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EMPLOYMENT OF CONICAL ALGORITHM
AND OUTER APPROXIMATION METHOD
IN D.C. PROGRAMMING

NGUYEN VAN THOAI !

Abstract. In this article, we show a way to solve a class of d.c. programs by a branch and
bound algorithm which is a combination of the conical algorithm with an outer approrymation
method, and was originally established for concave minsmization problems (cf. Horst, Thoas,
Benson [2]). Some questions about the convergence of the resulting algorithm are discussed,
and computational results on test problems are then reported.
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1. INTRODUCTION

In the theory of global optimization d.c. programming plays an interesting
and important part because of its theoretical aspect as well as of a broad field
of application. A function is called d.c. if it can be represented as the difference
of two finite convex functions. Frequently, mathematical programming problems
dealing with d.c. functions are called d.c. programming problems. It is well-
known that the set of d.c. functions on a compact convex set of IR" is dense in the
set of continuous functions on this set. Therefore, in principle, every continuous
function can be approximated by a d.c. function with any desired precision. Of
course, finding the explicite d.c. representation of a function is in general a hard
problem, however, it points out in literature that the class of applicable d.c. func-
tions is quite comprehensive. For a collection of typical properties and practical
applications of d.c. programming we refer to the recent works by Horst and Tuy
[1] and [7] and references given there.

1 On leave from Hanoi Institute of Mathematics
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It is the purpose of this article to discuss methods for solving d.c. program-
ming problems. In global optimization there are two classes of algorithms which
are extensively applied and belong to the most promising tools in many cases.
The one is called conical algorithm being of the branch and bound type in which
polyhedral cones are used for the branching process, and the other, called outer
approzimation, is due to the idea of successive approximation of the feasible set by
a sequence of polyhedral convex sets containing it. In many situations a suitable
combination between conical algorithm and outer approximation principle led to
efficient procedures. In this article, we show, on the one hand, a way to solve a
class of d.c. programs by a branch and bound algorithm which is combination
of the connical algorithm with an outer approximation method, and was original-
ly established for convave minimization problems (cf. Horst, Thoai, Benson [2]),
and, on the other hand, we discuss some questions about the convergence of the
resulting algorithm.

Let us consider a d.c. programming problem of the form
(P) min {f(z) —g(z) : ¢ € F}, (1.1)
where f and g are finite convex functions and F is a convex set of R™.

Throughout this paper we shall use the following assumption

(A) The convex set F' is compact with a non-empty interior and a point
z° € int F' is available.

By -sing an additional variable, ¢, Problem (P) can be transformed into an
equivalent form,

(P1) min {p(2) = p(z,t) =t —g(z) : z € F, f(z) =t <0} (1.2)

Problem (P1) deals with the minimization of a concave function over a
convex set of R®*!. It is known in optimization theory that from an optimal
solution z* = (z*,t.) of Problem (P1) it follows immediately that z* is an optimal
solution of the original d.c. Program (P). Moreover, although the feasible sets
of (P1) is unbounded, it can be shown that the optimal solution set of problems

(P1) is bounded. We will see later that for establishing algorithms for problems
(P1) the boundedness of the optimal solution set shall be exploited.

The article is organized as follows. In Section 2, a basic conical algorithm
for solving Problem (P1) is presented. Details on an implementation of the basic
algorithm are given in Sections 3-5. Some questions about the convergence of
the algorithm are discussed in Section 6, and finally, illustrative examples and
computational results are reported in Section 7.
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2. A CONICAL ALGORITHM FOR SOLVING PROBLEM (P1)

The main idea of applying the concept of conical algorithms to Problem
(P1) can be briefly expressed as follows.

Let K and P be a convex polyhedral cone and a convex polyhedral set of
IR™*!, respectively, such that K contains the set of all optimal solutions and P
contains the feasible set, D, of Problem (P1). Based on the sets D, K, P and the
objective function ¢ — g(z), we determine an upper bound, ~, of the optimal value
of Problem (P1) and a lower bound, u, of p(z) = t — g(z) over the set P N K
which yields simultaneously a lower bound of ¢(z) over D N K, and a feasible
point z = (z,t) € D satisfying p(2) =t — g(z) = 5. If it holds ¥ = u, then we
are done: the point z = (z,t) is obviously an optimal solution of Problem (P1)
with the optimal value . Otherwise, we divide the cone K into a finite number of
convex polyhedral subcones Kj,..., K, and construct a convex polyhedral set P
such that P O P D D. For each i = 1,...,r a lower bound, y;, of p over K; N P
is computed, and we obtain a new lower bound, i, of © over K N D by setting
% =min{p,; :1=1,...,r}. Throughout the bound estimation, new feasible points
can be generated, among those a new (better) upper bound of the optimal value is
computed. The procedure is continued by this way until an upper bound is found
that coinsides with a lower bound over K N D.

