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A NOTE ON THE SOLUTION OF A SPECIAL
CLASS OF NONCONVEX OPTIMIZATION PROBLEMS *

TRAN VU THIEU

Abstract. The purpose of this paper is to give an explicit linear programming formulation
of the following nonconvez optimization problem: Minimize cTz, s.t. z € X,y € Y,z €
S,2; = iy foralli = 1,...;nanda < dTy < B, where X,Y are rectangles in
intRR% | R"} respectively; S a polyhedral convez set in R™; ¢, d n-vectors; o, f real numbers.
The obtained linear programming problem is solved by a suitable relazation of its constraints.

Key words. Linear programming problem, nonconvex optimization problem, rela-
xation algorithm.

1. INTRODUCTION

|

We shall be concerned with the following nonconvex optimization problem:

(P) Minimize 7z
subject to
zE€ 5,
=2, ixl.oon 2eX ye¥ ald gy Ea (1)

where S is a polyhedral convex set in R", X = {rc R":0<a<z < 4},Y =
{veR™:0< b<y< B} a,A,b,B,c,d n-vectors; a,f real numbers and the
superscript T denotes transposition.

Problem (P) has some applications in agriculture and was studied in 2]
whend = (1,...,1)T. The presence of the constraints z; = z,y; {=1,...,n
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destroys the linearity of the problem and makes it nonconvex with respect to the
variables z and y. In fact (P) can be regarded as a jointly constrained bilinear
programming problem (see [1]) and has the rank n structure as defined in [4].
In general, solution techniques developed for global optimization (see e.g. [3]),
although of interest by their own right, seem to be inefficient for (P).

Exploiting the special structure of the problem, in the sequel we shall show
that (P) is equivalent to a linear program of the variable z with the constraint
z € S and other additional constraints on z instead of (1). Also, we shall show
that to solve this linear program it is not necessary to generate all its constraints
in advance. Solving relaxed linear subproblems, it suffices to generate these con-
straints one by one, as needed in the course of computation. After obtaining an
optimal solution z to the equivalent program, = and y can easily be defined from z
by direct computation. Unlike our results, in [2] Problem (P) with d = (1,...,1)T
was reduced to two (rather than one as in this paper) linear programming prob-
lems. The first one is given only by excursion (to define z) and the second one is
to define z and y from an optimal solution z of the former. In addition, no special
algorithm was proposed in [2] for solving the equivalent linear program, although
it has some peculiar features. '

After Introduction, we shall give, in Section 2, an explicit linear program-
ming formulation of (P) and a relaxation algorithm will be developed in Section 3.

2. LINEAR PROGRAMMING FORMULATION OF (P)

Let us denote I* = {¢ : d; > 0} and I~ = {7 : d; < 0}. We shall assume
that

Z d;b; + Z d. B, < B., and Z d;B; + Z dibn = o (2)

(S g el el t el

We have the following property.

Lemma 1. The condition (2) is fulfilled if and only if there exists at least a point
y €Y satisfying a < dTy < 3.

Proof. We first suppose that (2) holds. Denote by y™® the vector having com-
ponents b;(: € I") and B;(i € ), _and by y™®* the vector with components
Bi(: € I'") and b;(: € I™). Clearly y™™ € Y,y™** € Y and from (2) we obtain

dlyPis <118 ocland A idT Y™ 2 ow
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If dTy™in > ¢ or dTy™m2* < B, then we already have y™in op y™** as required.

Otherwise, we have :

dTymm <a< ﬁ < dTymax (3)
Let u = (dTymax = ﬂ)/(dTyma.x 5 dTymin) and v = (dTymax a)/(dTyma.x £
dTy™in), Tt follows from (3) that 0 < w < v < 1. Take any A € [u,v] C [0,1] and

let y = Ay™® 4+ (1 — A)y™>*, Since Y is convex, we have y € Y and upon simple
computation, we get a < dTy < S.

Conversely, if we have a point y € Y satisfying a < dTy < 3 then (2) follows
immediately from the definition of Y. The proof is complete. [

Let Z = {z € R" : ‘a;b; < z; < A;B;,71 = 1,...,n} and denote by C the
collection of all index subsets I C {1,...,n} such that d; # 0 for all 7 € I.

Theorem 1. Problem (P) is equivalent to the following linear program:

(L) Minimize ¢z, subjectto 2€ SNZ and
Y Eat Y Za+ Y da +oFeclplneg (4)
. A; . a; : . et
ieltnl iel-nI ieI+\I i€l-\1
Z ﬂz,-%— Z ﬂzi i Z d;B; + Z d;b; > « (5)
: a; . A . ; ieg oy
teltnr iel-NnI iel+\I tel—\I
forall T €C.

Proof. Since (P) and (L) have the same objective function, we need only to show
the equivalence of their constraint sets.

