m)=\{r \in R: m r=0\}\right) \text {. }
$$

When there is no ambiguity we write $\ell(m)$ or $r(m)$. First we prove a lemma due essentially to Utumi [50].

Lemma 2. Let R be a left nonsingular ring. Then every closed left ideal of R is a left annihilator if and only if every non-essential left ideal of R has non-zero right annihilator.

Proof. Suppose first that every closed left ideal is a left annihilator. Let A be a non-essential left ideal of R. There exists a closed left ideal B such that A is
essential in B. Clearly, $B \neq R$. By hypothesis, $B=\operatorname{lr}(B)$ and hence $r(B) \neq 0$. Thus $r(A) \neq 0$.

Conversely, suppose that every non-essential left ideal of R has non-zero right annihilator. Let C be a closed left ideal of R. Suppose that $C \neq \operatorname{lr}(C)$. Then C is not essential in $\operatorname{lr}(C)$, and hence $C \cap D=0$ for some non-zero left ideal D in $\operatorname{lr}(C)$. Let E be a complement of D in R such that $C \subseteq E$. Clearly E is non-essential and hence, by hypothesis, $r(E) \neq 0$. Let $0 \neq x \in r(E)$. Then $E x=0$ implies $C x=0$. Now $x \in r(C)=r \operatorname{lr}(C)$ implies that $D x=0$, But $D \oplus E$ is an essential left ideal of the left nonsingular ring R and $(D \oplus E) x=0$, so that $x=0$, a contradiction. Thus $C=\operatorname{lr}(C)$, as required.

Recall that a ring R is called a Baer ring if every left annihilator is generated by an idempotent, equivalently, every right annihilator is generated by an idempotent.

Proposition 3. A ring R is a left nonsingular left CS-ring if and only if R is a Baer ring such that every non-essential left ideal has non-zero right annihilator.

Proof. Suppose first that R is a Baer ring such that every non-essential left ideal has non-zero right annihilator. Clearly R is left nonsingular and hence R is a left $C S$-ring by Lemma 2. Conversely, suppose that R is a left nonsingular left $C S$-ring. Then every closed left ideal of R is a left annihilator, and Lemma 2 then gives that every non-essential left ideal has non-zero right annihilator. Let A be any left annihilator of R. There exists an idempotent e in R such that A is essential in Re. Let $b \in r(A)$. There exists an essential left ideal L such that $L e \subseteq A$ and hence $L e b=0$. But R is left nonsingular, so that $e b=0$ and hence $b \in(1-e) R$. Thus $r(A)=(1-e) R$. It follows that $A=\operatorname{lr}(A)=R e$. Thus R is a Baer ring.

Recall that a ring R is called a left $P P$-ring provided every principal left ideal of R is projective. It is rather clear that Baer rings are left (and right) $P P$-rings and left $P P$-rings are left nonsingular. Moreover, a ring R is a left $P P$-ring if and only if for each a in R there exists an idempotent e in R such that $\ell(a)=R e$. The next result is a companion to Proposition 3.

Proposition 4. Let R be a left nonsingular right PP-ring such that every nonessential left ideal has non-zero right annihilator. Then every closed left ideal of finite uniform dimension is generated by an idempotent. In particular, if in addition R is a left Goldie ring then R is a left CS-ring.

Proof. Let L be a closed left ideal of R of finite uniform dimension. To prove
that L is a direct summand of ${ }_{R} R$ it is sufficient (by induction) to prove this in the case that L is uniform. Suppose that L is uniform and let $0 \neq a \in L$. Because R is left nonsingular and $R a$ is essential in L it follows that $r(L)=r(a)$. But $r(a)=e R$ for some idempotent e, because R is right $P P$. By Lemma 2, $L=\operatorname{lr}(L)=\operatorname{lr}(a)=R(1-e)$. The result follows.

Next we give a sufficient condition for every closed left ideal of a left nonsingular ring to be a left annihilator. Recall that if R is a left nonsingular ring then the injective hull $E\left({ }_{R} R\right)$ has a unique ring structure compatible with its left R module structure, and, as usual, we call this ring the maximal left quotient ring of R. Denote the maximal left quotient ring of R by Q. Let M be a nonsingular left R-module. Then the injective hull $E\left({ }_{R} M\right)$ of M can be given the structure of a left Q-module (see [20, Theorem 2.2]). Let L be a left ideal of R. Then $K=E\left({ }_{R} L\right)$ is a direct summand of ${ }_{R} Q$, say $Q=K \oplus K^{\prime}$, for some R-submodule K^{\prime} of Q. Because ${ }_{R} Q$ is nonsingular, K is essential in $Q K$ and hence $K=Q K$. Similarly, $K^{\prime}=Q K^{\prime}$. Thus $K=Q e$ for some idempotent e in Q. We shall generalize this fact in Lemma 12.

Lemma 5. Let R be a left nonsingular ring with maximal left quotient ring Q. Let X and Y be left Q-modules with ${ }_{R} Y$ nonsingular. Then
(i) $\operatorname{Hom}_{Q}(X, Y)=\operatorname{Hom}_{R}(X, Y)$.
(ii) If $X=Y \oplus Z$ for some R-submodule Z of X then Z is a Q-submodule of X.
 Proof.
(i) Let $\varphi \in \operatorname{Hom}_{R}(X, Y)$. Let $q \in Q, x \in X$. There exists an essential left ideal L of R such that $L q \subseteq R$. Let $a \in L$. Then $a \varphi(q x)=\varphi(a q x)=a q \varphi(x)$. It follows that $L(\varphi(q x)-q \varphi(x))=0$. But Y is a nonsingular R-module. Thus $\varphi(q x)=q \varphi(x)$. It follows that $\varphi \in \operatorname{Hom}_{Q}(X, Y)$.
(ii) Now suppose that $X=Y \oplus Z$. Let $\pi: X \hookrightarrow Y$ denote the projection. Then $\pi \in \operatorname{Hom}_{R}(X, Y)=\operatorname{Hom}_{Q}(X, Y)$, so that $Z=\operatorname{ker} \pi$ is a Q-submodule of X.

Proposition 6.

(i) Let R be a left nonsingular ring with maximal left quotient ring Q. Then Q is a regular left self-injective ring.
(ii) Let R be a subring of a regular left self-injective ring S such that R is an essential submodule of the left R-module S. Then R is left nonsingular and $S=Q$.

Proof.

(i) Consider any diagram

of left Q-modules. Since Q is an injective R-module there exists an R-homomorphism $\gamma: B \rightarrow Q$ such that $\beta=\alpha \gamma$. By Lemma $5(\mathrm{i}), \gamma$ is also a Q-homomorphism. It follows that $Q Q$ is injective.

Let L be a finitely generated left ideal of Q. There exists a Q-epimorphism $\varphi: X \rightarrow L$, where $X=Q(n)$ for some positive integer n. Let $Y=\operatorname{ker} \varphi$. Then ${ }_{R}(X / Y)$ is nonsingular and hence Y is a direct summand of the R-module X. By Lemma 5(ii), there exists a Q-submodule Y^{\prime} of X such that $X=Y \oplus Y^{\prime}$. Then $L \cong Y^{\prime}$ (as Q-modules) so that $Q L$ is injective, and hence L is a direct summand of Q. Thus Q is a regular ring.
(ii) Let A be an essential left ideal of R. Then A is an essential submodule of ${ }_{R} S$. Thus $S A$ is an essential left ideal of S. Thus S left nonsingular implies that R is left nonsingular. Again let Q denote the maximal left quotient ring of R. The inclusion mapping $R \rightarrow Q$ can be lifted to an R-monomorphism $\alpha: S \rightarrow Q$. Let $t \in S$. Define a mapping $\beta: S \rightarrow Q$ by

$$
\beta(s)=\alpha(s t)-\alpha(s) \alpha(t) \quad(s \in S) .
$$

Clearly β is an R-homomorphism and $\beta(R)=0$. Because ${ }_{R} Q$ is nonsingular, it follows that $\beta(S)=0$. Thus $\alpha: S \rightarrow Q$ is a ring monomorphism. We identify S with $\alpha(S)$, so that S is a subring of Q. Now S is an essential injective submodule of $s Q$, so that $S=Q$.

Lemma 7. Let R be a left nonsingular ring with maximal left quotient ring Q. Suppose further that R_{R} is an essential submodule of Q_{R}. Then every closed left ideal of R is a left annihilator.

Proof. Let L be a non-essential left ideal of R. Then L is essential in a direct summand K of ${ }_{R} Q$. There exists an idempotent $1 \neq e \in Q$ such that $K=Q e$ by the remarks before Lemma 5. Note that $r_{Q}(L)=r_{Q}(Q e)=(1-e) Q \neq 0$,
because the left R-module Q is nonsingular. Now R_{R} essential in Q_{R} implies that $r_{R}(L)=R \cap r_{Q}(L) \neq 0$. By Lemma 2, every closed left ideal of R is a left annihilator.

Let R be a left and right nonsingular ring R with the property that the maximal left and right quotient rings coincide. Then Lemma 7 tells us that every closed left ideal is a left annihilator and every closed right ideal is a right annihilator. In fact, the converse is also true (see [20, Theorem 2.38]). Thus we have the following result.

Corollary 8. A ring R is a left and right nonsingular left and right CS-ring if and only if R is a Baer ring for which the left and right maximal quotient rings coincide.

Let R be a left $C S$-ring. What about the left R-module $R \oplus R$, is it a $C S$-module? The answer is "no" in general, For any positive integer n and left R-module M, let ${ }_{R} M^{(n)}$, or simply $M^{(n)}$, denote the left R-module $M \oplus \cdots \oplus M$ (n copies) and let $M_{n}(R)$ denote the ring of all $n \times n$ matrices with entries in R.

Lemma 9. Let R be a ring and n a positive integer. Then the left R-module $R^{(n)}$ is CS if and only if the ring $M_{n}(R)$ is left CS.

Proof. Let $T=M_{n}(R)$. Let e_{11} denote the matrix with $(1,1)$ entry 1 and all other entries 0 . Let S denote the subring $e_{11} T e_{11}$ of T and note that $R \cong S$. Note further that $T=T e_{11} T$. Let M be a left T-module and let K be a T-submodule of M. Then it is easy to check the following facts:
(i) K is a closed submodule of M if and only if $e_{11} K$ is a closed submodule of the left S-module $e_{11} M$.
(ii) K is a direct summand of M if and only if $e_{11} K$ is a closed submodule of $e_{11} M$, and
(iii) $T_{T} M$ is $C S$ if and only if $S\left(e_{11} M\right)$ is $C S$.

The result now follows by taking $M=T$.
Corollary 10. Let R be a left Ore domain. Then
(i) ${ }_{R} R$ is a CS-module, and
(ii) $R(R \oplus R)$ is a CS-module only if R is right Ore.

Proof.ni Q ni lsitnozes woh islugnianor ai flol (i) The module ${ }_{R} R$ is uniform and hence $C S$.

(ii) Suppose that $R \oplus R$ is $C S$. Then the matrix ring $T=M_{2}(R)$ is a left nonsingular left $C S$-ring by Lemma 9. Let $0 \neq a, b \in R$. Suppose that $a R \cap b R=0$. Let α denote the matrix

$$
\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]
$$

in T. It is clear that $r(\alpha)=0$ and hence $T \alpha$ is essential in T, by Proposition 3. However, it is easy to check that $T e_{11} \cap T \alpha=0$, a contradiction. Thus $a R \cap b R \neq 0$. It follows that R is a right Ore domain.