The following algorithm is based on the idea formulated above.
Algorithm 1.
Initialization.
Construct a cone K, a set P as described above;
Set v « f(z°) — g(z°) (z° from Assumption (A));
Choose z = (z,t) € arg v, i.e. 2 € D and p(z) =t —g(z) = f(z) — g(z) = 5;
Compute lower bound u = p(K) of ¢ over K N P;
Set K «— {K}, stop «— false, k — 1.
while stop = false do
if 4 > ~ then
stop « true (z = (z,t) is optimal solution and  is optimal value of Problem
(P1)).
else
Divide K into r subcones K,,..., K,;
Construct a polyhedral set P such that P O P D D;
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Compute lower bounds u(K;) of p over K; NP (i =1,...,r);
Set K «— K\ {K}U{Kj,..., K},
p+— min {u(K): K € K};
Update v and z = (z,t) € arg ~y by using all newly generated feasible points;
Choose K € K satisfying u(K) = u.
endif

Set P— P, k«—k+1

endwhile

Clearly, Algorithm 1 consists of three basic operations:

a) the construction of a starting cone containing the set of optimal solutions
and the division of a cone at each iteration,

b) the estimation of bounds, and

c) the construction of a decreasing sequence of convex polyhedral sets contai-
ning the feasible set.

In the following sections these basic operations are discussed in details.

3. CONSTRUCTION OF A STARTING CONE AND CONICAL DIVISION

First, we show how to construct a starting cone containing the set of all
optimal solutions of Problem (P1).

From Assumption (A), the feasible set F can be packed in an n-simplex, So,
of R™. Several possibilities for constructing such a simplex can be found e.g. in
Thoai [8] and Horst and Tuy [1].

Let Tp be an n-simplex of IR™™! defined by
TOZ{(I,t)EIRnXIRZ.’EESO,t:Z}, (31)
where
t =max {f(z) : z € Sy}. (3.2)

(Note that ¢ is simply computed by comparing the value of the concave function
t — g(z) at the vertices of simplex S.)

Further, let

2% = (2°1y) where t; is a number satisfying t, > . (3.3)
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Then we have

Proposition 1. The cone Kg = K(Ty) = K(2°,T) € R™ x R, generated by
n + 1 rays emanating from 2° and passing through the vertices of the simplex Ty,
respectively, contains the set of all optimal solutions of Problem (P1).

Proof. Since So D F, it follows by the construction of Ko, that Ko D {(z,t) : z €
So, f(z) —t =0} D {(z,t) : z € F, f(z) —t =0}. This implies that Ko contains
the optimal solution set of Problem (P1) since each optimal solution (z*,¢,) must
obviously satisfy z* € F, f(z*) =t. O

The starting cone constructed by Proposition 1 is a polyhedral convex cone
having n + 1 edges. Obviously, this structure is the simplest which a cone in
IR™ x R can have to contain the set of all optimal solutions of Problem (P1). At
each iteration of Algorithm 1 a cone is divided into a finite number of subcones.
It is natural that the suitable structure of Ky should be kept for every of subcones
generated throughout the algorithm. A simple way to do this is the following
classic radial subdivision.

Let K be any cone vertexed at z° and having n + 1 edges which pass through
the n + 1 vertices of an n-simplex T = [v!,...,v"T!] C To, respectively, and let
u € K be a point that does not lie on an edge of K. Further, let v be the
intersection point of T and the ray emanating from 2°, passing through u, and let

n+1 n+1
v=Y A#> 9 >8 6 S0k R T A =1

For each ¢ € {1,...,n + 1} such that A; > 0 let K; be the subcone vertexed
at 2° and having n + 1 edges which are the ray passing v and n edges v?, 7 # 1, of
K. Then we have