Let z € S,2z; = z;y;(¢ =1,...,n),z € X,y € Y and a < dTy < 8. Clearly
z€ Z. For ¢« € I, since (z;/A;) < (2:/z;) = y; we have (di/Ai)z; < d;y;. For
t € I, since (z;/a;) > (2;/z;) = y; we have (di¢/ai)z; < d;y;. Hence, for any
I € C we have

Z %Zi‘l' Z %Zi‘f‘ Z diyi + Z diyi
1

1

ier+nr iel-nI i€\ i€l-\I
<UD cdayit ) diye ) diby Y diB; < B
i€rtnr i€r-nI iert\1 ieI-\1

This shows that z satisfies all constraints in (4). By an argument similar to the
previous one, we can prove that z satisfies also all constraints in (5).
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Conversely, suppose now that z € SN Z and z satisfies all constraints in (4),
(5). Denote
23 24

= ) +'—> . = ) =< if-
(et Zoviy, L +pedms 7 <BY

We define vectors z! € X, y! € Y such that z; = z}y! (i =1,...,n) and dTy' <
B as follows:
al) forie I set z! = A, y! = zi/As;
bl) fori e It \ I set =} = 2/b;, y! = b; (note that b; > 0 for all
1 € I+ \ Il);
cl) . for i€ Ip set z}= ai5uk =24/ as;
) forie I~ \ I set z} = z/Bi,y} = B; (+ € I” \ I, implies
B; > 0).
It is easy to verify that a; < z} < Ai, b < y} < B; and 2; = z; y1 for all
i=1,...,n. If [UI; = @ then from (2) it follows that }_ d;y} < 8. Otherw1se,

1
since z satisfies the constraint (4) in particular for I = { € [; U I, : d; # 0} we
have
Z——z,—kzzz, + Z d;b; + Z d;B; < (3
el 1€l eI+ \Il el— \12

or, equivalently, dTy! < .

Similarly, we can find vectors z2 € X,y%? € Y such that z; = z%y?(; =
1,...,n) and dTy? > o. Namely, denoting

S her .2 <8} L=l 2 >3
aq Ai
we set
a2) z2?=a;, y? = z/a; fori € I;
b2) z? = 2;/B;, y? = B; for¢ € I*"\ I (noté that B; > 0for all
z€I+\Ia);
c2) z? Ay} FifAgier i€ Ig
d2) zZ=2z/b,y?=b;forie I~ \Iy (i€ I\ I implies b; > 0).

Then, by an argument analogous to that used for the proof of Lemma 1
(with y',y? in place of y™®,y™3% respectively), we can show that there exists
A €[0,1] suchthat y=Ay! + (1 —-AN)y? €Y and a<dTy<pB.

To complete the proof it remains to show that with y just obtained there
exists z € X such that 2z; = z;y; forall ¢+ = 1,...,n. To do this, observe
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that for every k = 1,2 : a,iyf.‘ < = :z:i-‘y,’-c 5 A;y}‘ for all 7 = 1,...,n (since
e X,y* > 0). It follows that

- < yf < e and, hence, 3 < ;<< . foraslfii=R...;n. (6)
A; a; i a;
For each ¢ =1,...,n let
¥ any number in [a;, 4;] if y; =0.

It follows from (6), (7) that z; = z;y; and a; < z; < A; forall ;=  FOSETE T F L

(
r = (z1,...,2,)T € X, as was to be proved. O

3. RELAXATION ALGORITHM

Theorem 1 shows that instead of solving (P) we can solve (L). To solve (L),
we shall solve its relaxed problems
(Lk) Minimize ¢z subject to 2€ SN Z and z€ Dy, k = 18

Here Dy denotes the set of all z satisfying

. %ZHL T ff_jfz““ D dibi+ ) diBi< BforallTe Gy, (8)

ier+nr 7t iel-nI i€I+\I ier-\I

Z -Céz,'-{— Z %z,‘*}— Z d;B; + Z d;b; > o for all J € Ny, (9)

P
iertng ter-nd iert\J i€I-\J

where Gk, Xi are subcollections of C (G1 = ¥, = ).
Given any z € SN Z and any I € C, we denote by g(I) and h(I) the
expression on the left side of (4) and (5) respectively, and let

K={iel":d;>0and = >p)u{ier 2 < By, (0

M= {ielt:d;>0 and = < Bjufier : -
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Theorem 2. g(K) = max{g(I):I € C} and h(M) = min{h(J):J € C}.

Proof. Direct computation shows that for all I € C we have

2 Zq
glEkyZgy =" 37 e W > di(bi - 2.
ieI+n(K\I) . ieltN(I\K) 4
Zi ; . y D%
e d;(a—i—B,> % d,(B, a,-)'
ieI-N(K\I) iel-N(I\K)

From the definition of I1,I~ and K it follows that each term on the right side of
the above equality is non-negative. Thus, g(K) > ¢(I) for all I € C.