It is not difficult to give examples of left Ore domains which are not right Ore and thus examples of left $C S$-rings R such that the left R-module $R \oplus R$ is not $C S$ (see, for example, $[33,1.2 .11$ Example (ii) $])$. However, there are easier examples of such rings R as the following result shows ${ }^{\text {d }}$

Corollary 11. The following statements are equivalent for a commutative domain R.
(i) R is a Prüfer domain.
(ii) ${ }_{R}(R \oplus R)$ is a CS-module.
(iii) ${ }_{R} R$ is finitely $\Sigma-C S$.

Proof.

(i) \Rightarrow (iii). Let n be any positive integer. Then $M_{n}(R)$ is a prime left and right Goldie left and right $P P$-ring. By Lemma 7, $M_{n}(R)$ is a left $C S$-ring. Now $R^{(n)}$ is a $C S$-module, by Lemma 9. Thus ${ }_{R} R$ is finitely $\Sigma-C S$.
(iii) \Rightarrow (ii). Clear.
(ii) \Rightarrow (i). By Lemma $9, M_{2}(R)$ is a left $C S$-ring, and hence a left $P P$-ring (Proposition 3). Thus every 2-generator ideal of R is projective. By [18, Theorem 22.1], R is a Prüfer domain.

For example, the polynomial ring $R=Z[x]$, in the indeterminate x with integer coefficients, is a commutative Noetherian domain such that the R-module $R \oplus R$ is not a $C S$-module. We shall extend Corollary 11 in Theorem 18 below. Our next concern is with rings R such that the left R-module R is finitely Σ-CS. Recall that we know, by Proposition 1 , that ${ }_{R} R$ is finitely $\Sigma-C S$ if and only if every finitely generated projective left R-module is $C S$. First we prove the following result.

Lemma 12. Let R be a left nonsingular ring with maximal left quotient ring Q. Let M be a finitely generated nonsingular left R-module with R-injective hull E. Then E is a left Q-module, $E=Q M$ and E embeds in $Q^{(n)}$ for some positive integer n.

Proof. We have already remarked that E is a left Q-module. In particular, $Q M \subseteq$ E. Clearly $Q M$ is a finitely generated left Q-module. There exists a positive integer n and a Q-epimorphism $\varphi: Q^{(n)} \rightarrow Q M$. Let $X=Q^{(n)}$ and $Y=\operatorname{ker} \varphi$. Note that $X / Y \cong Q M$, so that X / Y is a nonsingular left R-module. Thus Y is a closed submodule of the injective left R-module X. Hence Y is a direct summand of X, so that $X \cong Y \oplus Q M$. The result now follows easily.

Corollary 13. Let R be a left semihereditary ring with maximal left quotient ring Q such that Q is a projective left R-module. Then ${ }_{R} R$ is finitely $\Sigma-C S$.

Proof. Any finitely generated nonsingular left R-module M embeds in the projective left R-module $Q^{(n)}$ for some positive integer n, by Lemma 12 . Because, R is left semihereditary, M is projective. Now apply Proposition 1.

Now we consider the following situation. Let R be a subring of a ring S (with the same identity). Let M be a left R-module. Suppose that M is contained in a left S-module N. Because S is a right R-module we can consider the left S-module $S \otimes_{R} M$. There exists a natural mapping $\mu: S \otimes_{R} M \rightarrow N$ defined by $\mu\left(\Sigma_{i} s_{i} \otimes m_{i}\right)=\Sigma_{i} s_{i} m_{i}$, for all finite sets of elements s_{i} in S and m_{i} in M. It is easy to check that μ is an S-homomorphism.

Lemma 14. Let R be a subring of a ring S such that R is an essential submodule of the left R-module S. Let M be a left R-module such that M is contained in a left S-module N. Suppose further that ${ }_{R}(S M)$ is nonsingular. Then there exists a natural S-epimorphism $\mu: S \otimes_{R} M \rightarrow S M$ with kernel $Z_{R}\left(S \otimes_{R} M\right)$.

Proof. Let $Z=Z_{R}\left(S \otimes_{R} M\right)$. It is clear that $Z \subseteq \operatorname{ker} \mu$, with μ as above. On the other hand let $x=s_{1} \otimes m_{1}+\cdots+s_{n} \otimes m_{n} \in$ ker μ, for some positive integer n and elements $s_{i} \in S, m_{i} \in M(1 \leq i \leq n)$. There exists an essential left ideal L of R such that $L s_{i} \subseteq R(1 \leq i \leq n)$. Let $a \in L$. Then

$$
a x=a s_{1} \otimes m_{1}+\cdots+a s_{n} \otimes m_{n}=1 \otimes \Sigma_{i}\left(a s_{i} m_{i}\right)=1 \otimes \mu(a x)=1 \otimes 0=0 .
$$

Thus $L x=0$ and $x \in Z$.
Let R be a ring. An R-module M is called finitely presented if there exists an exact sequence $G \rightarrow F \rightarrow M \rightarrow 0$ with F and G both finitely generated free
R-modules. Recall that a ring R is left coherent if every finitely generated left ideal is finitely presented. For any R-module M, the singular submodule of M will be denoted $Z_{R}(M)$, or simply $Z(M)$.

Corollary 15. Let R be a left nonsingular ring with maximal left quotient ring Q. Let M be a nonsingular left R-module. Then there exists a natural Q-epimorphism $\mu_{M}: Q \otimes_{R} M \rightarrow E(M)$ with kernel $Z_{R}\left(Q \otimes_{R} M\right)$. If, in addition, M is finitely presented then μ_{M} is an isomorphism.

Proof. The first part follows by Lemma 14. Now suppose that M is finitely presented. There exists a finitely generated free left R-module F, a finitely generated submodule K of F and an exact sequence

Form the diagram:

$$
\begin{gathered}
Q \otimes_{R} K \rightarrow Q \otimes_{R} F \rightarrow Q \otimes_{R} M \rightarrow 0 \\
\mu_{K} \downarrow \\
E(K) \\
\mu_{F} \downarrow \\
H(F) \rightarrow E(M)
\end{gathered}
$$

By Lemma 12, μ_{K} is onto. Also μ_{F} is an isomorphism. By a standard diagram chase, μ_{M} is a monomorphism and hence an isomorphism.

Corollary 16. Let R be a left nonsingular ring with maximal left quotient ring Q. Suppose further that R is left coherent. Then Q is a flat right R-module.

Proof. For any finitely generated left ideal L of R, the multiplication map μ : $Q \otimes_{R} L \rightarrow Q L$ is a monomorphism by Corollary 15. Thus Q_{R} is flat.

Let R be a ring and let M be a left (right) R-module. Let $m \in M$ and let N be a submodule of M. Then we shall denote

$$
N m^{-1}=\{r \in R: r m \in N\} \quad\left(m^{-1} N=\{r \in R: m r \in N\}\right)
$$

Lemma 17. Let R be a subring of a ring S. Then the following statements are equivalent.
(i) The natural S-homomorphism $\mu: S \otimes_{R} M \rightarrow S$ is a monomorphism for every submodule M of the left R-module S.
(ii) The right R-module S is flat and the natural S-homomorphism $S \otimes_{R} S \rightarrow$ S is a monomorphism.
(iii) $S=S\left(R s^{-1}\right)$ for all s in S. dtol sidj wrosibotadimes thal zi SI (vi)

Proof.

(i) \Rightarrow (ii). Clear.
(ii) \Rightarrow (iii). Let $s \in S$. Let $A=R s^{-1}$. Define a mapping $\alpha: R / A \rightarrow S / R$ by

$$
\alpha(r+A)=r s+R
$$

Clearly α is an R-monomorphism. Because S_{R} is flat we obtain another monomorphism $S \otimes_{R}(R / A) \rightarrow S \otimes_{R}(S / R)$. However, if $j: R \rightarrow S$ denotes the inclusion map then
ganad bns islugrienon ai $\mathrm{pH}+\mathrm{H}=\mathrm{M}$ non T

$$
S \otimes_{R} R \rightarrow S \otimes_{R} S \rightarrow S
$$

is just the canonical isomorphism $S \otimes{ }_{R} R \cong S$. Thus $1 \otimes j$ is an isomorphism. But S_{R} flat gives the exact sequence

$$
\begin{gathered}
1 \otimes j \\
0 \rightarrow S \otimes_{R} R \quad \rightarrow S \otimes_{R} S \rightarrow S \otimes_{R}(S / R) \rightarrow 0 .
\end{gathered}
$$

Thus $S \otimes_{R}(S / R)=0$. It follows that $S \otimes_{R}(R / A)=0$, and hence $S=S A$.
(iii) \Rightarrow (i). Let M be any submodule of ${ }_{R} S$. Suppose that $x \in$ ker μ. There exist a positive integer n and elements $s_{i} \in S(1 \leq i \leq n), m_{i} \in M(0 \leq i \leq n)$ such that $x-1 \otimes m_{0}+s_{1} \otimes m_{1}+\cdots+s_{n} \otimes m_{n}$. If $n=0$ then $m_{0}=\mu(x)=0$ and hence $x=0$. Suppose that $n \geq 1$. Let $r \in R s_{n}^{-1}$. Then
$r x=1 \otimes\left(r m_{0}+r s_{n} m_{n}\right)+\left(r s_{1}\right) \otimes m_{1}+\cdots+\left(r s_{n-1}\right) \otimes m_{n-1}$ and $r x \in \operatorname{ker} \mu$.
By induction on n, it follows that $r x=0$. Hence $\left(R s_{n}^{-1}\right) x=0$. But $S=S\left(R s_{n}^{-1}\right)$, and hence $x=0$. It follows that μ is a monomorphism.

Theorem 18. Let R be a left nonsingular ring with maximal left quotient ring Q. Then the following statements are equivalent.
(i) ${ }_{R} R$ is finitely $\Sigma-C S$.
(ii) R is left semihereditary and the left R-module $R^{(2)}$ is $C S$.
(iii) R is left semihereditary and the right R-module Q satisfies $Q=\left(q^{-1} R\right) Q$ for all q in Q.
(iv) R is left semihereditary, the left R-module Q is flat and the left R-module $Q \otimes_{R} Q$ is nonsingular.

In this case, R is also right semihereditary.

Proof.

(i) \Rightarrow (ii). Lei L be any finitely generated left ideal of R. Suppose that L is generated by n elements. By Lemma $9,{ }_{R} R^{(n)} C S$ implies that the matrix ring $M_{n}(R)$ is left nonsingular left $C S$ and hence left and right $P P$ (Proposition 3). It follows by a standard argument that L is projective. Hence R is left semihereditary. This proves (ii). Similarly R is right semihereditary.
(ii) \Rightarrow (iii). Let $q \in Q$. Then $M=R+R q$ is nonsingular and hence projective (adapt the proof of Proposition 1). Thus there exists a monomorphism $\varphi: M \rightarrow F=R_{1} \oplus R_{2}$, where $R_{j}=R(j=1,2)$. For $j=1,2$, let $\pi_{j}: F \rightarrow R_{j}$ denote the projection and $\imath_{j}: R_{j} \rightarrow F$ the inclusion mappings. Note that $R \subseteq M$ and we let $x_{j}=(1 \varphi) \pi_{j} \in R(j=1,2)$. Let $j=1,2$. For all r in $R, r x_{j}=r(1 \varphi) \pi_{j}=r \varphi \pi_{j}$, and hence $m x_{j}=m \varphi \pi_{j}$ for all $m \in M$, because R is essential in the nonsingular module M; in particular $q x_{j}=q \varphi \pi_{j} \in R$ and $x_{j} \in q^{-1} R$. Thus $x_{j} \in q^{-1} R(j=1,2)$.

