ON MULTI-PARAMETER ASYMPTOTIC ERROR EXPANSIONS FOR MULTI-DIMENSIONAL DIFFUSION-CONVECTION EQUATIONS *

rojsteqo Lsitnetaflib 9if rabiano

TA VAN DINH and DANG QUANG A

Abstract

dimensional diffusion-convection equations. An uncondationally monotone difference scheme is investigated and the existence of a multi-parameter error expansion is established.

Abstract. This paper is concerned with the Dirichlet boundary value problem for multi-

19yotni ovifisoq abis $(1>$ 人

1. INTRODUCTION

delt os six
In finite difference methods when there exists an asymptotic error expansion with respect to stepsize, the Richardson extrapolation can be used for accelerating the rate of convergence of the method (see $[2,4,7,8,9,10]$ and the references therein). It reduces the necessary number of algebraic equations to be solved and thereby provides an efficient algorithm with respect to both computing time and storage requirements. For a multidimensional problem it is worth noting that a multi-parameter error expansion is more efficient than a one-parameter expansion.

In [9] a general multi-parameter error expansion for operator equations is investigated and later in [10] it is established for the Dirichlet self-adjoint elliptic multi-dimensional boundary-value problem. In this paper we consider the Dirichlet boundary-value problem for stationary multidimensional diffusion-convection equations. For this problem, a difference scheme which satisfies the maximum principle for any grid stepsize is investigated in [5], but the asymptotic error expansion has not been considered yet. We propose a scheme which not only satisfies

[^0]the maximum principle but admits a same multiparameter error expansion as in [10].

2. THE DIFFERENTIAL PROBLEM

We shall use the same notations as in [10]. Let Ω be an open bounded domain in R^{n} and Γ its boundary. Let functions of n variables $x_{1}, \ldots x_{n}: p_{i}(x)$, $s_{i}(x), q(x), f(x)$ on $\bar{\Omega}$ and $g(x)$ on Γ be given.

Consider the differential operator

$$
\begin{equation*}
L u=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p_{i} \frac{\partial u}{\partial x_{i}}\right)+s_{i} \frac{\partial u}{\partial x_{i}}-q u, \quad x \in \Omega . \tag{2.1}
\end{equation*}
$$

The differential problem is

$$
\begin{align*}
L u=f, & x \in \Omega, \tag{2.2}\\
u=g, & x \in \Gamma . \tag{2.3}
\end{align*}
$$

Assume that there exist a real number $\lambda(0<\lambda<1)$ and a positive integer m so that

$$
\begin{align*}
& p_{i} \in C^{2 m+1+\lambda}(\bar{\Omega}) ; s_{i}, q, f \in C^{2 m+\lambda}(\bar{\Omega}), \tag{2.4}\\
& \Gamma \in C^{2 m+2+\lambda}, g \in C^{2 m+2+\lambda}(\Gamma) . \tag{2.5}
\end{align*}
$$

Assume also

$$
\begin{equation*}
p_{i} \geq \text { const }>0, \quad q \geq 0 . \tag{2.6}
\end{equation*}
$$

3. THE DISCRETE PROLLEM (DIFFERENCE SCHEME)

3.1. Grid and grid function

We use the same definitions and notations concerning grid, grid point, interior grid point, regular and irregular interior grid point as in [10], p.17. So, we have

$$
\Omega_{h}=\Omega_{h, r} \cup \Omega_{h, i r},
$$

where $\Omega_{h, r}$ and $\Omega_{h, i r}$ denote the sets of regular and irregular interior grid points.

Concerning the convection term, let us denote

$$
s_{i}^{+}=0.5\left(s_{i}+\left|s_{i}\right|\right), \quad s_{i}^{-}=0.5\left(s_{i}-\left|s_{i}\right|\right)
$$

so that

$$
s_{i}=s_{i}^{+}+s_{i}^{-}, \quad\left|s_{i}\right|=s_{i}^{+}-s_{i}^{-}
$$

3.2. Approximation at $P \in \Omega_{h, r}$

To approximate the given functions $p_{i}(x)$ we consider the discrete functions a_{i} defined in [10], p. 18 and for $s_{i}(x)$ we consider at $P \in \Omega_{h, r}$ the following discrete functions

$$
\begin{aligned}
b_{i}^{+} & =s_{i}^{+}(P) / p_{i}(P), \quad b_{i}^{-}=s_{i}^{-}(P) / p_{i}(P), \\
R_{i} & =R_{i}(P)=0.5 h_{i}\left|s_{i}(P)\right| / p_{i}(P), \\
\alpha_{i} & =\alpha_{i}(P)=1-R_{i}(P)+\left(R_{i}(P)\right)^{2}
\end{aligned}
$$