The second assertion is proved by an argument analogous to the previous
one. []

We are led to the following
Algorithm. Initialization: Solve
(L,) Minimize c¢Tz, st. z€ SN Z,
obtaining an optimal solution 2!. Set k = 1,G; = ¥, = 0.

Iteration k > 1. Define K by (10) and M by (11) with z* in place of 2.
If g(K) < B and h(M) > a, then stop: z* is an optimal solution to (L) (for z*
satisfies all constraints of (L) by Theorem 2 and (L) is a relaxed problem of (L)).
Otherwise, we shall add to (Lx) the new constraint (4) with I = K or (5) with
I = M depending on which is more violated by 2*. So we set

Gk+1 = GrU{K}, Hky1 = He if g(K) =B > aa— h(M) or

Gk+1 = Gk, Xk+1 = X U {M} otherwise.

Solve (Lk41), obtaining an optimal solution z**! and go to iteration k + 1.

Theorem 3. The above algorithm 1s finite.

Proof. If Algorithm does not stop at iteration k, then we have 2 € S N Z and
z* € Dy \ Di41 (because z* violates the new constraint (4) with I = K or (5)
with I = M). Therefore, no repetition occurs in the sequence )

1 2 k
g SR

generated by the algorithm. Since C is finite, the algorithm must terminate after
finitely many iterations. [J
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As shown in the proof of the second part of Theorem 1, when having an
optimal solution z to (L) it is easy to compute two vectors z € X,y € Y, a <
dTy < B such that z; =z;y; forall i=1,...,n.

Then, by Theorem 1 (z,y,2) is an optimal solution of the original problem
(P).

Remark. If b; >0 forall 1 =1,...,n, then by replacing z; with z;/y; Prob-
lem (P) can be converted into the following linear programming problem of the
variables 2z and v

(Q) Minimize Tz,
subject to

ze€SNZyeY,a<dly<p,

H-A S0 and i~y < 0 forall s=1.....n,
and the linear system (4), (5) along with z € SNZ describes the projection of the
constraint set of (Q) on the z—space. However, even in this case our method
should be applied because the equivalent linear program has the variables reduced
by a half and can be solved by a relaxation algorithm. Furthermore, in case b; = 0

for some 1, replacing b; = 0 by a sufficiently small positive number may make the
perturbed problem unsolvable.

To illustrate the above algorithm we present the following small example:
Minimize z; — 223 + 23 (¢1 = 1,¢2 = —2,¢3 = 1),
subject to
2z€8 ={z€R3: 21+ 23+ 25 < 4,21 + 29— 223 > 4},
% == 1,23,
2EX m SCH 1 122, S5 =12 e, =14 =9),
PFETEERIC NN < o} £YPONATAN A YT EAI09T
—2<y1-2y; <1 (dy =1,d3 = -2,d3 =0,0= -2, =1).

For this problem I* = {1,3},]- ={2} and Z={2€ R3:a;b; =0< 2; <
4=A;B;,1 =1,2,3}.

Initialization. Solve
(L1) Minimize z; — 225 + 23
subject to
2y + 29 + 23 < 4,
21+ 29— 223 >4,
0< 2 <4,i=1,2,3,
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obtaining the optimal solution z! = (0,4,0).

Iteration 1. From (10), (11) with 2! in place of z we have K = {1},
M = {1,2}. From (4) with I = K and from (5) with I = M we obtain

d
o(K) = -2z +dsby+dy By = ~4< f=1,
1
d d2
h(M) = 1211+ 3 —22;+d3B3 = —4<a=-2.
- 2
So we add to (L;) the new constraint (5) with I = M
d—lzl + j—2z2 +d3Bs > a, ie 2y — 29> —2
2

and solve
(L2) Minimize 2z; — 225 + 23
subject to
zy+22+23 54,
21 +29— 223 2 4,
D€ g <4,t21,2,3,
21— 23 2 —2,
obtaining 22 = (1,3,0).
Iteration 2. With 22 we have

d
K ={1}, g(K) = Zl—z'f +dgbs +dyB; = —35< =1,
ai A2
Stop: zopt = 2% = (1,3,0) is an optimal solution. To compute Zopt, Yopt from 2z,ps

we first define y! € Y satisfying dTy! < 3 (see the proof of Theorem 1):
h={1,3),h=82"=(2,1583),y = (05,2,0)
and then define y? € Y such that dTy? > «:
Is ={1,3},I, = {2}, 2% = (1,2,1),y® = (1,1.5,0).
Since dTy? = —2 = a < 8 = 1 we conclude that
o = (1,2,1), Yope = {1,1.5,0), 25 = {1,8,0)

is an optimal solution and the optimal function value is -5.
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