Now consider the diagram

where $M \rightarrow Q$ is inclusion. There exists a mapping $\theta: F \rightarrow Q$ such that the above diagram commutes. For $j=1,2$, let $q_{j}=\left(1 \imath_{j}\right) \theta \in Q$. It is not difficult to show that $1=x_{1} q_{1}+x_{2} q_{2}$. It follows that $Q=\left(q^{-1} R\right) Q$.
(iii) \Rightarrow (iv). By Corollary 15 and Lemma 17.
(iv) \Rightarrow (i) Let n be any positive integer and let F denote the free left R module $R^{(n)}$. Let K be any closed submodule of F and let $M=F / K$. Then M is a finitely generated nonsingular let R-module. By Lemma 10 , there exists a positive integer k such that $F \subseteq{ }_{R} Q^{(k)}$. To prove that K is a direct summand of F we need to show that M is projective and, because R is left semihereditary, it is sufficient to prove that M can be embedded in a free left R-module. To prove this last fact we can suppose without loss of generality that $M \subseteq Q$.

Suppose that $M=R x_{1}+\cdots+R x_{t}$ for some positive integer t and elements $x_{i} \in Q(1 \leq i \leq t)$. For each $1 \leq i \leq t$, let $A_{i}=x_{i}^{-1} R$ and let

$$
A=\{r \in R: M r \subseteq R\}=A_{1} \cap \cdots \cap A_{t} .
$$

Note that $Q=A_{i} Q(1 \leq i \leq t)$ by Lemma 17. Thus $\left(R / A_{i}\right) \otimes_{R} Q=0(1 \leq i \leq t)$. Now there exists a monomorphism $R / A \rightarrow\left(R / A_{1}\right) \oplus \cdots \oplus\left(R / A_{t}\right)$ which gives a monomorphism

$$
(R / A) \otimes_{R} Q \rightarrow\left(\oplus_{i \leq i \leq t}\left(R / A_{i}\right)\right) \otimes_{R} Q \cong \oplus_{1 \leq i \leq t}\left(\left(R / A_{i}\right) \otimes_{R} Q\right)=0
$$

Thus $(R / A) \otimes_{R} Q=0$, and hence $Q=A Q$. There exist a positive integer s and elements $a_{i} \in A_{i}, q_{i} \in Q(1 \leq i \leq s)$ such that $1=a_{1} q_{1}+\cdots+a_{s} q_{s}$. Define $\theta: M \rightarrow{ }_{R} R^{(s)}$ by $\theta(m)=\left(m a_{1}, \ldots, m a_{s}\right)$ for all m in M. It is clear that θ is a monomorphism.

Note that one consequence of Theorem 18 is that, for a left semihereditary ring R, if the left R-module $R \oplus R$ is $C S$ then the left R-module $R^{(n)}$ is $C S$, for every positive integer n. In particular, this holds if R is (von Neumann) regular. The question arises for which rings R does it follow that ${ }_{R}(R \oplus R) C S$ implies that ${ }_{R} R$ is finitely $\Sigma-C S$.

Let R be a left nonsingular ring with maximal left quotient ring Q. Let c be a regular element of R; by this, we mean that $c r \neq 0$ and $r c \neq 0$ for all $0 \neq r \in R$. It is well known that if X is an injective left R-module then $X=c X$. In particular, $Q=c Q$. Thus, by Theorem 18, if R is a left semihereditary ring such that for each q in Q there exists a regular element c in R such that $q c \in R$ then ${ }_{R} R$ is finitely $\Sigma-C S$. This is true in particular in R is a semiprime (left and right) Goldie ring. This gives:

Corollary 19. Let R be a semiprime left and right Goldie ring. Then the following statements are equivalent.
(i) ${ }_{R} R$ is finitely $\Sigma-C S$.
(ii) R_{R} is finitely $\Sigma-C S$.
(iii) R is left semihereditary.
(iv) R is right semihereditary.

Let R be a left nonsingular ring such that ${ }_{R} R$ is finitely $\Sigma-C S$. Proposition 1 shows that in this case every finitely generated nonsingular (projective) left R-module is $C S$. In general, it does not follow that every countably generated nonsingular (projective) left R-module is $C S$. For example, if \mathbf{Z} is the ring of
rational integers, then $\mathbf{z} \mathbf{Z}$ is finitely $\Sigma-C S$ (see for example Corollary 11) but $z^{Z} \mathbf{Z}$ is not countably $\Sigma-C S$ by a result of Kamal and Muller [28, Theorem 5] (or see [32, p.19]). This fact is a consequence of the following result.

Lemma 20. Let R be a left nonsingular left Goldie ring such that ${ }_{R} R$ is countably $\Sigma-C S$. Then R is left Artinian.

Proof. By Theorem 18, R is left semihereditary. By [22, p. 563 Theorem] it is sufficient to prove that any regular element of R is a unit. Let c be any regular element in R. Let F be a countable direct sum of copies of ${ }_{R} R$. Let Q denote the maximal left quotient ring of R and recall that c is a unit in Q. Define a map $\varphi: F \rightarrow Q$ by

$$
\varphi\left(r_{1}, r_{2}, r_{3}, \ldots\right)=r_{1}+r_{2} c^{-1}+r_{3} c^{-2}+\ldots
$$

for all $\left(r_{1}, r_{2}, r_{3}, \ldots\right)$ in F. It is easy to check that φ is an R-homomorphism. Let $K=\operatorname{ker} \varphi$. Then $F / K \cong \operatorname{im} \varphi \subseteq{ }_{R} Q$. Now the left R-module Q is nonsingular and hence K is a closed submodule of F. By hypothesis, F is a $C S$-module and hence K is a direct summand of F, say $F=K \oplus K^{\prime}$ for some submodule K^{\prime} of F. Clearly, $K^{\prime} \cong \operatorname{im} \varphi$ and hence K^{\prime} has finite uniform dimension.

There exists a finitely generated submodule $K^{\prime \prime}$ of K^{\prime} such that $K^{\prime \prime}$ is essential in K^{\prime}. There is a positive integer n such that

$$
K^{\prime \prime} \subseteq G=R \oplus \cdots \oplus R \oplus 0 \oplus 0 \ldots\left(n R^{\prime} s\right)
$$

Thus $K^{\prime} \subseteq G$. Consider the element $e_{n+1}=(0, \ldots, 0,1,0,0, \ldots)$ of F, with $(n+1)$ st entry 1. Since $F=K \oplus K^{\prime}$ there exist $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in K, a^{\prime} \in K^{\prime}$ such that $e_{n+1}=a+a^{\prime}$. Note that $a_{n+1}=1, a_{t}=0(t \geq n+1)$ and

$$
a_{1}+a_{2} c^{-1}+a_{3} c^{-2}+\cdots+a_{n} c^{-n+1}+c^{-n}=0 .
$$

This implies that $x c=1$ where $x=-a_{1} c^{n-1}-\cdots-a_{n} \in R$. Moreover, $(1-c x) c=0$ gives $c x=1$. Thus c is a unit in R.

We shall prove a stronger version of Lemma 20 later. Now we show that for regular rings R the concepts of finitely $\Sigma-C S$ and countably $\Sigma-C S$ coincide. Recall that a regular ring is characterised by the fact that all modules are flat.

Theorem 21. The following statements are equivalent for a regular ring R with maximal left quotient ring Q.
(i) ${ }_{R} R$ is countably $\Sigma-C S$.
(ii) ${ }_{R} R$ is finitely Σ-CS.
(iii) $Q \otimes_{R} Q$ is a nonsingular left R-module.
(iv) The left R-module Q is projective.
(v) R is left self-injective.

Proof.
(i) \Rightarrow (ii). Clear.
(ii) \Rightarrow (iii). Suppose that $z \in Z\left(Q \otimes_{R} Q\right)$, where $z=x_{1} \otimes y_{1}+\cdots+x_{n} \otimes y_{n}$, for some positive integer n and elements $x_{i}, y_{i} \in Q(1 \leq i \leq n)$. Let $Y=$ $R y_{1}+\cdots+R y_{n}$. Then Y is a projective left R-module by Proposition 1 and hence $R^{(n)} \cong Y \oplus Y^{\prime}$ for some module Y^{\prime}. Thus

$$
Q^{(n)} \cong Q \otimes_{R} R^{(n)} \cong\left(Q \otimes_{R} Y\right) \oplus\left(Q \otimes_{R} Y^{\prime}\right)
$$

It follows that the left R-module $Q \otimes_{R} Y$ is nonsingular, and hence $z=0$. Thus $Q \otimes_{R} Q$ is nonsingular.
(iii) \Rightarrow (iv), (v). By Corollary 15 the multiplication map $\mu_{Q}: Q \otimes_{R} Q \rightarrow Q$ is an isomorphism. Now if $\imath: R \rightarrow Q$ is the inclusion mapping then

$$
Q \otimes_{R} R \xrightarrow{1 \otimes} Q \otimes_{R} Q \xrightarrow{\mu_{Q}} Q
$$

is the natural isomorphism $\Sigma_{i} q_{i} \otimes r_{i} \rightarrow \Sigma_{i} q_{i} r_{i}$. Thus $1 \otimes \imath$ is an isomorphism.
Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow R \rightarrow Q \rightarrow Q / R \rightarrow 0 \tag{1}
\end{equation*}
$$

Because Q_{R} is flat, we obtain

$$
0 \rightarrow Q \otimes_{R} R \rightarrow Q \otimes_{R} Q \rightarrow Q \otimes_{R}(Q / R) \rightarrow 0 \text { exact. }
$$

Thus $Q \otimes_{R}(Q / R)=0$. But ${ }_{R}(Q / R)$ is flat, and hence (1) gives the following exact sequence

$$
0 \rightarrow R \otimes_{R}(Q / R) \rightarrow Q \otimes_{R}(Q / R)
$$

Thus $R \otimes_{R}(Q / R)=0$, and hence $Q / R=0$. This proves that $R=Q$, as required.
(iv) \Rightarrow (iii). Suppose that the left R-module Q is projective. Then there exists a positive integer n such that $R^{(n)} \cong Q \oplus P$ for some R-module P. Now $Q^{(n)} \cong Q \otimes_{R} R^{(n)} \cong\left(Q \otimes_{R} Q\right) \oplus\left(Q \otimes_{R} P\right)$, and hence the left R-module $Q \otimes_{R} Q$ is nonsingular.
(v) \Rightarrow (i). Suppose that R is left self-injective. Let M be a countably generated nonsingular left R-module, say $M=R m_{1}+R m_{2}+R m_{3}+\ldots \ldots$. It is rather easy to see that any cyclic submodule of M is isomorphic to a direct summand of R and hence is both injective and projective. In particular, $M=R m_{1} \oplus N_{1}$, for some submodule N_{1} of M. Let $\pi: M \rightarrow N_{1}$ denote the projection mapping. Then $M=R m_{1}+R \pi\left(m_{2}\right)+R \pi\left(m_{3}\right)+\ldots$. Moreover, $N_{1}=R \pi\left(m_{2}\right) \oplus N_{2}$, for some submodule N_{2}, and hence $M_{1}=R m_{1} \oplus R \pi\left(m_{2}\right) \oplus N_{2}$. Repeating this argument, it follows that M is a direct sum of (a countable number of) cyclic submodules, and hence M is projective. By Proposition $1,{ }_{R} R$ is countably Σ-CS.

Let R be any ring. Recall that a left R-module M is called (countably) Σ-injective if every direct sum of (a countable number of) copies of M is injective. It is well known that for any ring R, a left R-module M is Σ-injective if and only if M is countably Σ-injective. Moreover, the following statements are equivalent for a ring R :
(i) ${ }_{R} R$ is (countably) Σ-injective,
(ii) R_{R} is (countably) Σ-injective,
(iii) The ring R is $Q F$,
(see [15] or [16, Proposition 20.3A, Theorem 24.20]). We show next by example that the corresponding results for $\Sigma-C S$ modules are false in general.

