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EMPLOYMENT OF CONICAL ALGORITHM

AND OUTER APPROXIMATION METHOD
IN D.C. PROGRAMMING

NGUYEN VAN THOAI 1

Abstract. In this article, we show a way to solae a closs of d.c. prograna by a brutch and
bund algorithm which is a con,binatbn ol the conical algorithm uith on outer approt&nation
methd, and was orillinally established lor eoncaae minimization prcblems (cl. Horst, Thmi,
Bewon [2]). Sone qtestions aboutthe convetgence of the rcsulting algorithm arc disanced,
and conputdional rcsults on test prcblems arc then rcportd.

Keg wottlt. D.c. functions, d.c. programming, global optimization, conical algo-
rithm, outer approximation.

1. INTRODUCTION

In the theory of global optimization d"c. programming plays an interesting
and important part because of its theoretical aspect as well as of a broad field
of application. A function is called d.c. if it can be represented as the difference
of two finite convex functions. Frequently, mathematical prograrnming problems
dealing with d.c. functions are called d.c. prograrnming problems. It is well-
known that the set of d.c. functions on a compact convex set of IR" is dense in the
set of continuous functions on this set. Therefore, in principle, every continuous
function can be approximated by a d.c. function with any desired precision. Of
course, finding the explicite d.c. representation of a function is in general a hard
problem, however, it points out in literature that the class of applicable d.c. func-
tions is quite comprehensive. For a collection of typical properties and practical
applications of d.c. programming we refer to the recent works by Horst and Tuy
[f] and [7] and references given there.
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It is the purpose of this article to discuss methods for solving d.c" program-
ming problems. In global optimization there are two classes of algorithms which
are extensively applied and belong to the most promising tools in many cases"
The one is called conical algorithm being of the branch and bound type in which
polyhedral cones are used for the branching process, and the other, called outer
approrimation, is due to the idea of successive approximation of the feasible set by
a sequence of polyhedral convex sets containing it. In many situations a suitable
combination between conical algorithm and outer approximation principle led to
efficient procedures" In this article, we show, on the one hand, a way to solve a
class of d.c. prograrns by a branch and bound algorithm which is combination
of the connical algorithm with an outer approximation method, and was original-
ly established for convave minimization problems (cf. Horst, Thoai, Benson [2]),
and, on the other hand, we discuss some questions about the convergence of the
resulting algorithm.

Let us consider a d.c. programming problem of the form

m i n { / ( r )  - g ( " ) : r € F ) , ( 1 . 1 )

where / and g are finite convex functions and .t' is a convex set of IR'.

Throughout this paper we shall use the following assumption

(/) The convex set F is compact with a non-empty interior and a point
ro € int f is available.

By ""ing 'rn additional variable, f , Problem (P) can be transformed into an
equivalent form,

(P1) min {p (z )  :  e ( r , t )  : t  *  s ( r )  :  r  €  F ,  I@)  - ,  <  0 } . ( r .2 )

Problem (P1) deals with the minimization of a concave function over a
convex set of IR'+r. It is known in optimization theory that from an optimal
solution 

"* 
:  (r*,t*) of Problem (P1) i t  fol lows immediately that r* is an optimal

solution of the original d.c. Program (P). Moreover, although the feasible sets
of (Pt) is unbounded, it can be shown that the optimal solution set of problems
(Pt) is bounded. We will see later that for establishing algorithms for problems
(Pf ) the boundedness of the optimal solution set shall be exploited.

The article is organized as follows. In Section 2, a basic conical algorithm
for solving Problem (Pf) is presented. Details on an implementation of the basic
algorithm are given in Sections 3-5. Some questions about the convergence of
the algorithm are discussed in Section 6, and finally, illustrative examples and
computational results are reported in Section 7.
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2. A CONTCAL ALGORITHM FOR SOLVING PROBLEM (P1)

The main idea of applying the concept of conical algorithms to Problem
(P1) can be briefly expressed as follows.

