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ON MULTI-PARAMETER ASYMPTOTIC
ERROR EXPANSIONS FOR MULTI-DIMENSIONAL
DIFFUSION-CONVECTION EQUATIONS *

TA VAN DINH and DANG QUANG A

Abstract. This paper is concerned with the Dirichlet boundary value problem for multi-
dimensional diffusion-convection equations. An uncondtionally monotone difference scheme
1s investigated and the existence of a multi-parameter error expansion is established.

1. INTRODUCTION

In finite difference methods when there exists an asymptotic error expansion
with respect to stepsize, the Richardson extrapolation can be used for accelerating
the rate of convergence of the method (see [2, 4, 7, 8, 9, 10] and the references
therein). It reduces the necessary number of algebraic equations to be solved and
thereby provides an efficient algorithm with respect to both computing time and
storage requirements. For a multidimensional problem it is worth noting that a
multi-parameter error expansion is more efficient than a one-parameter expansion.

In [9] a general multi-parameter error expansion for operator equations is
investigated and later in [10] it is established for the Dirichlet self-adjoint elliptic
multi-dimensional boundary-value problem. In this paper we consider the Dirich-
let boundary-value problem for stationary multidimensional diffusion-convection
equations. For this problem, a difference scheme which satisfies the maximum
principle for any grid stepsize is investigated in [5], but the asymptotic error ex-
pansion has not been considered yet.- We propose a scheme which not only satisfies
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the maximum principle but admits a same multiparameter error expansion as in
[10].

2. THE DIFFERENTIAL PROBLEM

We shall use the same notations as in [10]. Let {2 be an open bounded
domain in R™ and T its boundary. Let functions of n variables z,...z, : p:i(z),
si(z), q(z), f(z) on 0 and g(z) on T be given.

Consider the differential operator

"\ 9 ( Ou Ou & %!
Lu:Za—xi(p,-a—m)-f-s,-E—qu, z €1l (2.1)
i=1

The differential problem is

Lu=f, zen, (2.2)
=g, el (2.3)

Assume that there exist a real number A (0 < A < 1) and a positive integer
m so that

PG o i TAlO): | s Gh LEG T (@
Dic C2m+2+)\, = 02m+2+A(I\)_

Assume also
p; > const > 0, qg > 0. (2.6)

3. THE DISCRETE PROLLEM (DIFFERENCE SCHEME)

3.1. Grid and grid function

We use the same definitions and notations concerning grid, grid point, in-
terior grid point, regular and irregular interior grid point as in {10], p.17. So, we
have

OQp = Op,r UQp i,

where (1 , and Q1 ;, denote the sets of regular and irregular interior grid points.
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Concerning the convection term, let us denote
sT =0.5(s; +[s), s; =0.5(si — |sif)
so that

8 =] +8r,. 18l =8 — a0
3.2. Approximation at P € (0,

To approximate the given functions p;(z) we consider the discrete functions
a; defined in [10], p.18 and for s;(z) we consider at P € (5, the following discrete
functions

bf =7 (P)/pi(P), b7 =s7(P)/pi(P),
R,‘ == R,(P) = 0-5hi|8i(P)|/Pi(P),
0y — a,'(P) =l Ri(P) HE (Ri(P))z.

Now at P € 1, ,, we consider the discrete operator

n
Lp(v) = Z ai(aivz,)z + bjal(-_’—l)vz‘. + b aivz, — qu. (3.1)
=1
3.3. Approximation at P € (1 s,
Now let P € (1, ;,. As in [10], p.19, 20 we consider Lagrange’s interpolating
polynomial.

Let w(t) be a smooth enough function on QQ, then for P € h,ir we define a
point @ € T as in [10], p.19. Then,

w(P) = Jaw(P) + Aq.w(Q) + R(0), (3.2)
where
Jaw(P) = Z(—I)k_lk!(gnmz!k)! ' dj-k ¥ Gk, (3:3)
k=1

2m k
k=1 A
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Note that in [10] there was an error consisting of writing ) instead of II as
n (3.4) here.

Concerning the remaining term R(0) see Lemma 4 below.

3.4. The discrete problem (difference scheme)

Now we consider the discrete problem

LBy = F(B) " peh) (3.5)
P} = Jdv(P) + Ag - U(Q), P Rnge (3.6)
v(P)=g(P), PEeT, (3.7)

where the operators Lj, J; and the number A, are defined in (3.1), (3.3), (3.4).

4. THE RESULTS

4.1. Preliminary lemmas

We have the analogous lemmas as in [10].

Lemma 1. The problem (2.2)-(2.6) has a unique solution

= CZm+2+)\ (ﬁ)
For the proof see [3].