First, recall that an ideal I of a ring R is called left T-nilpotent if, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ of elements of I, there exists a positive integer n such that $a_{1} a_{2} \ldots a_{n}=0$. A ring R with Jacobson radical J is called left perfect if J is left T-nilpotent and the ring R / J is semiprime Artinian.

Lemma 22. The following statements are equivalent for a ring R.
(i) R is left perfect.
(ii) R has DCC on principal right ideals.
(iii) Every flat left R-module is projective.

Lemma 22 is due to Bass (see, for example, $[16,22.29$ and 22.31 A$]$ or $[20,7$ Theorem 5.7) and the next lemma is due to Chase (see, for example, [$16,22.31 \mathrm{~B}]$ or [20, Theorem 5.15]).

Lemma 23. The following statements are equivalent for a ring R.
(i) Every direct product of projective left R-modules is projective.
(ii) The ring R is left perfect and right coherent.

Example 24.

(i) The exists a commutative regular ring R which is (left) $C S$ such that ${ }_{R} R$ is not finitely $\Sigma-C S$.
(ii) There exists a regular ring R such that ${ }_{R} R$ is countably $\Sigma-C S$ but R_{R} is not countably $\Sigma-C S$ and ${ }_{R} R$ is not Σ-CS .

Proof.
(i) Let F be any field having a proper subfield K. Let $F_{n}=F(n \geq 1)$ and let S denote the commutative self-injective regular ring $\Pi_{n} F_{n}$. Let R denote the subring of S consisting of all sequences $\left\{a_{n}\right\}$ in S with $a_{n} \in K$ for all but a finite number of elements $n \geq 1$. Note that $S=E\left({ }_{R} R\right)$, so that R is commutative regular but not self-injective. By Theorem $21,{ }_{R} R$ is not finitely $\Sigma-C S$. On the other hand, let A be any ideal of R. Then $S A$ is an ideal of S and hence there exists an idempotent e in S such that $S A$ is essential in $S e$, because ${ }_{S} S$ is injective. It is clear that $e \in R$ and it is not difficult to check that A is essential in Re. It follows that R is a $C S$-ring.
(ii) Let F be any field and V any infinite dimensional vector space over F. Let $R=\operatorname{End}\left({ }_{F} V\right)$. It is well known that R is a left self-injective regular ring which is not right self-injective (see, for example, [20, Proposition 2.23]). By Theorem $21,{ }_{R} R$ is countably $\Sigma-C S$ but R_{R} is not countably $\Sigma-C S$.

Now suppose that ${ }_{R} R$ is $\Sigma-C S$. By Proposition 1, it follows that every nonsingular left R-module is projective. In particular, because R is left nonsingular, every direct product of projective left R-modules is projective. By Lemma 23, R is left perfect. But this implies that R is Artinian, a contradiction. Thus ${ }_{R} R$ is not Σ - $C S$.

In contrast to this example, we shall show for a given ring R :
(1) R is left nonsingular and ${ }_{R} R$ is $\Sigma-C S$ if and only if R is right nonsingular and R_{R} is $\Sigma-C S$, and
(2) if a left nonsingular ring R contains no infinite set of orthogonal idempotents then ${ }_{R} R$ countably $\Sigma-C S$ implies that ${ }_{R} R$ is $\Sigma-C S$.

First we state, without proof, a well known lemma.

Lemma 25.

(i) Let R be a subring of a ring S such that S is a flat left R-module. Then
any flat left S-module is a flat left R-module.
(ii) Let R be a left (or right) semihereditary ring, IThen any submodule of a flat left R-module is flat.

Theorem 26. The following statements are equivalent for a left nonsingular ring R with maximal left quotient ring Q.
(i) ${ }_{R} R$ is $\Sigma_{-C S}$.
(ii) R is left hereditary left Artinian and the left R-module Q is flat.
(iii) R is left perfect and right semihereditary and the left R-module Q is flat.

Proof.
(i) \Rightarrow (ii). By Proposition 1 and Lemma 23, R is left hereditary and left perfect, and the nonsingular left R-module Q is projective, whence flat. Let X be the direct product of any non-empty collection of projective left Q-modules. Then X is a nonsingular left R-module and hence X is a projective left R-module. Let F be a free left Q-module and let $\varphi: F \rightarrow X$ be a Q-epimorphism. Then φ is an R-epimorphism, so there exists an R-homomorphism $\theta: X \rightarrow F$ such that $\varphi \theta=1_{F}$. But θ is also a Q-homomorphism (Lemma 5). Thus X is Q-projective. It follows that every direct product of projective left Q-modules is projective. By Lemma 23, Q is left perfect. But Q is regular by Proposition 6, and hence Q is semiprime Artinian.

In particular, the left Q-module Q has finite uniform dimension. It follows that the left R-module R has finite uniform dimension. But R is a left hereditary ring. Thus R is left Noetherian, by [44, Theorem 2.1 Corollary 1$]$. Because, R is left perfect, R is left Artinian.
(ii) \Rightarrow (iii). Clear.
(iii) \Rightarrow (i). Let Y be any nonsingular left R-module. Recall that the ring Q is regular and hence the left Q-module $E(Y)$ is flat. By Lemma $25(\mathrm{i}), E(Y)$ is a flat left R-module. But R is right semihereditary and so, by Lemma 25 (ii), Y is a flat left R-module. By Lemma 23, the left R-module Y is projective.

Theorem 27. The following statements are equivalent for a ring R.

(i) The ring R is left nonsingular and ${ }_{R} R$ is $\Sigma-C S$.
(ii) The ring R is right nonsingular and R_{R} is Σ-CS.
(iii) The ring R is (left and right) hereditary Artinian and the maximal left and right quotient rings of R coincide.

Proof.

(i) \Rightarrow (iii). Suppose that R is a left nonsingular ring such that the left R module R is $\Sigma-C S$. By Theorem $18, R$ is right semihereditary and hence right nonsingular. Let Q denote the maximal left quotient ring of R. By Theorem 26, R is left hereditary left Artinian and the left R-module Q is flat. Moreover, by the proof of Theorem 26 the ring Q is semiprime Artinian. Now R is an essential submodule of the right R-module Q by Theorem 18 (i) \Leftrightarrow (iii). Applying Lemma 6 (ii) we have that Q is also the maximal right quotient ring of R. Clearly R is left coherent and hence Q_{R} is flat (Corollary 16). Moreover, R is left semihereditary and right perfect. By Theorem $26 R_{R}$ is $\Sigma-C S$ and hence (iii) follows.
(iii) \Rightarrow (i). By Corollary 16 and Theorem 26.
(ii) \Leftrightarrow (iii). By symmetry.

Theorem 28. Let R be a left nonsingular ring which does not contain an infinite set of orthogonal idempotents. Suppose further that ${ }_{R} R$ is countably $\Sigma-C S$. Then ${ }_{R} R$ is $\Sigma-C S$.

Proof. Note first that because R is $C S$ with no infinite sets of orthogonal idempotents, R is a (finite) direct sum of uniform left ideals and hence R is a left Goldie ring. By Theorem 18 and Lemma 20, R is a left hereditary left Artinian ring and the maximal left quotient ring Q of R is a flat left R-module. By Theorem $26,{ }_{R} R$ is $\Sigma-C S$.

For any module M, the second singular submodule $Z_{2}(M)$ is defined as follows:

$$
Z_{2}(M) / Z(M)=Z(M / Z(M))
$$

Lemma 29. Let R be a ring and M an R-module. Then M is $C S$ if and only if $M=Z_{2}(M) \oplus N$ for some submodule N such that $Z_{2}(M)$ and N are both $C S$ and $Z_{2}(M)$ is N-injective.

Proof. See [28, Theorem 1].
Using Lemma 29 we can now prove the following corollary to Theorem 28.
Corollary 30. Let R be a ring which does not contain an infinite set of orthogonal idempotents. Suppose further that ${ }_{R} R$ is countably $\Sigma-C S$. Then every nonsingular left R-module is CS.

Proof. Let $Z=Z_{2}\left({ }_{R} R\right)$ and let S denote the ring R / Z. Note that the R-module R is $C S$. By Lemma 29, there exists a left ideal L of R such that $R=Z \oplus L$.

Now S is a left nonsingular ring with no infinite set of orthogonal idempotents and ${ }_{s} S$ is countably Σ-CS. By Theorem $28, s S$ is $\Sigma-C S$. If M is a nonsingular left R-module then $Z M=0$, and M is a nonsingular left S-module. By Proposition $1, M$ is a $C S$-module.

Let R be any ring and M any R-module. A submodule L of M is called small (in M) if, whenever N is a submodule of M such that $M=L+N$, then $M=N$. The module M will be called a dual CS-module if for every submodule H of M there exists a direct summand K of M such that $K \subseteq N$ and H / K is small in M / K.

We saw in Proposition 1 that a ring R has the property that every projective module is $C S$ if and only if every module is a direct sum of a projective module and a singular module. Recall that a module M is singular if and only if there exists a projective module P and an epimorphism $\varphi: P \rightarrow M$ such that ker φ is essential in P. Dually, a module M is called small if there exists an injective module E and a monomorphism $\theta: M \rightarrow E$ such that $\operatorname{im} \theta$ is small in E.

The next result is due to Oshiro. The proof is somewhat long and technical, and is therefore omitted.

Theorem 31. The following statements are equivalent for a ring R.
(i) Every projective left R-module is a CS-module.
(ii) Every injective right R-module is a dual $C S$-module.
(iii) Every left R-module is a direct sum of a projective module and a singular module.
(iv) Every right R-module is a direct sum of an injective module and a small module.
(v) (a) R satisfies $A C C$ on left annihilators, and
(b) every left R-module is singular or contains a non-zero projective direct summand.
(vi) (a) R is right Artinian, and
(b) every right R-module is small or contains a non-zero injective submodule.

Recall that our concern is with the general question of when every module in a given class \mathbf{C} of modules is $C S$. So far we have considered different specific classes \mathbf{C}, but we now will prove a result for a general class \mathbf{C}. In order to prove this theorem, we shall require a number of preparatory lemmas. The first lemma follows easily from [39, Theorem 1].

Lemma 32. Let R by any ring and let M be a finitely generated R-module such that every quotient of every cyclic submodule of M is CS. Then every quotient of M has finite uniform dimension.

Proof. By [39, Theorem 1], every quotient of every cyclic submodule of M has finite uniform dimension. By an easy induction on the number of generators of M, we obtain that M has finite uniform dimension. Then apply the same argument to the quotients of M.

Our next lemma extends a result of Okado [34], which states that any CSmodule over a left Noetherian ring is a direct sum of uniform modules. A nonempty family $\left.A_{i}: i \in I\right\}$ of submodules of a module M is called a local direct summand of M if $\sum_{I} A_{i}$ is direct and $\sum_{F} A_{i}$ is a direct summand of M for any finite subset $F \subseteq I$. A module M is called locally Noetherian if every finitely generated submodule of M is Noetherian.

Lemma 33. Let M be a locally Noetherian CS-module, Then every local direct summand of M is a direct summand, and M is a direct sum of uniform modules.

Proof. Let $m \in M$. Let $\ell(m)=\{r \in R: r m=0\}$. Then $R / \ell(m) \cong R m$, so that $R / \ell(m)$ is Noetherian. Now apply [32, Theorem 2.17 and Proposition 2.18].

If the direct sum of two modules is quasi-continuous, then these modules are relatively injective (see, for example, [32, Proposition 2.10]). This fails for a CS direct sum, but we have the following which is still very useful when dealing with CS-modules. It could be deduced from [3, Lemma 8], but we give a short direct proof here for completeness.