Now at $P \in \Omega_{h, r}$, we consider the discrete operator

$$
\begin{equation*}
L_{h}(v)=\sum_{i=1}^{n} \alpha_{i}\left(a_{i} v_{\bar{x}_{i}}\right)_{x_{i}}+b_{i}^{+} a_{i}^{(+1)} v_{x_{i}}+b_{i}^{-} a_{i} v_{\bar{x}_{i}}-q v \tag{3.1}
\end{equation*}
$$

3.3. Approximation at $P \in \Omega_{h, i r}$

Now let $P \in \Omega_{h, i r}$. As in [10], p.19, 20 we consider Lagrange's interpolating polynomial.

Let $w(t)$ be a smooth enough function on $\bar{\Omega}$, then for $P \in \Omega_{h, i r}$ we define a point $Q \in \Gamma$ as in [10], p.19. Then,

$$
\begin{equation*}
w(P)=J_{d} w(P)+\Lambda_{d} \cdot w(Q)+R(0) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
J_{d} w(P) & =\sum_{k=1}^{2 m}(-1)^{k-1} \frac{(2 m)!}{k!(2 m-k)!} \cdot \frac{d}{d+k} \cdot w(-k H), \tag{3.3}\\
\Lambda_{d} & =\prod_{k=1}^{2 m} \frac{k}{d+k} \tag{3.4}
\end{align*}
$$

Note that in [10] there was an error consisting of writing \sum instead of Π as in (3.4) here.

Concerning the remaining term $R(0)$ see Lemma 4 below.

3.4. The discrete problem (difference scheme)

Now we consider the discrete problem

$$
\begin{align*}
& L_{h} v(P)=f(P), \quad P \in \Omega_{h, r}, \tag{3.5}\\
& v(P)=J_{d} v(P)+\Lambda_{d} \cdot v(Q), \quad P \in \Omega_{h, i r} \tag{3.6}\\
& v(P)=g(P), \quad P \in \Gamma \tag{3.7}
\end{align*}
$$

where the operators L_{h}, J_{d} and the number Λ_{d} are defined in (3.1), (3.3), (3.4).

4. THE RESULTS

4.1. Preliminary lemmas

We have the analogous lemmas as in [10].

Lemma 1. The problem (2.2)-(2.6) has a unique solution

$$
u \in C^{2 m+2+\lambda}(\bar{\Omega})
$$

For the proof see [3].

Lemma 2. With any grid stepsize the discrete operator L_{h} satisfies the maximum principle on $\Omega_{h, r}$:

1/ If $v \neq$ const, $L_{h}(v) \geq 0$ at all $P \in \Omega_{h, r}$ then v cannot attain its positive maximum value at $P \in \Omega_{h, r}$;

2/ If $v \neq$ const, $L_{h}(v) \leq 0$ at all $P \in \Omega_{h, r}$ then v cannot attain its negative minimum value at $P \in \Omega_{h, r}$.

Proof. At first we note that

$$
\alpha_{i}(P) \geq 3 / 4 \quad \text { with any } h_{i}
$$

Now at $P \in \Omega_{h, r}$ the discrete operator can be written in the form

$$
L_{h}(v)=\sum_{i=1}^{n}\left[\left(\alpha_{i} / h_{i}+b_{i}^{+}\right) a_{i}^{(+1)} v_{x_{i}}-\left(\alpha_{i} / h_{i}-b_{i}^{-}\right) a_{i} v_{\bar{x}_{i}}\right]-q v
$$

Then, with any i and any P, we have

$$
\left(\alpha_{i} / h_{i}+b_{i}^{+}\right) a_{i}^{(+1)}>0, \quad\left(\alpha_{i} / h_{i}-b_{i}^{-}\right) a_{i}>0 .
$$

From that the lemma follows (see [6], p.239).
Now by applying Taylor's formula we obtain
Lemma 3. For any function $w \in C^{2 \ell+2+\lambda}(\bar{\Omega})$ we have

$$
\begin{aligned}
& L_{h} w=L w+\sum_{i=1}^{n} \sum_{k=1}^{\ell} h_{i}^{2 k} F_{i k}(w)+r_{1}, \quad \ell \geq 1, \\
& L_{h} w=L w+r_{1}, \quad \ell=0
\end{aligned}
$$

where $F_{i k}(w)$ depends only on w and on the derivatives of w up to order $2 k+2$ and $\left|r_{1}\right| \leq$ const. $|h|^{2 \ell+\lambda}$.