K = | J K; and int K; N int K; = 0 for 1 # j.
;>0

By this way, the simplex T is divided into r subsimplices and the cone K is
accordingly divided into r subcones, K;,..., K,, where r is the number of positive
components of A € R"*! (and hence satisfies 2 < r < n + 1). We say that the
collection {Kj,..., K,} forms a radical division of the cone K by using the point
u. Each choice of the point u provides a division. A special division called bisection
is created when v is the middle point of an edge of T' with the bigest length.
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Recently Horst, Thoai and de Vries [4-6] have proposed a conical cover which
is based on a stmplicial cover rather than the radial simplicial division. By using
the idea of this conical cover, a cone K as defined above is covered with a collection
of convex polyhedral subcones Ki,...,K, such that 1 < r < n 4 2 and every
subconce is vertexed at z° and has exactly n + 1 edges. Moreover, it must satisfy

r
that K; g U B
i=1

Within a conical branch and bound algorithm, the conical covering technique
was developed for improving the efficiency of the first iterations. Actually, at
the first iterations of the algorithm, the conical cover can exploit intensively the
structure of the problem, and can, therefore, allow immediately deletion of large
parts of the feasible set from further consideration. Moreover, it can provide in
many cases considerably improved initial upper and lower bounds.

4. LOWER BOUND ESTIMATION

Let T = [v!,...,v"*"1] C T; and K = K(2°,T) as in the previous section.
Further, let Py be a polyhedral set containing the feasible set D of Problem (P1)
such that Py N Kj is bounded (such a set can be simply constructed, e.g. by
Py = {(z,t) 1z € So, t > t'}, where t < min {f(z) : z € F}).

Let P be a polyhedral set satisfying D C P C P,, and defined by
P/= {a=iat) e R" ¥ R« 42 < b},

where A and b are matrix and vector, respectively, of appropriate sizes.

The way to determine a lower bound of the objective function over the set
K N P (which is also a lower bound of the objective function over K N D since
P D D) is proposed in Thoai and Tuy [9]. Here we briefly recall this procedure.

To our purpose, we need an important concept called y-eztension. The first
version of y-extension was introduced by Tuy [10]. Several modified versions of
this concept were established in connection with the development of algorithms
for solving certain problems in global optimization (cf. Horst and Tuy [1], Horst
et al [4, 6] and references given there). Below we present a new version of the
7-extension concept which generalizes other versions and is suitably applied in
many algorithms for concave programming as well as for other classes in global
optimization.

Let ¢ : RY — IR be a concave function, z € R, and let v and 6, be real
numbers satisfying v < p(z) and 6; > 0. A point z € IR” is called y-extension of
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z in direction d (with respect to ) if
Z = z + 6d with 8 = min {01;sup {A: p(z + Ad) > ~}}.

From the concavity of ¢, the existence of y-extension of any given point z in any
given direction d is guaranteed whenever v < p(2).

Now assume that an upper bound 7 of the optimal value of problem (P1)
is on hand. For each ¢ = 1,...,n + 1 let z* be the point where the i-th edge
of K intersects the boundary 8D of D (the existence of such intersection points
is guaranteed since z° € intD), and let Z' be the y-extension of z' in direction
(2* — 2°), where

4 =min { 7,p(2'),...,0(z"})}.

Denote by Y the matrix with columns (2* —2°),...,(2"*! —2°), and define
n+1
¢* = max {c(A) = ZA,-:AY/\Sb—AzO, )\20}. (4.1)

i

(Note that c* is finite, since P N K is bounded).
Then a lower bound u(K) = u(K, P) of ¢ over K N P is given by

i o |

min {p(2!),...,p("*1)},  else (4.2)

u(K) = p(K, P) = {

‘where 2* = ¢*(2' - 2°)+ 22 =¢*2' + (1 — ¢*)2%for i =1,...,n + 1.

Remark. Let K' be a cone such that K is generated by a subdivision of K’. Then,
clearly, we should set u(K) = p(K’') whenever the number u(K) computed by
(4.2) is less than u(K').

5. CONSTRUCTION OF POLYTOPE P.

At each iteration of the algorithm a polyhedral set P is constructed satisfying
P D P D D. To our purpose, we assume that D is given by D = {(z,) : 9(z,t) <
0}, where 9 (z,t) is a convex function, defined as the maximum of a finite number
of convex functions. This operation is performed as follows. Let K be the cone
which is divided at the present iteration, and let 2 be the point computed by

FIPX™ +53° (5.1)
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where A\* is an optimal solution of the linear program in (4.1). Note that here we
have ¢* = ) A} > 1 since otherwise the cone K would be removed from further
consideration. Geometrically, Z is a point of the set' P which stands farthest to
the hyperplane containing z1,...,z"!.