Lemma 34. Let A and B be uniform modules with local endomorphism rings such that $M=A \oplus B$ is $C S$. Let C be a submodule of A and let $\theta: C \rightarrow B$ be a homomorphism. Then the following hold.
(i) If θ cannot be extended to a homomorphism from A to B, then θ is a monomorphism and B is embedded in A.
(ii) If any monomorphism $\varphi: B \rightarrow A$ is an isomorphism, then B is A injective.
(iii) If B is not embedded in A, then B is A-injective.

Proof.

(i) Suppose θ cannot be extended to A. Let

$$
U=\{(x,-\theta(x)): x \in C\} \subseteq A \oplus B
$$

Then U is a submodule of M and clearly $U \cap B=0$. Since M is $C S$, there is a direct summand U^{*} of M such that U is essential in U^{*}. By the Krull-SchmidtAzumaya Theorem (see, for example, [2, Corollary 12.7]), we have $M=U^{*} \oplus A$ or $M=U^{*} \oplus B$.

Suppose that $M=U^{*} \oplus B$. Let $\pi: U^{*} \oplus B \rightarrow B$ be the projection. Then it is easy to see that $\left.\pi\right|_{A}$ extends $\theta: C \rightarrow B$, a contradiction. Thus $M=U^{*} \oplus A$ which implies that $\theta(x) \neq 0$ for $x \neq 0$, i.e. θ is a monomorphism. Since $U^{*} \cap B=0$, clearly B is embedded in A.
(ii) As in the proof of (i), given any homomorphism $\theta: C \rightarrow B$ with $C \subseteq A$, suppose that $M=U^{*} \oplus A$. Let $\psi: U^{*} \oplus A \rightarrow A$ be the projection. Then clearly $\left.\psi\right|_{B}$ is a monomorphism (because U is essential in U^{*}), hence an isomorphism by the hypothesis. It follows easily that $M=U^{*} \oplus B$, so that, as in (i), θ can be extended to a homomorphism from A to B. It follows that B is A-injective.
(iii) Immediate by (i).

Corollary 35. Let M be a uniserial module with unique composition series $M \supset$ $U \supset V \supset 0$. Then $M \oplus(U / V)$ is not a CS-module.

Proof. Clearly M and U / V have local endomorphism rings. Suppose that $M \oplus$ (U / V) is $C S$. Let $\pi: U \rightarrow U / V$ be the canonical homomorphism. Since π is not a monomorphism, by Lemma 34(i), π can be extended to a homomorphism $\varphi: M \rightarrow U / V$. Since U / V is simple, $\operatorname{ker} \varphi=U$ or M, a contradiction.

This corollary shows that the direct sum of a uniserial module of length 3 and a simple module need not be CS. However, the direct sum of a module of length 2 and a simple module is always $C S$. In fact, the following more general result holds. The proof uses some techniques from Kamal-Müller [29]. Recall that a family $\left\{M_{i} ; i \in I\right\}$ of modules is called locally semi-T-nilpotent if, for any countable set of non-isomorphisms

$$
\left\{f_{n}: M_{i(n)} \rightarrow M_{i(n+1)}\right\}
$$

with $i(n) \neq i(m)$ in I, for $n \neq m$, and for any $x \in M_{i}$, there exists k (depending on x) such that $f_{k} \ldots f_{2} f_{1}(x)=0$ (see $[23, \mathrm{p} .174]$).

For a module M of finite length, the composition length of M is denoted by length M.

Lemma 36. Let a module $M=\oplus_{i \in I} M_{i}$ be a direct sum of submodules $M_{i}(i \in I)$, each of composition length at most 2. Suppose further, that M_{j} is M_{k}-injective for all $j, k \in I$ with M_{j}, M_{k} both of length 2. Then M is a CS-module.

Proof. First we show that every maximal uniform submodule of M is a direct summand of M. Let D be any maximal uniform submodule of M. Let $0 \neq x \in D$. Then there exists a finite subset I^{\prime} of I such that $x \in \oplus_{i \in I}, M_{i}$. Since $R x$ is essential in D, it is easy to see that D can be embedded in $\oplus_{i \in I}, M_{i}$, and hence D is finitely generated. Thus there exists a positive integer n and $i(j) \in I(1 \leq j \leq n)$ such that

$$
D \subseteq M_{i(1)} \oplus \cdots \oplus M_{i(n)}=N
$$

and we choose n minimal.
For each $1 \leq j \leq n$, let $\pi_{j}: N \rightarrow M_{i(j)}$ denote the projection. Since $\cap_{1 \leq j \leq n}$ $\operatorname{ker}\left(\left.\pi_{j}\right|_{D}\right)=0$ and D is uniform, without loss of generality, we can suppose that $\operatorname{ker}\left(\left.\pi_{j}\right|_{D}\right)=0$ and hence $D \cap\left(M_{i(2)} \oplus \cdots \oplus M_{i(n)}\right)=0$. Thus D can be embedded in $M_{i(1)}$, so D is simple or has length 2.

Suppose first that D has length 2. Then $\pi_{1}(D)=M_{i(1)}$ and hence $N=$ $D \oplus M_{i(2)} \oplus \cdots \oplus M_{i(n)}$. Now suppose that D is simple. By the choice of n, $\pi_{j}(D) \neq 0(1 \leq j \leq n)$. Suppose that there exists $1 \leq k \leq n$ such that $M_{i(k)}$ is simple. Then $\pi_{k}(D)=M_{i(k)}$, and hence $N=D \oplus\left\{\oplus_{j \neq k} M_{i(j)}\right\}$. Otherwise, length $M_{i(j)}=2(1 \leq j \leq n)$, and, by hypothesis, N is N-injective, and hence $C S$ [32, Proposition 2.1]. Thus, D is a direct summand of N, and hence also of M.

Now we claim that any closed submodule C of M contains a nonzero uniform direct summand of M. Indeed, there is a nonzero uniform submodule K in C. Then K has a maximal essential extension K^{\prime} in C. Clearly K^{\prime} is a closed submodule of C, and since C is a closed submodule of M, K^{\prime} is a closed submodule of M (see [9, Proposition 2.2]). Because K^{\prime} is uniform, K^{\prime} is a direct summand of M, by the above argument.

Now let A be any closed submodule of M. By Zorn's Lemma, there exists a maximal local direct summand $\left\{A_{\alpha}: \alpha \in \Omega\right\}$ of M such that $A_{\alpha} \subseteq A$ and A_{α} is uniform for all $\alpha \in \Omega$. Since End M_{i} is local and length $M_{i} \leq 2$ for each $i \in I$, the family $\left\{M_{i}: i \in I\right\}$ is locally semi- T-nilpotent by [24, Lemma 12], and hence every local direct summand of M is a direct summand (see [23, Theorem 7.3.15]). Thus $\oplus_{\alpha \in \Omega} A_{\alpha}$ is a direct summand of M. Now $A=\left(\oplus_{\Omega} A_{\alpha}\right) \oplus B$ for some submodule B of A. If $B \neq 0$, again by [9, Proposition 2.2], B is a closed submodule of M, hence B contains a nonzero uniform direct summand A^{\prime} of M.

Then $\left\{\left\{A_{\alpha}: \alpha \in \Omega\right\}, A^{\prime}\right\}$ is a local direct summand of M, which contradicts the maximality of $\left\{A_{\alpha}: \alpha \in \Omega\right\}$. Thus $B=0$, and $A=\oplus_{\Omega} A_{\alpha}$ is a direct summand of M. Therefore M is a $C S$-module, and the proof is complete,

For any module M, we denote by $\sigma[M]$ the full subcategory of R-Mod whose objects are all submodules of M-generated modules. In other words, $N \in \sigma[M]$ if and only if N is a submodule of a quotient of a direct sum of copies of M. It is well known that $\sigma[M]$ is a locally finitely generated Grothendieck category (see, for example, [51]).

Let \mathbf{C} be a Grothendieck category. A short exact sequence

$$
0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0
$$

in \mathbf{C} is called a pure sequence when the induced morphism $p: \operatorname{Hom}_{C}(F, Y) \rightarrow$ $\operatorname{Hom}_{\boldsymbol{C}}(F, Z)$ is an epimorphism for every finitely presented object F of \mathbf{C}. In this case X is called a pure subobject of Y. An object E of C is called pure-injective when it has the injectivity property with respect to all pure sequences in C. A locally finitely presented Grothendieck category \mathbf{C} is called pure semisimple if each of its objects is pure-injective. It is well known that C is a pure semisimple category if and only if every object of C is a coproduct of indecomposable Noetherian subobjects with local endomorphism rings (see [45]). The next lemma gives, for a given module M, a necessary condition for the category $\sigma[M]$ to be a pure semisimple category. (In this case, M is called a pure semisimple module (see [51])).

Lemma 37. Let M be a module such that for each module X in $\sigma[M]$, every local direct summand of X is a direct summand of X. Then $\sigma[M]$ is a pure semisimple category.

Proof. By a result of Simson [45, Theorem 1.9], a locally finitely presented Grothendieck category \mathbf{C} is pure semisimple if and only if the direct sum of any family of pure-injective objects in C is pure-injective. Note first that, by hypothesis, $\sigma[M]$ is locally finitely presented; for, every module in $\sigma[M]$ is a direct sum of indecomposable modules, hence $\sigma[M]$ is locally Noetherian and hence locally finitely presented. Let $\left\{A_{i}: i \in I\right\}$ be any family of pure-injective objects in $\sigma[M]$, and let $A=\oplus_{i \in I} A_{i}$. We claim that A is also a pure-injective object in $\sigma[M]$.

Let P be the (categorical) direct product of $\left\{A_{i}: i \in I\right\}$ in $\sigma[M]$. Since $\sigma[M]$ is a Grothendieck category, P always exists and in fact is the largest submodule of the usual direct product $\Pi_{i \in I} A_{i}$ (in R-Mod) which belongs to $\sigma[M]$ (see, for example, $[51,15.1,13.5])$. A standard argument shows that P is also a pureinjective object in $\sigma[M]$. Clearly P contains A as a local direct summand. By
hypothesis, A is a direct summand of P, hence A is pure-injective in $\sigma[M]$. Thus $\sigma[M]$ is a pure semisimple category, by [45].

We are now in a position to prove the following result. Note that if \mathbf{C} is any class of R-modules which is closed under direct sums, quotients and submodules and X is the direct sum of an isomorphic copy of all cyclic modules in \mathbf{C} then $\mathbf{C}=\sigma[X]$. Given a class \mathbf{C} of R-modules, an R-module M will be called \mathbf{C} injective if M is X-injective for each module X in \mathbf{C}.

Theorem 38. Let R be any ring and let C be any class of R-modules which is closed under direct sums, quotients and submodules. Then the following statements are equivalent.
(i) Every module M in C is a CS-module,
(ii) Every module M in \mathbf{C} has a module decomposition $M=\oplus_{i \in I} M_{i}$, where each module M_{i} has length 2 and is C -injective or M_{i} is simple.
(iii) Every (cyclic) module M in C is a direct sum of a \mathbf{C}-injective module and a semisimple module.

Proof.
(i) \Rightarrow (ii). Suppose that every module M in \mathbf{C} is a $C S$-module. We proceed in two main steps.

Step 1. First we will prove that every finitely generated module M in \mathbf{C} is Noetherian.

Let $M \in \mathbf{C}, M$ finitely generated. Suppose first that $\operatorname{Soc}(M)$ is 0 . By Lemma $32, M$ is a finite direct sum of uniform modules, so without loss of generality, we may assume that M is uniform. By the definition of $\sigma[M]$, clearly $\sigma[M] \subseteq \mathbf{C}$. Let \hat{M} be the injective hull of M in $\sigma[M]$; then $\hat{M} \in \sigma[M], \hat{M}$ is quasi-injective and M is essential in \hat{M} (see, for example, [51, 17.9]).