Let K and P be a convex polyhedral cone and a convex polyhedral set of
IR'*l, respectively, such that K contains the set of all optimal solutions and P
contains the feasible set, D, of Problem (Pl). Based on the sets D, K, P and the
objective function t - g(r), we determine an upper bound, 1, of the optimal value
of Problem (P1) and a lower bound, 1t,, of p(z) - t - 9(c) over the set P n K
which yields bimultaneously a lower bound of p(z) over D t1 K, and a feasible
point 

" 
:  (r, t) e D satisfying p(z) : t  - g("): 1. I f  i t  holds 1 : Ft then we

are done: the point 
" 

: (r,t) is obviously an optimal solution of Problem (Pl)
with the optimal value 1. Otherwise, we divide the cone K into a,finite number of
convex polyhedral subcones Kt,... , K" and construct a convex polyhedral set F
such that P )F f D. For each f - 1,. . . ,r d lower bound, Fi, of 92 over K; aF
is computed, and we obtain a new lower bound, tt, of p over K n D by setting
lt : min{p,i : i :1,. . . , r}. Throughout the bound estimation, new feasible points
can be generated, among those a new (better) upper bound of the optimal value is
computed. The procedure is continued by this way until an upper bound is found
that coinsides with a lower bound over I( n D.

The following algorithm is based on the idea formulated above.

Algorithm l.

Initialization.

Construct a cone K, a set P as described above;

Set 1 = /("0) - g(ro) (r0 from Assumptio" (,4));

C h o o s e  
" : ( " , t )  

e  a r g J ,  i . e .  z € . D a n d < p ( z )  - t - g ( r ) :  I @ ) - g ( r ) : l ;
Compute lower bound p: p(K) of gr over K n P;

Set K *- {K}, stop <-- f alse, k <- l.

while stogt: f  alse do

i f  p>  l  t hen

stop <- true (z : (r,t) is optimal solution and 1 is optimal value of Problem

( P 1 ) ) .

else

Div ide K in to r  subcones Kr , . . .  rKr i

Construct a polyhedral set F such that P 2P > D;
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Compute lower bounds p(K;) of rp over K; aF (f :  1,. ." ,  
");

S e t  K , -  K  \  { K }  u  { K t , . . . , K , ) ,

& +- min {p(X) : K e K};

Update 1 and 
" 

: (r,t) e arg 1 by using all newly generated feasible points;

Choose  KeK sa t i s f y ing  p (K ) :p .

endif

Set  P * -P"  f r  * -  /c  + 1

endwhile

Clearly, Algorithm I consists of three basic operations:

a) the construction of a starting cone containing the set of optimal solutions
and the division of a cone at each iteration,

b) the estimation of bounds, and

c) the construction of a decreasing sequence of convex polyhedral sets contai-
ning the feasible set.

In the following sections these basic operations are discussed in details.

3. CONSTRUCTION OF A STARTING CONE AND CONICAL DIVISION

First, we show how to construct a starting cone containing the set of all
optimal solutions of Problem (P1).

From Assumption (1), the feasible set F can be packed in an z-simplex, ,Ss,
of lR". Several possibilities for constructing such a simplex can be found e.g. in
Thoai [8] and Horst and Tuy [1].

Let ?o be an z-simplex of lR'*l defined by

T o :  { ( r , t )  e  I R "  x  I R :  c  €  , 5 6 ,  t : l  ) ,  ( 3 . 1 )

where
f  : m a x  { / ( " )  :  r € , 5 6 } .  ( 3 . 2 )

(Note that t is simply computed by comparing the value of the concave function
t - g(x) at the vertices of simplex ,56.)

Further, let

zo - (xo,to) where t6 is a number satisfying to > l .  (3.g)
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Then we have

Proposi t ion 1.  The cone Ko:  KQo):  K(zo,?b)  C IRo x 8, ,  generated by
n * L raVs ernanating from zo and, passing through the uertices of the simpler T:6,
respectiuely, contains the set of all optirnal solutions of Problem (Pl).

Proof . Since ̂ 96 ) F, it follows by the construction of Ko, that Ko ) {(r,t) : r €
S o ,  / ( " )  - t -  0 ) > { ( " , t ) : r € F ,  I ( r ) - t -  0 } .  T h i s i m p l i e s t h a t K o c o n t a i n s
the optimal solution set of Problem (P1) since each optimal solution (z*, t* ) must
obvious ly  sat is fy  r*  €  F,  f  ( r * ) : t *  n

The starting cone constructed by Proposition I is a polyhedral convex cone
having n * | edges. Obviously, this structure is the simplest which a cone in
IR' x R can have to contain the set of all optimal solutions of Problem (P1). At
each iteration of Algorithm 1 a cone is divided into a finite number of subcones.
It is natural that the suitable structure of Ko should be kept for every of subcones
generated throughout the algorithm. A simple way to do this is the following
classic radial subdivision.