If it holds 2 € D, then we simply set P = P. Otherwise, compute the point
w where the line segment [2°, 2] meets the boundary 8D, and set

P=Pn{z:¢(2) = (2 —w)¢ <0}, (5.2)

where ¢ is a subgradient at the point w of the convex function defining the convex
set D.

It is known from an . outer approximation concept (cf. e.g. Horst, Thoai,
Tuy [3]) that we have 2 ¢ P and P D D which implies that P D P D D.

6. CONVERGENCE OF ALGORITHM 1

Let us assign the index k to everything dealt with at iteration k of Algo-
rithm 1.

Being an algorithm of branch and bound type, Algorithm 1 is convergent
under the general consistency condition that

lim (7 — k) = 0, (6.1)

g oR

for every subsequence {K,} C {Ki} such tha.t Koy b K, 7 all ¢ [cl. eg
Horst and Tuy [1]).

We now establish a sufficient condition for (6.1). For this purpose we need
some additional notions. For each ¢ > 1 we denote by 2%9* z%' 3%* and 3¢
the points 2%, 2%, 2*, and 2, respectively, constructed according to the cone K,
as in previous subsections. Further, denote by 2? and Z? the points where the
line segment [2°, 27] intersects the simplex [z%!,...,29"*!] and [2%!,...,29" 1],
respectively.

Proposition 2. Condition (6.1) is fulfilled for every subsequence {K,} C {Ky}
such that K, C K, VYq if it holds

lim |2 — 29| = 0. (6.2)

g—+co
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Proof. Since the hyperplanes containing [2%!,...,29"*1] and [221,..., 29"+,
respectively, are parallel to each other, we have, for each ¢t =1,...,n +1,

295 - 5] _ Jjz — 29)
B =20 =

But ||Eq’i —2°|| and |29 — 2°|| are all bounded and 2% € int D’. therefore it follows
from the continuity of the function @ that vq —pq < (2?') = p(27*) — 0 as
q — oo if ||‘z‘lq"‘ — 39| — 0'as g — oo, i.e. if (6.2) holds. O

Clearly, Condition (6.2) depends upon the conical division process performed
throughout the algorithm. The most useful characterization of a division process
is the concept of ezhaustiveness. A nested subsequence {K,}, K, D Kqy1 Vg, is

o0

called to be exhaustive if the intersection ()| Kj is a ray ( a halfline emanating
9=1

from 2°). A conical division process is called to be exhaustive if every nested

subsequence of cones generated throughout the algorithm is exhaustive. A typical

example for exhaustive division processes is the bisection process mentioned in Sec-

tion 2.2. Other classes of exhaustive divisions are discussed in Tuy, Khachaturov

and Utkin [12], Horst and Tuy [1], Tuy [11], Horst, Thoai and de Vries [6].
Proposition 3. Condition (6.2) is fulfilled for every ezhaustive division process.

Proof. Let {K,} be an exhaustive nested subsequence and let I' be the ray such
that (1K, = T. Then the point 27 appoaches a point z* € I'. From an outer
q

approximation procedure it follows that z* € 8D (cf. e.g. Horst, Thoai and Tuy
[3], Horst and Tuy [1]), i.e. z* is the intersection point of T' and dD. On the other
hand, all the points 2% (i = 1,...,n + 1) and 29 approach the point z* as well.
Therefore, it follows that ||27 — 29|| < ||29 — 29|| — 0.as ¢ — co. [

In general, the radial division process described in Section 2.2 is not exhaus-
tive. However, the following proposition shows a case where Condition (6.2) is
fulfilled for a radial division.

Proposition 4. Assume that at each tteration k > 1, a radial division of the cone
Ky is performed by using the point u* = 2*. Then Condition (6.2) is fulfilled if
for any subsequence {K,} such that each Ky is generated by a division of K,_,
we have

le¥g ™l

where e = (1,...,1) € R™! and Y, is the matriz with columns (29! — 20),...,
(qun"'l Ca ZO).
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Proof. For each ¢ let us denote by H, the hyperplane containing z%!,...,z%"*!
and by d(z, H,) the distance from a point z to Hy, i.e. d(z, Hy) = min{||jz = 2|} :
z' € Hy. First, we show that

lim d(z9 Hg41) = 0. (6.4)
g—o00
Since {Z?} is bounded, we can assume, by passing to subsequence if necessary, that
z? —» Z*. But 29%! € H, 4 Vg, therefore we have d(29, H,,;) < [|[29-29F}|| — 0
as ¢ — oo.