Let T be any simple module which is a quotient of a submodule of \hat{M}. Then $T \in \mathrm{C}$ and $\hat{M} \oplus T$ is $C S$ by hypothesis. We have that End \hat{M} and End T are local, and since $\operatorname{Soc}(\hat{M})=0, T$ is not embedded in \hat{M}. Thus, by Lemma 34, T is \hat{M} injective. It follows that \hat{M} is a V-module, so M is also a V-module. By Lemma 32, every quotient of M has finite uniform dimension. Thus M is Noetherian by [27, Corollary 3].

Now let M be any finitely generated module in C , and suppose that M is not Noetherian. By Lemma 32, M is a finite direct sum of uniform modules. Without loss of generality, we suppose that M is uniform. By the above argument, M has a nonzero simple socle A_{1}. Again, if $\operatorname{Soc}\left(M / A_{1}\right)=0$, then M / A_{1}, is Noetherian, hence M is Noetherian, a contradiction. Let A_{2} be a submodule of M such that
$A_{2} / A_{1}=\operatorname{Soc}\left(M / A_{1}\right)$. Then $A_{2} \neq A_{1}$ and, by Lemma 32, M / A_{1} has finite uniform dimension, so A_{2} is of finite length. By induction, we obtain a strictly ascending sequence

$$
0=A_{0} \subset A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset A_{n+1} \subset \cdots \subseteq M
$$

with $A_{n+1} / A_{n}=\operatorname{Soc}\left(M / A_{n}\right)(n \geq 0)$. Set $A=U_{n \geq 1} A_{n}$; then because each A_{n} is of finite length, A is locally Noetherian. Then every module $L \in \sigma[A]$ is locally Noetherian (see $[51,27.3]$) and $C S$, so that, by Lemma 33, every local direct summand of L is alsn a direct summand. By Lemma $37, \sigma[A]$ is a pure semisimple category, so every module in $\sigma[A]$ is a direct sum of Noetherian modules (see [45] or $[51,53.4,53.5]$). Thus, because A is uniform, A must be Noetherian. But in this case the ascending chain $0 \subset A_{1} \subset A_{2} \subset \cdots \subseteq A$ cannot be infinite, a contradiction. This shows that M is Noetherian.

Step 2. We will show next that every module M in \mathbf{C} is a direct sum of modules of length at most 2 .

Let $M \in \mathbf{C}$ and consider the category $\sigma[M] \subseteq \mathbf{C}$. By Step 1, every module $N \in \sigma[M]$ is locally Noetherian and $C S$, hence, by Lemma 33, every local direct summand of N is also a direct summand. Thus by Lemma $37, \sigma[M]$ is a pure semisimple category. Every module in $\sigma[M]$ is a direct sum of indecomposable Noetherian modules with local endomorphism rings (see [45]). Since an indecomposable $C S$-module is uniform, it follows that $M=\oplus_{i \in I} M_{i}$, where each M_{i} is a uniform Noetherian module with End M_{i} local.

Next we show that every uniform module $L \in A$ is quasi-injective. By the above argument, End L is local. Let N be a countable direct sum of copies of L, i.e. $N=\oplus_{i \geq 1} L_{i}$, with $L_{i} \cong L$ for all i. Since N is locally Noetherian and CS, every local direct summand in N is a direct summand, by Lemma 33. Also, because End L_{i} is local for each i, the family $\left\{L_{i}: i \geq 1\right\}$ is locally semi- T nilpotent (see [23, Theorem 7.3.15] or [32, Theorem 2.25]). Let $\theta: L \rightarrow L$ be any monomorphism. Suppose that θ is not an isomorphism. By the local semi-Tnilpotency of $\left\{L_{i}: i \geq 1\right\}$, it follows easily that, for any $x \in L$, there is a positive integer n such that $\theta^{n}(x)=0$, which implies that $x=0$, a contradiction. Thus any monomorphism $\theta: L \rightarrow L$ is an isomorphism. Since $L \oplus L$ is $C S$, by Lemma 34 (ii) it follows that L is quasi-injective.

Now we show that the uniform module L in A is uniserial. Let A and B be any submodules of L. Since A and B have local endomorphism rings and the external direct sum $A \oplus B$ is $C S$, either B is A-injective or B is embedded in A, by Lemma 34(iii). If B is A-injective, then since $C=A \cap B$ is an essential submodule of A, the identity map in C can be extended to a monomorphism from A to B. Thus either A is embedded in B or B is embedded in A.

We may assume that there is a monomorphism $\varphi: A \rightarrow B$. Since L is
quasi-injective, φ can be extended to a homomorphism $\psi: L \rightarrow L$, and clearly ψ is an isomorphism (see above). But A is a quasi-injective essential submodule of L, so it is well-known that $\xi(A) \subseteq A$ for any homomorphism $\xi: L \rightarrow L$. In particular, this implies $A=\psi(A)=\varphi(A) \subseteq B$. Hence L is uniserial.

We claim now that length $L \leq 2$. Since L is uniform, we know that L is Noetherian. Suppose that L is not simple, then L contains a non-zero maximal submodule L_{1}. If L_{1} is not simple, then L_{1} contains a non-zero maximal submodule L_{2}. Let L_{3} be a (possibly zero) maximal submodule of L_{2}. Then L / L_{3} is a uniserial module of length 3, and, by Lemma 35, the direct sum $\left(L / L_{3}\right) \oplus\left(L_{1} / L_{2}\right)$ is not a $C S$-module, a contradiction. This shows that L_{1} is simple, and so length $L \leq 2$.

Thus we have shown that every module M in \mathbf{C} is a direct sum of modules of length at most 2. To complete the proof of the theorem, it remains to show that if $T \in \mathrm{C}$ and length $T=2$, then T is X-injective for any $X \in \mathrm{C}$. Indeed, X has a decomposition $X=\oplus_{\alpha \in \Omega} X_{\alpha}$, with length $X_{\alpha} \leq 2$, for each $\alpha \in \Omega$. If X_{α} is simple, clearly T is X_{α}-injective. If X_{α} has length 2, we consider the $C S$-module $T \oplus X_{\alpha}$. Let F and G be any direct summands of $T \oplus X_{\alpha}$ with $F \cap G=0$, then by the Krull-Schmidt theorem, F and G have length 2, hence $F \oplus G=T \oplus X_{\alpha}$. It follows that $T \oplus X_{\alpha}$ is a quasi-continuous module, hence T is X_{α}-injective (see [32, Proposition 2.10]). Therefore T is X-injective (see, for example, [32, Proposition $1.5]$), which completes the proof of (i) \Rightarrow (ii).
(ii) \Rightarrow (iii). For every module M in $\mathbf{C}, M=\left(\oplus_{i \in I} N_{i}\right) \oplus S$, where each N_{i} $(i \in I)$ has length 2 and is C-injective and S is semisimple. Let $N=\oplus_{i \in I} N_{i}$. Then for every module $X \in \mathbf{C}$, since X is locally Noetherian, N is X-injective (see, for example, [32, Theorem 1.11]). Thus N is C -injective.
(iii) \Rightarrow (i). Suppose that every cyclic module in \mathbf{C} has the form $N \oplus S$, where N is C-injective and S is semisimple. Let M be any cyclic C-module. Every quotient of a cyclic submodule of M is a direct sum of a quasi-injective module and a simisimple module of finite length. Thus, by [26, Theorem 1.3], M has finite uniform dimension. In particular, $M=M_{1} \oplus \cdots \oplus M_{n}$, where each M_{i} is cyclic indecomposable, hence each M_{i} is simple or uniform quasi-injective. If, for $1 \leq i \leq n, M_{i}$ is not simple, then any cyclic proper submodule C_{i} in M_{i} is simple because C_{i} cannot be M_{i}-injective. Thus each $M_{i}(1 \leq i \leq n)$ is either simple or of length 2 , and M is Noetherian. It follows that every cyclic module in C is Neetherian, hence clearly every module in C is locally Noetherian.

Now let K be any module in C. By Zorn's Lemma, there exists a maximal family of independent modules $L_{\alpha}(\alpha \in \Omega)$ in K such that L_{α} is C -injective, Then $L=\oplus_{\alpha \in \Omega} L_{\alpha}$ is C-injective (see [32, Theorem 1.11]). Thus $K=L \oplus T$ for some submodule T of K. Take any cyclic submodule D of T; then $D=N \oplus S$,
where N is C-injective and S is semisimple. By the maximality of the family $\left\{L_{\alpha}: \alpha \in \Omega\right\}$, we observe that $N=0$, whence T is semisimple. Since L is locally Noetherian and quasi-injective, by Lemma 33, $L=\oplus_{i \in I} H_{i}$ with each $H_{i}(i \in I)$ uniform. By a similar argument as above, if H_{i} is not simple, then every cyclic proper submodule of H_{i} is simple, so H_{i} has length 2. In this case clearly H_{i} is cyclic and H_{i} is C -injective. Thus K is a $C S$-module by Lemma 36

Since the class of all singular modules over a ring R is closed under direct sums, quotients and submodules (see, for example, [20, Proposition 1.22]), Theorem 38 gives immediately the following result.

Corollary 39. Let R be any ring. Then the following statements are equivalent.
(i) Every singular R-module is $C S$.
(ii) Every singular R-module M has a decomposition $M=\oplus_{i \in I} M_{i}$, where each M_{i} is simple, or M_{i} has length 2 and is X-injective for each singular R module X.
(iii) Every (cyclic) singular left R-module M has a decomposition $M=$ $N \oplus S$, where N is X-injective for all singular left modules X, and S is semisimple.

If R is a left nonsingular ring, then the class of all singular (left) R-modules is closed under essential extensions (see, for example, [20, Proposition 1.23]). In this case, if N is a singular R-module such that N is X-injective for every singular R-module X, then N is $E(N)$-injective, and it follows that $N=E(N)$, i.e. N is an injective module. This gives at once the following result.

Corollary 40. Let R be a left nonsingular ring. Then the following statements are equivalent.
(a) Every singular left R-module is $C S$.
(b) Every singular left R-module is a direct sum of an injective module and a semisimple module.
(c) For every essential left ideal K of $R, R / K=N \oplus S$ where N is an injective module and S a semisimple module.

Example 41. Let K be any field and let n be a positive integer. Let $T_{n}(K)$ denote the ring of all upper triangular $n \times n$ matrices with entries in K. Then $T_{n}(K)$ is a (left and right) hereditary (left and right) Artinian (left and right) serial ring for every positive integer n. If $n=2$ then $T_{n}(K)$ is a (left and right) $S I$-ring. If $n=3$ then $T_{n}(K)$ is not a left $S I$-ring but every singular left module is $C S$.

Proof. It is well known that $T_{n}(K)$ is hereditary Artinian serial, and hence, in particular, nonsingular. If $n=2$ then $T_{n}(K)$ is an $S I$-ring by [19, Theorem 3.11]. Now suppose that $n=3$. Let $R=T_{3}(K)$ and let S denote the left socle of R. Then S consists of all matrices in R with last two rows zero, and S is obviously an essential left ideal of R. Note that $R / S \cong T_{2}(K)$. Thus R is not a left $S I$-ring, by [19, Theorem 3.11]. However, R / S is an Artinian serial ring with $J(R / S)^{2}=0$. By [25, Theorem 2.6], every (left) (R / S)-module is a direct sum of an injective module and a semisimple module and thus every (R / S)-module is a $C S$-module by Theorem 38. It follows that every singular R-module is $C S$.

Now we shall study rings for which every finitely generated (left) module is CS. By [39, Corollary 1], over such rings every finitely generated (left) module is a direct sum of uniform modules. As was remarked in [39, p. 345], the ring \mathbf{Z} of integers is an example to show that the converse is false. Our aim is to give ideal-theoretic characterizations of rings whose finitely generated left modules are $C S$.