Let K be any cone vertexed at zo and having n * I edges which pass through
the n *  l  ver t ices of  an n-s implex T: l r t r . . . , rn* t f  g  ?o,  respect ive ly ,  and le t
u e K be a point that does not lie on an edge of K. Further, let u be the
intersection point of ? and the ray emanating from zo, passing through z, and let

n + l  z * l

, :  I l ; r t ,  ) ; > 0  ( f : 1 , . . . , n * 1 ) ,  I l r : t .
i : L  r : 1

For each i e {f ,  . . . ,n * 1} such that ); > 0 let K; b" the subcone vertexed
at z0 and having n*l edges which are the ray passing u and z edges ui , i 7 i, of
1{. Then we have

K -  U  t t a n d i n t K ; n i n t  K i : 0 f o r i l  j .
l ;  ) o

By this way, the simplex ? is divided into r subsimplices and the cone 1{ is
accordingly divided into r subcones, Kr,.. .  ,  K. where r is the number of posit ive
components of ) n pn*r (and hence satisfies 2 S r:< z * 1). We say that the
collection {Kt,. . .  ,  K,} forms a radical division of the cone K by using the point
z. Each choice of the point z provides a division. A special division called bisection
is created when u is the middle point of an edge of ? with the bigest length.

I J
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Recently Horst, Thoai and de Vries [+-O] have proposed, a conical cover which
is based on a sirnplicial couer rather than the radial simplicial division. By using
the idea of this csnical cover, a cone I( as defined above is covered with a collection
of convex polyhedral subcones Ktr.. . ,K" such that 1 ( r ( n*2 and every
subconce is vertexed at zo and has exactly n+ l edges. Moreover, it must satisfy

f

t h a t . I ( ; { U K , .
r : 1

Within a conical branch and bound algorithm, the conical covering technique
was developed for irnproving the efficiency of the first iterations. Actually, at
the first iterations of the algorithm, the conical cover can exploit intensively the
structure of the problem, and can, therefore, allow immediately deletion of large
parts of the feadible set from further consideration. Moreover, it can provide in
many cases considerably improved initial upper and lower bounds.

4. LOWER BOUND ESTIMATION

Le t  ?  =  [ r t , . . . , u ' * l ]  C  ?o  and  K :  K (zo ,? )  *  i n  t he  p rev ious  sec t i on .
Further, let Pq be a polyhedral set containing the feasible set D of Problem (P1)
such that Po n Ko is bounded (such a set can be simply constructed, e.g. by
Ps :  { (n , t \ : n€ .56 ,  t  )  t ' } ,  where  t  (  m in  { f  ( " ) :  c  e  .F ' } ) .

Let P be a polyhedral set satisfying D C P C Ps, and defined by

P : {z : (x,t) e IR" x IR : Az 1b},

where .4 and 6 are matrix and vector, respectively, of rooropriate sizes.

The way to determine a lower bound of the objective function over the set
K n P (which is also a lower bound of the objective function over K ft D since
P ) D) is proposed in Thoai and Tuy [9]. Here we briefly recall this procedure.

To our purpose, we need an important concept called 1-ertension. The first
version of 1-extension was introduced by Tuy [10]. Several modified versions of
this concept were established in connection with the development of algorithms
for solving certain problems in global optimization (cf. Horst and Tuy [l], Horst
et al [4, 6] and references given there). Below we present a new version of the
1-extension concept which generalizes other versions and is suitably applied in
many algorithms for concave programming as well as for other: classes in global
optimization.

Let p: lR'--+ IR be aconcave function, z €]F-v, and let l  and 01 be real
numbers satisfying I 3 e(z) and 01 > 0. A point z e R" is called 1-extension of
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z in direction d (with respect to tp) if

2 :  z  *  dd wi th  0 -  min {01isup { ) , :  p(z  + , \d)  > ^ / } } .

From the concavity of tp, the existence of 1-extension of any given point z in any
given direction d is guaranteed whenever I < p(z).