Since K, is generated from K, by a radial division, we can fix an index
j such that z7t17 is the intersection point of [2°,29] and @D. As in the proof of
Proposition 3, it follows from an outer approximation concept that 29 and 2917
approach an unique point 2* € dD. On the other hand we have

d(z%, Hyyv)

5 EQ_Z‘H‘I:J' < EQ_EQ-FI,J' =
u <] |- e

29989 — 20 Vg > go. (6.5)

Since ||29%17 — 20| is bounded, it follows from (6.3) and (6.4) that |29 — 29+ 17| —
0 as ¢ — oo which implies that Z? approaches 2*, and hence (6.2).

We conclude discussing the convergence of Algorithm 1 with some additional
remarks.

a) The consistency condition (6.1) ensures the convergence of Algorithm 1 in
the following sense: if the algorithm is infinite, it generates an infinite se-
quence of feasible points, every accumulation point of which is an optimal
solution to Problem (P1).

b) Condition (6.2) is similar to the normal condition introduced by Tuy [11]
(see also Horst and Tuy [1]), however, there is a slight difference between
them.

¢) The prismatic algorithm proposed in Horst et al [7] can actually be de-
scribed as a special implementation of Algorithm 1 where the vertex z° of
the starting cone is at infinity, i.e. when in (3.3) we choose t; = co. How-
ever, in the case that the prismatic algorithms is finite, it only can be shown
that the algorithm generates an infinite sequence of infeasible points, every
accumulation point of which is an optimal solution to Problem (P1).
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7. NUMERICAL EXAMPLES AND COMPUTATIONAL EXPERIMENT

To illustrate Algorithm 1, we consider d.c. programs of the following type

min {f(z) — ¢(z)}
L kBley<0i=1,....,m),
¢; <25 <dj (5123 w);
where f, g, h; (1 = 1,...,m) are all convex functions, and ¢; and d; are real

numbers satisfying —co < ¢; < d; < 400 (j =1,...,n). Assume that a point z°
satisfying h;(z°) <0 (1 = 1,...,m) and ¢; < :z? <d; ( =1,...,n) is available.

Define

w(z,t)
( t)
=1

—9(z),
max {f(z) —t,h1(z),...,hm(z)},
(z,t) e R™* ' : (z,8) — (2%, f(2°))6 <0, ¢; < z; < d; (j = P

I [

where ¢ is a subgradient of the convex function ¢ at the point (z°, f(z°)). Then
the according problem (P1) is

min {p(z,t) : (z,t) € D},

where

D = {{z,t) € POt} R0}

In order to determine an e-optimal solution (z*,t*) in a sense that p(z*,t*)—
elo(z*,t*)| < p(z,t) ¥(z,t) € D with a prescribed number ¢ > 0, Algorithm 1 is
modified in a way that throughout the lower bound estimation according to each
cone, all y-extensions are replaced by (v — €||)-extensions.

Moreover, from practical point of view, we proposed the following conical
subdivision rules called “A-bisection” and “M-radial division”, respectively. The
convergence of the algorithm when using these subdivision rules is not guaranteed,
however, computational results turned out that, in most cases, these rules are most
promising for implementing the algorithm.

A-bisection. Let K = K(T), where T = [v!,...,v™"}] be the cone which is divided
at the present iteration, and let A* = (A},..., %) be an optimal solution of the
linear program in (4.1) according to K. Then the cone K is divided into two

. 3 - : A
subcones by using the point v = E(v’I + v'2), where ¢; and ¢, are chosen by

A, =max {A]: ] >0, and A;, =max {A] : A} >0, i # 1,}.
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A-radial division. Let § > 0 be a small number, (a suitable choice is, e.g., § =
1/(2n?)). If max{A} : A; > 0} > §, then a radial conical division is performed.
Otherwise, a A-bisection is performed.