For the next result, we recall that a ring R with Jacobson radical $J(R)$ is called semiregular if $R / J(R)$ is a von Neumann regular ring and idempotents can be lifted over $J(R)$.

Theorem 42. The following conditions are equivalent for a ring R with Jacobson radical J.
(i) $E\left({ }_{R} R\right)$ is projective and every 2-generated left R-module is CS .
(ii) R is semiregular and every 2-generated left R-module is $C S$.
(iii) Every left R-module is CS .
(iv) R is (left and right) Artinian serial and $J^{2}=0$.
(v) The right-handed versions of (i), (ii) and (iii).

Proof.

(i) \Rightarrow (ii). Since every cyclic left R-module is $C S$, by Lemma 32, there exists a complete family of orthogonal idempotents e_{1}, \ldots, e_{n} of R such that each R-module $R e_{i}$ is uniform. Consider the injective hull $E\left(R e_{i}\right)$ of $R e_{i}$; then $E\left(R e_{i}\right)$ is indecomposable injective and projective, hence there is an idempotent f_{i} of R such that $E\left(R e_{i}\right) \cong R f_{i}$ (see, for example, [16, Theorem 20.15]). Because End $\left(R f_{i}\right)$ is local, $R f_{i}$ contains a unique maximal submodule (namely $J f_{i}$). Thus every quotient of $R f_{i}$ is indecomposable and $C S$, so is uniform. Clearly $R f_{i}$ is a uniserial module. Since $R e_{i}$ is isomorphic to a submodule of $R f_{i}, R e_{i}$ is also uniserial. Therefore R is a left serial ring, so it is well known that R is semiperfect (see, for example, [51, 55.3]). In particular R is semiregular.
(ii) \Rightarrow (iv). By Lemma 32, R / J has finite uniform dimension, so R / J is semisimple. Since the idempotents are lifted over J, R is semiperfect. Thus there are orthogonal idempotents e_{1}, \ldots, e_{n} of R such that each $R e_{i}$ has local endomorphism ring. Since each quotient of $R e_{i}$ is $C S$, we can apply the same argument as in the proof of (i) \Rightarrow (ii) to show that each $R e_{i}$ is uniserial. Thus R is a left serial ring.

Now we claim that each $R e_{i}$ has nonzero socle. Suppose, on the contrary, that $\operatorname{Soc}\left(R e_{i}\right)=0$ for some $i \geq 1$. Take any simple R-module U; then the 2 generated module $R e_{i} \oplus U$ is $C S$. Since U cannot be embedded in $R e_{i}, U$ is $R e_{i}$-injective by Lemma 34. Thus $R e_{i}$ is a V-module, so in particular $R e_{i}$ has zero radical (see, for example, [51, 23.1]). Thus $J e_{i}=0$ and $R e_{i}$ is simple, a contradiction. Therefore $\operatorname{Soc}\left(R e_{i}\right) \neq 0$ for each i, so R has finitely generated essential left socle. For any two-sided ideal K of $R, R / K$ is also a left serial ring, and it is easy to check that every 2 -generated left (R / K)-module is $C S$, so by the above argument, R / K has finitely generated essential left socle. Then by a result of Beachy [4], it follows that R is left Artinian.

Suppose that $J^{2} \neq 0$. Then there is a positive integer j such that $J^{2} e_{j} \neq 0$. Since $R e_{j}$ is uniserial, we have a composition series

$$
R e_{j} \supset J e_{j} \supset J^{2} e_{j} \supset J^{3} e_{j} \supset \ldots
$$

Then $R e_{j} / J^{3} e_{j}$ is uniserial of length 3 and so, by Lemma $35,\left(R e_{j} / J^{3} e_{j}\right) \oplus$ $\left(J e_{j} / J^{2} e_{j}\right)$ is not $C S$, a contradiction. Thus $J^{2}=0$, and hence all $R e_{1}, \ldots, R e_{n}$ have length ≤ 2. If length $R e_{k}=$ length $R e_{t}=2$, then since $R e_{k} \oplus R e_{t}$ is $C S$, it is easy to see that $R e_{k} \oplus R e_{t}$ is quasi-continuous (see the last part of the proof of Theorem 38 (i) \Rightarrow (ii)), and it follows that $R e_{k}$ and $R e_{t}$ are relatively injective (see [32, Proposition 2.10]). Thus, it is clear that if $R e_{k}$ has length 2 , then $R e_{k}$ is $\left(R e_{1} \oplus \cdots \oplus R e_{n}\right)$-injective, i.e. $R e_{k}$ is an injective R-module. Now by [25, Theorem 2.6] it follows that R is (left and right) Artinian serial (with $J^{2}=0$).
(iv) \Rightarrow (iii). If R is (left and right) Artinian serial with $J^{2}=0$, then every R-module is a direct sum of an injective module and a semisimple module (see [25, Theorem 2.6]). Thus, by Theorem 38, every R-module is $C S$.
(iii) \Rightarrow (i). This follows easily by Theorem 38 , but we give here a short direct proof. By Lemma $32, R=\oplus R e_{i}$, where each $R e_{i}$ is uniform. Since every free R-module is $C S$, we know by Proposition 1 that every R-module is a direct sum of a projective module and a singular module. In particular, $E\left(R e_{i}\right)$ must be projective or singular. But $E\left(R e_{i}\right)$ contains the projective submodule $R e_{i}$, so clearly $E\left(R e_{i}\right)$ is not singular. Thus $E\left(R e_{i}\right)$ is projective for each i, which implies that $E\left({ }_{R} R\right)$ is projective.
(v) \Leftrightarrow (iv). Since (iv) is left-right symmetric, clearly (iv) is equivalent to the
right-handed versions of (i), (ii) and (iii). This completes the proof of Theorem 42.

The ring $T_{3}(K)$ of upper triangular 3×3 matrices over a field K has the property that every singular module is $C S$ (see above). However, Theorem 42 shows that not every $T_{3}(K)$-module is $C S$.

Recall that a ring R is called left $S I$ if every singular left R-module is injective. If R is a domain which is left $S I$, then R is called a left $S I$-domain. Examples of non-Artinian simple left and right Noetherian left and right $S I$-domains can be found in [12]. However, it is still unknown whether a simple left Noetherian left $S I$-domain must be right $S I$.

Theorem 43. The following statements are equivalent for a ring R.
(i) R is left nonsingular and every 2-generated left R-module is $C S$.
(ii) $R=R_{1} \oplus \cdots \oplus R_{n}$ is a direct sum of rings $R_{i}(1 \leq i \leq n)$, each Morita equivalent to an upper triangular 2×2 matrix ring over a division ring, or to a simple (left and right) Noetherian (left and right) SI domain.

Moreover, in this case, every finitely generated left (and right) R-module is CS.

Proof.
(i) \Rightarrow (ii). Let L be any cyclic singular left R-module, and consider $M=$ $L \oplus_{R} R$. Then M is a $C S$-module by hypothesis. Since R is left nonsingular, we have $Z_{2}(M)=Z(M)=L$, so by Lemma $29, L$ is R-injective. Thus every cyclic singular left R-module is injective, so by [39, Corollary 5] every singular left R-module is injective, i.e. R is a left $S I$-ring.

By [19, Theorem 3.11], there is a ring direct decomposition $R=R_{0} \oplus B_{1} \oplus$ $\cdots \oplus B_{m}$, such that R_{0} / S_{0} is semisimple, where S_{0} is the left socle of the ring R_{0}, and each $B_{j}(1 \leq j \leq m)$ is a simple left Noetherian left $S I$-ring. Since every cyclic left R-module is $C S, R$ has finite left uniform dimension by Lemma 32 , whence R_{0} is left Artinian. Since every 2-generated R_{0}-module is $C S$, by Theorem 42 (ii) \Leftrightarrow (iv), R_{0} is left and right Artinian serial and $J\left(R_{0}\right)^{2}=0$. Note that R_{0} is left nonsingular, and all nonsingular left R_{0}-modules are projective, hence $R_{0}=$ $A_{1} \oplus \cdots \oplus A_{n}$, where each A_{i} is Morita equivalent to a full upper triangular matrix ring T_{i} over a division ring D_{i} (see [20, Theorem 5.28]). Each indecomposable module over R_{0} (and hence A_{i}) has length ≤ 2, thus by [20, Proposition 5.25 , Theorem 5.27], it follows easily that each T_{i} is an upper triangular 2×2 matrix ring over D_{i}.

Now we consider the simple left Noetherian rings $B_{j}(1 \leq j \leq m)$. Choose
any $1 \leq j \leq m$. Since B_{j} is left nonsingular and $B_{j} \oplus B_{j}$ is $C S$, it is easy to see that every 2-generated nonsingular left B_{j}-module is projective. Hence, by the proof of Theorem 5.3 in [31], the left classical quotient ring Q_{j} of B_{j} is also the right classical quotient ring of B_{j}, thus B_{j} is also a right Goldie ring ([10, Theorem 1.28]). Also, since B_{j} is left hereditary left Noetherian, B_{j} is right semihereditary ([10, Corollary 8.19]). Since B_{j} is left $S I, B_{j} / K_{j}$ is semisimple for every essential left ideal K_{j} of $B_{j}\left(\left[19\right.\right.$, Proposition 3.1]), thus B_{j} is right Noetherian (see [12]). Sin B_{j} is Morita equivalent to a simple left $S I$-domain F_{j} ([19, Theorem 3.11]), it follows that F_{i} is right Noetherian and hence F_{j} is right $S I$ by [12, Theorem 6.26].
(ii) \Rightarrow (i). Suppose that $R=R_{1} \oplus \cdots \oplus R_{n}$ where the R_{i} 's are as in (ii). Since the property of being a left $S I$-ring is a Morita invariant, each $R_{i}(1 \leq i \leq n)$ is (two-sided) $S I$. Hence R is (two-sided) $S I$. In particular, R is left and right hereditary ([19, Proposition 3.3]). Since every (two-sided) hereditary Noetherian prime ring is $C S$ (see $[9$, Proposition 6.8$]$), it follows that each $R_{i}(1 \leq i \leq n)$ is left and right $C S$. Hence R is (two-sided) $C S$.

Now let M be any finitely generated left R-module. Then $Z(M)$ is injective, so $M=Z(M) \oplus N$, and clearly N is nonsingular finitely generated. Since R is hereditary $C S$, by [11, Theorem 4.1], every nonsingular finitely generated left R-module is projective, hence it follows easily that every nonsingular finitely generated left R-module is $C S$ (Proposition 1). Therefore, we have that N is a $C S$-module. Thus, by Lemma $29, M$ is $C S$. By symmetry, we can show that every finitely generated nonsingular right R-module is $C S$. This improves Theorem 43.

Corollary 44. Let R be a commutative ring. Then the following statements are equivalent.
(i) Every 2-generated R-module is $C S$.
(ii) Every R-module is $C S$.
(iii) $R=R_{1} \oplus \cdots \oplus R_{n}$ is a direct sum of rings $R_{i}(1 \leq i \leq n)$, each a $Q F$ ring of length 2 or a field.

Proof.

(i) \Rightarrow (ii). Denote by $N(R)$ the prime radical of R, and let $\bar{R}=R / N(R)$. Then \bar{R} is a semiprime commutative ring, hence \bar{R} is nonsingular (see, for example, [10, Lemma 1.3]). Clearly every 2 -generated \bar{R}-module is $C S$. By the proof of (i) \Rightarrow (ii) in Theorem $43, \bar{R}$ is an SI-ring. Because \bar{R} is commutative, it follows by [19, Theorem 3.9] that \bar{R} is von Neumann regular. But every cyclic R-module is $C S$, so by Lemma $32, \bar{R}$ has finite uniform dimension, hence \bar{R} is semisimple.