Now assume that an upper bound J of the optimal value of problem (P1)
is on hand. For each i:  I , . . .)rL * 1 let zi be the point where the i-th edge
of .K intersects the boundary 0D of D (the existence of such intersection points
is guaranteed since zo €. intD), and let 2i be the 1-extension of zi in direction
( "  -  

" o ) '  
w h e r e  

. y  :  m i n  { 7 , g ( z r ) , . . . , p ( r ^ + r ) } .

Denote by Y the matrix with columns (z I - 
"o),. 

. . ,,(z n*l - z0), and define

( 4 . 1 )
r j : l

(Note that c* is finite, since P ft K is bounded).

Then a lower bound p,(K) : F(K,P) of 92 over K a P is given by

p(K) : p(K' P) : 
t  ^rn 1r1u'),.. . ,  'p(E,-+')\,  else u'2)

where 2i :  c* (v; - zo) * zo : c*zi + ( l  - c*)zo for z : l ,  .  .  .  ,  n I l .

Remark. Let K' be a cone such that K is generated by a subdivision of K'. Then,
clearly, we should set p(K) : p,(K') whenever the numbet p(K) computed by
(4.2) is less than u,(K').

5. CONSTRUCTION OF POLYTOPE P

At each iteration of the algorithm a polyhedral set F is constructed satisfying
P )P ) D. To our purpose, we assume that D is given by D: {(", t) :  $(r,t) <
0), where ,b(r,t) is a convex function, defined as the maximum of a finite number
of convex functions. This operation is performed as follows. Let K be the cone
which is divided at the present iteration, and let 2 be the point computed by

c*  :  max { r t r l  
:  i  ) , ; :  Ay) ,<  6  -  Azo,  \>  o} .

2 : Y \ *  * z o , (5 .1  )
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where ,\* is an optimal solution of the linear program in (4.1). Note that here we
have c* : I l; ) 1 since otherwise the cone K would be removed from further
consideration. Geometrically, 2 is a point of the set P which stands farthest to
the hyperplane containing Z t," .  .  ,7n+t.

If it holds 2 € D, then we simply set P: P. Otherwise, compute the point
tr.r where the line segment I"o,2) meets the boundary 0D, and set

P :  P n {z :  t ( " )  - -  ("  -  r )€ S o},

where { is'a subgradient at the point n' of the convex function defining the convex
set D.

It is known from an outer approximation concept (cf. e.g. Horst, Thoai,
Tuy [f]) that we have 2 /P andP >_ O which implies that P )P ) D.

6. CONVERGENCE OF ALGORITHM 1

Let us assign the index /c to everything dealt with at iteration ft of Algo-
ri thm 1.

Being an algorithm of branch and bound type, Algorithm I is convergent
under the general consistency cond,ition that

(5.2)

(6.r)
,!i(rn 

- Pc) :0,

for every subsequence {K} c {.[{r} such that Ko*, C Kq for all g. ("f. e.g.
Horst and Tuy [1]).

We now establish a sufficient condition for (0.f). For this purpose we need
some additional notions. For each q > L we denote by ze,i, 28,i, pQ,i, and. 2q
the points zi, 2i, 2i, and 2, respectively, constructed according to the cone .Ko
as in previous subsections. Further, denote by zt and 2q the points where the
l i nesegmen t [ zo ,2q ]  i n te rsec ts thes imp lex l ro ' t , . . . t ze tn+ t tand lZe , r r . . " , 2n ,n * t f ,
respectively.

Proposition 2. Condition (6.1) is fulfilled for euery subsequenc" {Ko} c {Kr}
such that Ko*t C Kq Vq if it holds

l im l lze - 2ql l  :  o"
Q+oo

(6.2)
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Proof .  S ince the hyperp lanes conta in ing l7o ' t , . . . ,2e ' ' *1 ]  and,  l2e ' r , . . . ,  2e ' ' * r ] ,
respectively, are parallel to each other, we have, for each i : Lr...,rr, * L,

l lZt , '  -  2s" l l  _ l lzq - zqll .
l l ze  -  zo l ll l t c ' I  -  ?o l l

i l -  -  t l

But llZc'; - "oll 
and llzc - roll are all bounded and zo € int D, therefore it follows

from the continuity of the function. tp that 1s - trq < p(zo't) - ,p(20'i) -+ 0 as