Ezample 1. Horst et al [7].
m=1n=2
f(z) = 4z} + 222, g(z) =423,
hi(z) =22 -2z, —2z5—1l,c1 =c2=-1,d; =dy = 1.
20 = (0.5 0 5),

A simplex S° containing the feasible set of the original d.c. progam can be
defined as

So =1(3,-1),(~1,3),(—1,—1)]. Hence t = max {f(z) : z € So} = 326,
T, = [(3,—1,326), (—1,3, 326), (—1,—1,326)],
Choose 2° = (z°,t0) = (0.5,0.5,1926).
P, ={(z,8) : 22, + 22, -1 —-126 <0, —1 < z1,z2 £ 1}.
Choose £ = 1076,
Iteration 1:
K, = K(2°T,). Section points of edges of K; and 8D are respectively
(1.000000, 0.200000, 1606.000000),
(0.200000, 1.000000, 1606.000000),
(—0.236068, —0.236068, 1140.860821).

~ Current best point (z!,t;) = (—0.236068, —0.236068, 1140.860821), v; =
o(z!,t;) = 1140.637908.

(v — €|v|)-extensions of section points are respectively
(1.732422, —0.239453, 1137.250000),
(—0.239453, 1.732422, 1137.250000),
(—0.236068, —236068, 1140.860821).

The optimal value of linear problem (4.1) according to K is ¢ = 2.458306.
Lower bound w(Ki,P;) = —62.823479. Point 2! = (—1.000000 — 1.000000 —
5.250000) & D.

Cutting function ¢;(z,t) = —2.472136z; — 2.0z, — 1.055728,
Py=PN {(z,t) : £1(z,t) < 0}.

Cone K is divided into two subcones by a conical A-bisection.
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The procedure terminates after 12 iterations yielding an (10~)-optimal so-

lution
(:z:*,t*) = (0.697901, 0.007651, 0.949050) with optimal value

t* —g(z*) = f(z*) — g(z*) = —0.999214.
Ezample 2.

m=1,n=3,

Hae) = i::ciln nzi =

1=1 Z Iy
e
n
n—1 |3/2
0= Lot
1=

n—1

hl(x):(Z(—l)izi—1.2)2+xn—4.4, ;=1 d;=3(3=1,...,

t=1

§° ={(7,1,1),(1,7,1),(1,1,7),(1,1,1)], t = —3.295837,
2° = (2,2,2,2396.704163)
Py = {(z,t) : —1.098612z, — 1.098612x, — 1.098612z3 — t < 0,
1<z, 839l =1,...,3)}h
e =10
‘Iteration i:
(z',¢1) = (1,1,1,1196.704163), v, = 1193.514916,

c'* = 2.021523, u(K,, P;) = —29.133174, 5! = (3,3,3,—9.887511) ¢ D.

Cutting function £,(z,t) = 2.4z, — 2.4z5 + 23 — 2.96,
FI = Pl N {(z,t) . Zl(x,t) S 0}

Cone K, is divided into two subcones by a conical bisection.

The procedure terminates after 13 iterations yielding an (10~°)-optimal so-
lution (z*,t*) = (2.983216, 3.0, 3.0, —9.869040) with optimal value ¢* — giz*r=

f(z*) —g(z*) = —26.376708.

To obtain further computational results, we take the problem type as in

Example 2 with, in addition, a system of constraints of the form

Az < b,
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where A is an (£ x n)-matrix and b € R,

Table 1 contains computational results on a large set of test problems, in
which all elements of matrix A and vector b are randomly generated. While per-
forming the test, some technical parameters were used: for fixing a point 2° as in
(3.3) we chose to = t + 800n, and in (4.2) we set u(K) = ~, with ¢* < 1 — o with
o = 10™%. The choice of these parameters has effects, of course, on the speed of
the algorithm. However, it is worth noting that for all test problems, an e-optimal
solution was found within a number of first iterations which is relatively small
in comparison with the total number of iterations needed. For all test problems,
conical A-radial subdivision was used.

The test runs were performed on a DEC/VAX 6000-410 computer.

Table 1. Some computational results

’ = average number e average CPU-time
of iterations [sec.]
0 9 4 1% 0.12
5 9 14 1% 0.38
10 9 30 1% 0.83
20 9 46 1% 127
0 15 14 1% 0.52
5 15 21 1% 0.78
10 15 31 1% 1.03
20 15 56 1% 2.67
0 19 13 2% 0.62
5 19 202 2% 10.16
10 19 148 2% 12.42
20 19 702 2% 221.45
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