It should be noticed that in the formulation of Lemma 6 in [10] there is an inexactness. Therefore, below we shall restate this lemma and include its detailed proof.

Lemma 4. If $w(t) \in C^{M+1}[-2 m H, d H], M \leq 2 m$, then

$$
\begin{equation*}
|R(0)| \leq H^{M+1} \cdot c(M, m) \max _{t \in[-2 m H, d H]}\left|w^{(M+1)}(t)\right| . \tag{4.1}
\end{equation*}
$$

Proof. Let us denote

$$
t_{0}=d H, \quad t_{i}=-i H, \quad i=1, \ldots, 2 m
$$

and by $P_{M}(t)$ denote the interpolating polynomial of degree M at the nodes $t_{0}, t_{1}, \ldots, t_{M}$, so that

$$
\begin{equation*}
P_{M}\left(t_{i}\right)=w\left(t_{i}\right), \quad i=0,1, \ldots, M . \tag{4.2}
\end{equation*}
$$

For the remaining term

$$
r_{M}(t)=w(t)-P_{M}(t)
$$

we have (see [1])

$$
\left|r_{M}(t)\right| \leq \frac{\left|\omega_{M}(t)\right|}{(M+1)!} \max _{t \in[-2 m H, d H]}\left|w^{(M+1)}(t)\right|,
$$

where

$$
\omega_{M}(t)=\left(t-t_{0}\right)\left(t-t_{1}\right) \ldots\left(t-t_{M}\right)
$$

It is easy to get

$$
\begin{equation*}
\left|r_{M}(0)\right| \leq H^{M+1} \frac{d}{M+1} \max _{t \in[-2 m H, d H]}\left|w^{(M+1)}(t)\right| \tag{4.3}
\end{equation*}
$$

Hence, in the case $M=2 m$ the estimate (4.1) follows immediately.
Now we consider the important case when $M<2 m$. We shall estimate the remainder from the interpolation at $2 m+1$ nodes of the function $w(t) \in$ $C^{M+1}[-2 m H, d H]$.

We have

$$
\begin{equation*}
r_{2 m}(t)=w(t)-P_{2 m}(t)=P_{M}(t)+r_{M}(t)-P_{2 m}(t) \tag{4.4}
\end{equation*}
$$

Denote

$$
\Phi_{i}(t)=\prod_{\substack{j=0 \\ j \neq i}}^{2 m} \frac{t-t_{j}}{t_{i}-t_{j}}, \quad i=0,1, \ldots, 2 m
$$

Then we have

$$
\begin{aligned}
P_{2 m}(t) & =\sum_{i=0}^{2 m} w\left(t_{i}\right) \Phi_{i}(t) \\
P_{M}(t) & =\sum_{i=0}^{2 m} P_{M}\left(t_{i}\right) \Phi_{i}(t)
\end{aligned}
$$

Substituting these expressions into (4.4) we obtain

$$
r_{2 m}(t)=\sum_{i=0}^{2 m}\left(P_{M}\left(t_{i}\right)-w\left(t_{i}\right)\right) \Phi_{i}(t)+r_{M}(t)
$$

Furthermore, in view of (4.2) we have

$$
\begin{aligned}
r_{2 m}(t) & =\sum_{i=M+1}^{2 m}\left(P_{M}\left(t_{i}\right)-w\left(t_{i}\right)\right) \Phi_{i}(t)+r_{M}(t) \\
& =-\sum_{i=M+1}^{2 m} r_{M}\left(t_{i}\right) \Phi_{i}(t)+r_{M}(t)
\end{aligned}
$$

Consequently,

$$
\left|r_{2 m}(0)\right| \leq\left|r_{M}(0)\right|+\sum_{i=M+1}^{2 m}\left|r_{M}\left(t_{i}\right)\right|\left|\Phi_{i}(0)\right|
$$

It is easy to verify that

$$
\begin{aligned}
& \left|r_{M}\left(t_{i}\right)\right| \leq c_{1}(M, m) H^{M+1} \max _{t \in[-2 m H, d H]}\left|w^{(M+1)}(t)\right|, \\
& \left|\Phi_{i}(0)\right| \leq c_{2}(m), \quad i=M+1, \ldots, 2 m .
\end{aligned}
$$

Taking into account that $R(0)=r_{2 m}(0)$, from the above estimates and (4.3) we obtain (4.1). Thus, the lemma is proved.