9 --+ oo if llZe,; - zq,i ll r O as g --+ oo, i.e. if (6.2) holds. n

Clearly, Condition (6.2) depends upon the conical division process performed
throughout the algorithm. The most useful characterization of a division process
is the concept of exhaustiueness. A nested subsequencu U(c), Kq ) Ko*, Vg, is

called to be exhaustive if the intersection fr Ko is a ray ( a halfline emanating
g : l

from zo). A conical division process is called to be exhaustive if every nested
subsequence of cones generated throughout the algorithm is exhaustive. A typical
example for exhaustive division processes is the bisection process mentioned in Sec-
tion 2.2. Other classes of exhaustive divisions are discussed in Tuy, Khachaturov
and Utkin [12], Horst and Tuy [1], Tuy [11], Horst, Thoai and de Vries [6].

Proposition 3. Condition (6.2) ;s fulfilled, for euery erhaustive division process.

Proof. Let {lfo} be an exhaustive nested subsequence and let I be the ray such
that fl Ks : f . Then the point 2e appoaches a point z* € I. From an outer

q

approximation procedure it follows that z* e AD (cf. e.g. Horst, Thoai and Tuy

[3], Horst and Tuy [1]), i.e. z* is the intersection point of I and 0D. Onthe other
hand, al l  the points 

"o,i  
( i  -  1,. . . ,n * 1) and zq approarh the point z* as well.

Therefore, it follows that llzq - 2cll3ll"o - 2sll --+ 0 as q -+ oo. I

In general, the radial division process described in Section 2.2is not exhaus-
tive. However, the following proposition shows a case where Condition (0.2) is
fulfilled for a radial division.

Proposition 4. Assurne that at each iteration k ) L, a rad,ial d.iuision of the cone
Kp is perlorrned by using the point uk : 2k. Then Cond,ition (O.e) is fulfi,tted if
lor any subsequence {Ko} such that each Ko is generated by a diuision of Kq-t
ue haue

I

lFf l ]  
Za>o Yq, (6.3)

uhere  r :  ( 1 , . . . , 1 )  6  pn* l  andYo  i s  t he  ma t r i x  w i th  co lumns  (ze , r  -  zo ) , . . . , .
( za ,n+ r  -  

"o ) .
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Proof . For each g let us denote by Hc the hyperplane containing Ze'r ,." . ,28,n+t
and by d(z,H)  the d is tance f rom a point  z  to  Hq, i .e .  d . (z ,Hn) :  min{ l lz  -  z ' l l :
z' € Ho. First, we show that

o\a6o,Hq+r)  
:  o ' (0"+)

Since {Ze } is bounded, we can assume, by passing to subsequence if necessary, that
2q '-+ Z *. But Z't*t €. Ho+, Vq, therefore we have d,(7q, Ho*r) < l l"n -Zq+r l l  * O
6 4 --+ oo.

Since Ko*, is generated from Ko by a radial division, we can fix an index
1 such 1[a1 2e*1r{ is t}1e intersection point of lzo,2t) and 0D. As in the proof of
Proposition 3, it follows from an outer approximation concept that 2q and 

"Q*f 
i

approach an unique point 2. e 0D. On the other hand i,rre have

" 
l lzo - 

"e*r, i  l l  S l lzo - 2t*r, i  l l  :  
d.\ '1^' !=o*t) 

f ipa+r, i  -  
"ol l  

yq ) qo. (6.s)
d,(zo, Hoal) t t -

Since l lz!+t, i  - 
"ol l  

is bounded, i t  fol lows from (6.3) and (6.4) that l lzc - 
"u+t, i l l  

--+
0 as q -+ crc) which implies that Zq approaches 2*, and hence (O.2)"

We conclude discussing the convergence of Algorithm 1 with some additional
remarks.

a) The consistency condition (0.t) ensures the convergence of Algorithm 1 in
the following sense: if the algorithm is infinite, it generates an infinite se-
quence of feasible points, every accumulation point of which is an optimal
solution to Problem (Pl).

b) Condition (6.2) is similar to the normal condition introduced by Tuy [11]
(see also Horst and Tuy [1]), however, there is a slight difference between
them.

c) The prismatic algorithm proposed in Horst et al [7] can actually be de-
scribed as a special implementation of Algorithm 1 where the vertex zo of
the starting cone is at infinity, i.e. when in (f.a) we choose fo : oo. How-
ever, in the case that the prismatic algorithms is finite, it only can be shown
that the algorithm generates an infinite sequence of infeasible points, every
accumulation point of which is an optimal solution to Problem (P1).
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7. NUMERICAL EXAMPLES AND COMPUTATIONAL EXPERIMENT