It follows that $N(R)=J(R)$, and since the idempotents lift over $N(R), R$ is semiperfect. Therefore, by Theorem 42 , every R-module is $C S$.
(ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are immediate by Theorem 42 .

Any finitely generated Abelian group (i.e. Z-module) is a direct sum of a torsion group and a torsion-free group, i.e. for any finitely generated Abelian group A, the torsion subgroup T is a direct summand of A. Rotman [43] proved that a commutative domain R has the property that the torsion submodule of every R-module is a direct summand if and only if R is a field. In an attempt to extend Rotman's result, Cateforis and Sandomierski $[6,7]$ characterized commutative rings R with the property that every R-module is a direct sum of a singular module and a nonsingular module; in this case, the ring R is said to have the splitting property (or $S P$, for short). It turns out that these rings are precisely the commutative rings R for which every singular module is injective, i.e. $S I$ rings. We also should note here the work of Alin and Dickson $\{1\}$ involving derived functors.

Goodearl [19] characterized general rings for which every singular left module is injective and called such rings left SI-rings. Clearly every left $S I$-ring has $S P$. Another class of rings with $S P$ is provided by the rings R for which every nonsingular left R-module is projective. Again there is a characterization by Goodearl [19] when R is left nonsingular. For another account of this work see [20]. In both these cases of rings with $S P$, the rings are left hereditary. In general, if a ring R has $S P$ for its left modules then the left global dimension of R is at most 2 , but can be 2 (see $[46],[19]$). For a recent account of developments in this area see [47].

The relevance of these investigations to when certain projective modules are $C S$ is given in Proposition 1. Proposition 3 is due to Chatters and Khuri [10, Theorem 2.1]. They characterize in [11, Theorem 4.1] when a left nonsingular ring R whose identity element is a sum of orthogonal primitive idempotents has the property that ${ }_{R} R$ is finitely $\Sigma-C S$, and show that this is the case precisely when R is a left and right semihereditary left and right $C S$-ring, equivalently, R is a left and right semihereditary ring with a two-sided classical quotient ring which is (left and right) Artinian hereditary serial. In particular, for such a ring R, R_{R} is finitely $\Sigma-C S$. Proposition 6(i) is due to Gabriel [17, p. 418 Théorèm 1]. Lemma 9 and Corollary 10 are due to Tercan [48], but based on work of Chatters and Khuri [11]. Theorem 18, and much of the material leading up to it, can be found in [20] (see [20, Theorems 3.9 and 5.18] in particular), and is based on [5, Theorem
2.3], [19, Theorem 2.5], [40, Théorèm 3.1] and [41, Théorème 2.7]. Theorem 21 is taken mostly from [20, Theorem 3.12] which is based on [5, Theorem 2.1], [13, Proposition 3] and [19, Corollary 2.6].

Cateforis, Sandomierski and Goodearl are also responsible for Theorems 26 and 27. Theorem 26 is taken from [20, Theorem 5.21] (see also [8, Proposition 3.2] and [19, Theorem 2.11]). Theorem 27 is [20, Theorem 5.23] which is derived from [8, Theorem 3.1, Proposition 3.2].

The work on when, for a given ring R, the left R-module R is countably $\Sigma-C S$ is motivated by the corresponding results for injective modules (see [15], [16]). Lemma 20, Theorem 28 and Corollary 30 can be found in [13]. In view of Theorem 28, it is natural to ask if it is the case that rings R which do not contain an infinite set of orthogonal idempotents and for which ${ }_{R} R$ is countably Σ-CS have the property that ${ }_{R} R$ is $\Sigma-C S$. In other words, is Theorem 28 true without the hypothesis that R be left nonsingular. Corollary 30 represents a first step in this particular direction.

Harada and his students have studied CS-modules in detail. They use the term "extending module" where we have followed [9] and used the term "CSmodule". For Harada (and others), dual CS-modules are called "lifting modules". Theorem 31 is due to Oshiro $[35,36]$, and these papers of Oshiro with their bibliographies give a good introduction to the work of Harada and his school on CS-modules. Leonard [30] considered small modules, and proved that a module M is small if and only if M is small in some module M^{\prime}, which contains it.

The rest of the discussion is taken from [14]. Corollaries 39 and 40 answer the question raised in $[39$, p. 351] of characterizing those rings whose singular rings are $C S$. Goodearl [19] characterized left $S I$-rings and Rizvi and Yousif [42] showed that a ring R has the property that all its singular modules are quasicontinuous if and only if all singular R-modules are semisimple. It follows by [19, Proposition 3.1] that a ring R is a left $S I$-ring if and only if R is left nonsingular and every singular R-module is quasi-continuous.

Now consider Theorems 42 and 43. A ring R is semiprime Artinian if and only if every cyclic module is injective ([37], [38]). In [39, Proposition 2 and Corollary 9], information is obtained about rings with the properties that every cyclic module is quasi-continuous or continuous. Now suppose that R is a ring such that every 2 -generator left module is quasi-continuous. Let M be any cyclic R-module. Then, by hypothesis, $M \oplus R$ is quasi-continuous, and hence M is an injective R-module ([32, Proposition 2.10]). By the result of Osofsky mentioned above, it follows that R is semiprime Artinian. On the other hand, we do not know in general the structure of rings for which every finitely generated module is $C S$. If, for a given ring R, every cyclic left R-module is $C S$ then every cyclic
left R-module is a direct sum of uniform modules. It would be interesting to know when the converse is true. For example, it is certainly true for commutative rings ([10, Corollary 6.6]).

Theorem 43 (see also Theorem 27) should be compared with Goodearl's theorem which states that the following statements are equivalent for a ring R :
(i) R is left nonsingular and ${ }_{R} R$ is $\Sigma-C S$,
(ii) R is left nonsingular and every nonsingular left R-module is projective,
(iii) $R=R_{1} \oplus \cdots \oplus R_{n}$ is a direct sum of rings $R_{i}(1 \leq i \leq n)$, each Morita equivalent to an upper triangular matrix ring over a division ring, (see Proposition 1 and $[20$, Theorem 5.28] or [19, Theorem 2.15]).

Let R be any ring. An R-module M is called Goldie torsion if $M=Z_{2}(M)$. In [42, Theorem 3.10], Rizvi and Yousif prove that the ring R is left $S I$ if and only if every torsion R-module is quasi-continuous. If R is left nonsingular then every torsion module is singular. Thus, for any field K, the ring $T_{3}(K)$ has the property that every torsion module is $C S$ but $T_{3}(K)$ is not an $S I$-ring. Moreover, let p be any prime in \mathbf{Z} and let $S=\mathbf{Z} / \mathbf{Z} p^{2}$. Then the ring T of all upper triangular 2×2 matrices with entries in S has the property that every singular module is $C S$, but the T-module T is torsion but not $C S$.

REFERENCES

1. J. S. Alin and S. E. Dickson, Goldie's torsion theory and its derived functor, Pacific J. Math. 24 (1968), 195-203.
2. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1973.
3. Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14 (1990), 53-69.
4. J. A. Beachy, On quasi-Artinian rings, J. London Math. Soc. (2) 3 (1971), 449-452.
5. V. C. Cateforis, On regular self-injective rings, Pacific J. Math. 30 (1969), 39-45.
6. V. Cateforis and F. Sandomierski, The singular submodule splits off, J. Algegra 10 (1968), 149-165.
7. - On commutative rings over which the singular submodule is a direct summand for every module, Pacific J. Math. 31 (1969), 289-292.
8. \qquad , On modules of singular submodule zero, Canad. J. Math. 23 (1971), 345-354.
9. A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford (2) 28 (1977), 61-80.
10. , Rings with chain conditions, Pitman, London, 1980.
11. A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS-rings, J. London Math. Soc. (2) 21 (1980), 434-444.
12. J. H. Cozzens and C. Faith, Simple Noetherian rings, Cambridge Univ. Press, London, 1975.
13. Nguyen V, Dung and P. F. Smith, E-CS-modules, Comm. Algebra 22 (1994), 83-93.
14. y, Rings for which certain modules are CS, J. Pure and Applied Algebra, to appear.
15. C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.
16. , Algebra II Ring theory, Springer-Verlag, Berlin, 1976.
17. P. Gabriel, Des catégories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
18. R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.
19. K. R. Goodearl, Singular torsion and the splitting properties, Amer. Math. Soc. Memoirs 124 (1972).
20. , Ring theory : nonsingular rings and modules, Dekker, New York, 1976.
21. Von Neumann regular rings, Pitman, London, 1979.
22. R. Gordon and L. W. Small, Piecewise domains, J. Algebra 23 (1972), 553-564. bom noiztod
23. M. Harada, Factor categories with applications to direct decomposition of modules, Lecture Notes in Pure Applied Math. 88, Dekker, New York, 1983.
24. M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
25. Dinh Van Huynh, Nguyen V. Dung and P. E. Smith, Rings characterized by their right ideals or cyclic modules, Proc. Edinburgh Math. Soc. 32 (1989), 355-362.
26. Dinh Van Huynh, Nguyen V. Dung and R. Wisbauer, On modules with finite uniform and Krull dimension, Arch. Math. 57 (1991), 122-132.
27. Dinh Van Huynh, P. F. Smith and R. Wisbauer, A note on GV-modules with Krull dimension, Glasgow Math. J. 32 (1990), 389-390.
28. M. A. Kamal and B. J. Muller, Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538.
29. , The structure of extending modules over Noetherian rings, Osaka J. Math. 25 (1988) 539-551.
30. W. W. Leonard, Small modules, Proc. Amer. Math. Soc. 17 (1966), 527-531.
31. L. S. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math. $\mathbf{1 5}$ (1963), 132-151.
32. S. H. Mohamed and B. J. Muller, Continuous and discrete modules, London Math. Soc. Lecture Note 147, Cambridge Univ. Press, London, 1990.
33. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Wiley-Interscience, New York, 1987.
34. M. Okado, On the decomposition of extending modules, Math. Japonica 29 (1984), 939-944.
35. K. Oshiro, Lifting modules, extending modules and their applications to $Q F$-rings, Hokkaido Math. J. 13 (1984), 310-338.
36. B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650.
37. , Noninjective cyclic modules, Proc. Amer. Math. Soc. 19 (1968), 1383-1384.
38. B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), 342-354.
39. N. Popescu and T. Spircu, Sur les épimorphismes plats d'anneaux, C.R. Acad. Sci. Paris 268A (1969), 376-379.
40. , Quelques observations sur les épimorphismes plats (à gauche) d'anneaux, J. Algebra 16 (1970), 40-59.
41. S. T. Rizvi and M. F. Yousif, On continuous and singular modules, in Non-commutative ring theory, Proc., Athens Ohio, Springer Lecture Notes in Math. 1448 (1990), 116-124.
42. J. Rotman, A chanacterization of fields among the integral domains, Anais. Acad. Brasil Cienc. 32 (1960), 193-194.
43. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.
44. D. Simson, On pure semisimple Grothendieck categories I, Fund. Math. 100 (1978), 211-222.
45. M. L. Teply, Homological dimension and splitting torsion theories, Pacific J, Math. 34 (1970), 193-206.
46. , A history of the progress on the singular splitting problem, Univ. of Murcia, 1984.
47. A. Tercan, CS-modules and generalizations, thesis, Univ. of Glasgow, 1992.
48. Y. Utumi, On continuous regular rings and semisimple self-injective rings, Canad. J. Math. 12 (1960), 597-605.
49. On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147.
50. R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.

Department of Mathematics
University of Glasgow
Glasgow G12 8QW
Scotland U. K.

Received September 25, 1993