Lemma 2. With any grid stepsize the discrete operator Ly, satisfies the marimum
principle on Qp, ,:

1/ If v # const, Ly(v) > 0 at all P € Q1 , then v cannot attain its positive
mazimum value at P € (1, ,;

2/ If v # const, Ly(v) <0 at all P € 1y, then v cannot attain its negative
minimum value at P € 1}, ,.

Proof. At first we note that

a;(P) > 3/4 with any h;,

Now at P € (13, , the discrete operator can be written in the form

Ly(v) = Z [(ai/h,' - bf)aSH)vm - (a,-/h,- - bi_)aiv;i] o L

=1



Expansions for multi-dimensional diﬂ'uéion-convection equations 51
Then, with any ¢ and any P, we have

(ci/hi +67)a{t) >0, (ai/hi —b])a; > 0.
From that the lemma follows (see [6], p.239).

Now by applying Taylor’s formula we obtain

Lemma 3. For any function w € C***2+*(Q1) we have

N pells

Lyw = Lw + Z Z hko,-k(w) +r, £2>1,
i=1k=1

Lyw=Lw+ry, £=0,

where Fix(w) depends only on w and on the derivatives of w up to order 2k + 2
and |ry| < const.|h|2¢+?,

It should be noticed that in the formulation of Lemma 6 in [10] there is an
inexactness. Therefore, below we shall restate this lemma and include its detailed
proof.

Lemma 4. If w(t) € CM*[—2mH,dH|, M < 2m, then

M+1 (M+1)
RO) < B e(M,m)  max w0 (). (4.1)

Proof. Let us denote
toZdH, tiz—iH, i=1,...,2m

and by Pj(t) denote the interpolating polynomial of degree M at the nodes
to, tl, vee ,tM, so that

PM(t,‘) = w(t,-), § == 0, 1, Voo ,M. (4.2)

For the remaining term

we have (see [1])

le )| (M+1)
! |_ (M +1)! te[- 2m;{{dH]|w (t)l

)
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where
wplt) =t —to)(t —t1) ... [t —trr).

It is easy to get

d

0)| <« BMHl e
|rm(0)] < M +1 tc|-2mH, i)

Jw™+1) ()], (4.3)

Hence, in the case M = 2m the estimate (4.1) follows immediately.

Now we consider the important case when M < 2m. We shall estimate
the remainder from the interpolation at 2m + 1 nodes of the function w(t) €
CM+l_2mH,dH).

We have
ram(t) = w(t) — Pam(t) = Prm(t) + raa(t) — Pon(2). (4.4)
Denote
@(t)—ﬁt_tj i=0,1,...,2m
1 _._Oti_tg, ey bl
Yt
Then we have
2m
Pom(t) = ) w(t:)®:(),
i=0
2m
Pr(t) =) Pr(t) ®i(2)
t=0

Substituting these expressions into (4.4) we obtain

2m

ram(t) = Y (Pa(ts) — w(t:)) ®:(t) + rac(t).

i=0
Furthermore, in view of (4.2) we have
2m

ram() = D (Pa(t:) — w(t:)) @ (t) + rag(t)

1=M+1
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Consequently,
2m

ram (0)] < [rae )|+ D |rma(ts)] [@:(0)]-

=M1

It is easy to verify that

S M+1 (M+1)
|rm(ti)| < er(M,m) H te[-—I;lrr?l)t(I,dH] |w ®)],

" |9:(0)] < c2(m), i=M+1,...,2m.

Taking into account that R(0) = r2,,(0), from the above estimates and (4.3) we
obtain (4.1). Thus, the lemma is proved.

4.2. Monotony

A scheme is called monotone if the discrete operator Lj satisfies the maxi-
mum principle. It is called unconditionally monotone if it is monotone with any
grid stepsizes h. So by Lemma 2 we have

Proposition 1. The scheme (8.5)-(8.7) is unconditionally monotone.

4.3. Solution of the discrete problem

Using Lemmas 1-4 and Lemmas 4, 5, 7 in [10], we obtain the following
results.

Theorem 1. The discrete problem (8.5)-(3.7) has an unique solution which 1s the
limit of v(*) | calculated by the iterations

LN PY=F(PY, “PEfh,
v(P) = o D(P) + Ag-v*V(Q), Pep,,
v(P)=g(P), PEeT.

Proof. Similar to that of Theorem 1 in [10], p.21.

4.4. Asymptotic error expansion

Theorem 2. There exist functions

W — Wiideoidn = sz_2|ﬂ+2+«\(ﬁ)’ ]. c J,
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|7 = k, k = 1,...,m, independent of h;, so that we have the asymptotic error
expansion

v(P) = u(P) + 8m(P) + O([R[*™*+?), P €y,

where v and u are solutions of the discrete and differential problems respectively,

and
5 . = ,
Z Z hf“ thz s hi’"w[j].

k=1 |j|=k

Proof. Similar to that of Theorem 2 in [10].
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