To illustrate Algorithm L, we consider d.c. programs of the following type

min  { / (c )  -  g ( " ) }

s . t .  h i ( " )  S  0  ( i : 1 , . . . , m ) ,

c i  1 ' x i  3  d i  U  :  1 , .  . . , t u ) ,

where f , g, h; (f : 1,...rrn) are all convex functions, and ci and di are real
numbers satisfying -oo ( ci < dj ( *m (t :  l ,  . . . ,n). Assume that a point zo
sat is fy ing h; ( ro)  < 0 ( i  -  1 , .  . . ,n)  and cr .  <  $ < d i  U :1 , . . . ,2)  is  avai lab le.

Define

P ( a , t ) : t - g ( r ) ,
, b ( r , t ) :  m a x  { f  ( " )  -  t , h r ( " ) , . .  . , h ^ ( r ) ) ,

P r  :  { ( " , t )  e  p ' + t  :  @ , t ) -  ( " 0 , / ( " o ) ) €  <  0 ,  c i  l  r i  3  d i  U -  1 , .  . . , n ) } ,

where { is a subgradient of the convex function r/ at the point ("o,/("0)). Then
the according problem (P1) is

min {9:(2, t) :  (x,t) e D},

where
D :  { ( r , t )  e  P1z  rb ( r , r )  <  0 } .

In order to determine an e-optimal solution ("*, f *) in a sense that gr(r*,1*) -
e lp( r . , r - ) l  <  p( r , t )Y(x, t )  €  D wi th  aprescr ibed number e )  0 ,  A lgor i thm 1 is
modified in a way that throughout the lower bound estimation according to each
cone, all 1-extensions are replaced bV (f - elll)-extensions.

Moreover, from practical point of view, we proposed the following conical
subdivision rules called "\-bisection" and "\-rad,ial d,iuisiorl', respectively. The
convergence of the algorithm when using these subdivision rules is not guaranteed,
however, computational results turned out that, in most cases, these rules are most
promising for implementing the algorithm.

A-bisection. Let K : K(T),where T : IuL,... ,r '*t ]  be the cone which is divided
at the present i teration, and let )- :  () i , . . . ,1;) be an optimal solution of the
linear program in (A.f) according to K. Then the cone K is divided into two

subcones by using the point ,  : ;(rt '  + ud,), where f1 and i2 arechosen by

. l i , : m a x { , \ j : , \ i  > 0 ,  a n d  } i r : m a x { , \ i t U  >  O ,  i + i } .
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\-rad,ial d,ivision. Let 6 ) 0 be a small number, (a suitable choice is, e.g., 6 :

tlQn2)). If max{.\j : .tr; ) 0} > 6, then a radial conical division is performed.

Otherwise, a A-bisection is performed.

Example l. Horst et al [7].

r n :  L ,  r L  : 2 ,

f ( " )  :  ar !  +2r | ,  g( r )  :4r7,

h t ( " )  -  r !  -  2 r t  -  2 rz  -1 ,  c l  :  c2  :  -L ,  d t  :  dz  -  l .

, '0 . :  (0 .5,0.5) .

A simplex 50 containing the feasible set of the original d.c. progam can be
defined as

^96  :  [ ( 3 , -1 ) , ( - r , 3 ) ,  ( -1 , -1 ) ] .  Hence  t  :  max  { / ( c )  :  c  € ,56 }  -  326 ,

? o  :  [ ( J , - 1 , 3 2 6 ) ,  ( - 1 , 3 , 3 2 6 ) ,  ( - 1 ,  - 1 , 3 2 6 ) ] .

Choose 
"o 

:  ( ro , to)  :  (0 .5,0.5,1926) .

P r  :  { ( r ,  t )  :  2 n 1  * 2 r 2  -  t  -  1 . 2 5  < 0 ,  - 1  I  r r , r z  <  L } .

Choose e:  10-6.

Iteration 1:

Kr : K("o,?6). Section points of edges of K1 and 0D are respectively

(t.oooooo, o.2ooooo, 1606.000000),

(o.zooooo, 1.oooooo, 1606.000000),

( 0.236068, -0.236068, 1140.860821).