4.2. Monotony

A scheme is called monotone if the discrete operator L_{h} satisfies the maximum principle. It is called unconditionally monotone if it is monotone with any grid stepsizes h. So by Lemma 2 we have

Proposition 1. The scheme (3.5)-(3.7) is unconditionally monotone.

4.3. Solution of the discrete problem

Using Lemmas 1-4 and Lemmas 4, 5, 7 in [10], we obtain the following results.

Theorem 1. The discrete problem (3.5)-(3.7) has an unique solution which is the limit of $v^{(\nu)}$, calculated by the iterations

$$
\begin{aligned}
L_{h} v^{(\nu)}(P) & =f(P), \quad P \in \Omega_{h, r} \\
v^{(\nu)}(P) & =J_{d} v^{(\nu-1)}(P)+\Lambda_{d} \cdot v^{(\nu-1)}(Q), \quad P \in \Omega_{h, i r} \\
v^{(\nu)}(P) & =g(P), \quad P \in \Gamma .
\end{aligned}
$$

Proof. Similar to that of Theorem 1 in [10], p. 21.

4.4. Asymptotic error expansion

Theorem 2. There exist functions

$$
w_{[j]}=w_{j_{1} j_{2} \ldots j_{n}} \in C^{2 m-2|j|+2+\lambda}(\bar{\Omega}), \quad j \in J,
$$

$|j|=k, k=1, \ldots, m$, independent of h_{i}, so that we have the asymptotic error expansion

$$
v(P)=u(P)+S_{m}(P)+O\left(|h|^{2 m+\lambda}\right), \quad P \in \Omega_{h},
$$

where v and u are solutions of the discrete and differential problems respectively, and

$$
S_{m}=\sum_{k=1}^{m} \sum_{|j|=k} h_{1}^{2 j_{1}} h_{2}^{2 j_{2}} \ldots h_{n}^{2 j_{n}} w_{[j]} .
$$

Proof. Similar to that of Theorem 2 in [10].

REFERENCES

1. N. S. Bakhvalov, Numerical methods, Moscow, Nauka, 1973 (Russian).
2. P. Henrici, Discrete variable methods in ordinary differential equations, New York - London. J. Willey and Sons, 1962.
3. O. A. Ladyjenskaia and N. N. Ural'tseva, Linear and quasi-linear elliptic equations, Moscow, Nauka, 1973 (Russian).
4. G. I. Marchuk and V. V. Shaydurov, Amelioration of the accuracy of difference schemes, Moscow, Nauka, 1979 (Russian).
5. A. A. Samarskii, On monotone difference schemes for elliptic and parabolic equations for non-selfadjoint elliptic operator, J. of Numer. Math. and Math. Physics, 5 (1965), no. 3, 548-551 (Russian).
6. \qquad , Introduction to theory of difference schemes, Moscow, Nauka, 1971 (Russian).
7. H. J. Stetter, Asymptotic expansions for the error of discretization algorithms for nonlinear functional equations, Numer. Math., 7 (1965), no. 1, 18-31.
8. \qquad , Analysis of discretization methods for ordinary differential equations, New York - Berlin, Springer-Verlag, 1973 (Russian transl., 1978).
9. Ta Van Dinh, On the asymptotic error expansions to finite-difference methods, J. of Numer. Math. and Math. Physics, 24 (1984), no. 9, 1359-1371 (Russian).
10. \qquad , On multi-panameter error expansions in finite-difference methods for linear Dirichlet problems, Apl. Mat., 32 (1987), no. 1, 16-24.
Faculty of Mathematics
Hanoi Polytechnical Institute
Dai Co Viet Street, Hanoi, Vietnam molemsque torte offotqaryen .n.
Institute of Information Technology
Nghia Do, Tu Liem, Hanoi, Vietnam

[^0]: * This work is supported in part by the National Basic Research Program in Natural Sciences, Vietnam