Current best point (rt, tr):  (-0.236068, -0.236068, 1L40.860821), "yr :
p( r t , t r )  :  1140.637908.

(r - rhl)-extensions of section points are respectively

(t.7lztzz, -0.239459, 1187.2s0000),

(-o.zt;o+sg, t.7 Bz42z, tLgT .25oooo),

(-o.zs0oo8, -286068, 1140.860821).

The optimal value of linear problem (+.t) according to I{1 is ci : 2.458300.
Lower bound p(Kt Pt) : -62.823479. Point 2' : (-L.O00000 - 1.000000
5.25oooo) 4 D.

Cutting function l1(r,t) : -2.472136q - 2.Or2 - 1.055728,

F r :  P l  n  { ( t ,  t ) :  t 1 ( r , t )  <  o } .

Cone .I(1 is divided into two subcones by a conical ,\-bisection.
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The procedure terminates after 12 iterations yielding an (fO-6)-optimal so-
lution

(r*,t*) : (0.697901, 0.0026s1, 0.9490b0) with optimal value
t* -  g(r . )  :  I@.) -  s(x.) :  -0.999214.

Example 2.

N ' 1 , :  L ,  N : 3 ,

f  ( ,) : i , , rn;t-  ,
r=1 D ,i

J : l

r  A n - t  p / z
g ( n ) :  l " t + ) . - r n t

t H f L l

i : 2

n- I

h r ( r ) :  ( D t -  r ) ' r r - r . r ) '  * r n - 4 . 4 ,  c j : r ,  d i : B  ( / :  l ,  . . . , n ) .
i : 1

s o  :  [ ( 2 ,  t , l ) ,  ( 1 , 2 , 1 ) ,  ( 1 ,  l ,  z ) ,  ( 1 , 1 , 1 ) ] ,  T  :  _ 8 . 2 9 s g 3 7 ,

zo : (2,2,2, 2996.7041ffi)

Pt : {(",t) :  -1.0986l,211- 1.09861212 - 1.098612rs- f ( 0,

r l r i S s ( r - 1 , . . . , 3 ) ) .

:  10-o

Iteration I :

( " ' , t r )  :  (1 ,  1 ,  1 ,  1196.704163) ,  11 :  1193.514916,

cr* :  z .o2 lsz3. ,  p(Kt ,pr ) :  -zg. lg l l74,  Er  :  (8 ,8,3, -g.gg7s11)  q n.
Cutt ing function l1(n,t) :  2.4rr - 2.412 + ns - 2.96,,

P,  :  h  n { ( r , t )  :  ( .1( r , f )  <  0} .

cone rf1 is divided into two subcones by a conical bisection.

The procedure terminates after 13 iterations yielding an (fO-6)-optimal so-
tyj iol (r. : t*): (2.988216, 9.0, 3.0, -9.869040) with optimal value t. - g(r.) --

f (".) - s(r.) : -26.376708.

To obtain further computational results, we take the problem type as in
Example 2 with, in addition, a system of constraints of the form

A r 1 b ,
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where .4 is an (t x n)-matrix and b e Ru

Table 1 contains computational results on a large set of test problems, in
which all elements of matrix -A and vector 6 are randomly generated" While per-
forming the test, some technical parameters were used: for fixing a point zo as in
(3.3) we chose to :l * 80012, and in (+.2) we set p(K) - 1, with c* ( 1 - o with
o : !O-4. The choice of these parameters has effects, of course, on the speed of
the algorithm. However, it is worth noting that for all test problems, an e-optimal
solution was found within a number of first iterations which is relatively small
in comparison w-ith the total number of iterations needed. For all test problems,
conical .\-radial subdivision was used.

The test runs were performed on a DEC/VAX 6000-410 computer.

Table l. Some computational results

Nguyen Van Thoai

average number

of iterations

average CPU-time

Isec.]

0
o

l0
20
0
o

10
20
0
o

10
20

I
I
I
I

15
15
15
l5
l9
19
l9
19

4
t4
30
46
l4
2 L
3 1
56
13

202
148
702

L%
t%
r%
L%
L %
r%
1%
t%
2%
2Y
2%
2%

o"1"2
0.38
0.83
1 .27
o.52
0.78
1.03
2.67
0.62

10.16
12.42

221.45
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