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SOME SOLVED AND UNSOLVED PROBLEMS
ON GROUP RINGS

K. W. ROGGENKAMP *

Abstract. In this note we discuss several problems in representation theory of finite groups.
We first deal with problems centering around the character table : We discuss Brauer pairs,
the group determinant and higher characters, and present several ezamples eluminating the
isomorphism question. Then we turn to the table of marks and Burnside rings, and again
we discuss isomorphism questions. Then we report on the state of the integral and modular
1somorphism problem for group rings of finite groups and for cohomology rings. Finally we
describe group rings as projective limits and introduce a kind of Cech cohomology, which gives
the obstruction for the Zassenhaus conjecture on the projective limits of group rings.

1. INTRODUCTION

The theory of groups had its origin in the work of Evariste Galois (1811-
1832), Augustin Louis Cauchy (1789-1857) and Alfred Serret (1819-1885). The
importance of group theory — apart from solving algebraic equations (Galois) —
became apparent through the results of Sophus Lie (1842-1899) and Felix Klein
(1849-1925) on continuous and discontinuous geometry.

Two independent developments lead to representation theory of finite groups:
In his studies on generic discriminants Richard Dedekind (1831-1916) introduced
the group determinant!. He proved in 1886, that the number of linear factors of
the group determinant — in modern language, the number of linear characters — is
equal to |G/G’|, where G’ is the derived group. Georg Frobenius (1849-1917) —
taking up the work of Dedekind, who was interested in the irreducible factors of

* The research was partially supported by the Deutsche Forschungsgemeinschaft.

! For details on group determinants and Frobenius k-characters we refer to [22].
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the group determinant — introduced and studied k—characters?. Frobenius proved —
without the notion of group representations the orthogonality relations for charac-
ters, and later showed that his characters were actually the traces of the irreducible
representations. '

Already then Frobenius has asked, which properties of the finite group G
are reflected by their ‘characters’.

On the other side, at that time the theory of abstract finite groups was little
developed, and it was natural to study groups by their action as bijections on
sets and as linear transformations on vectorspaces. Time has shown that studying
linear actions of groups on vectorspaces is a much richer theory, than letting groups
act on sets, since one can involve the arithmetic of the general linear groups.

In this spirit William Burnside (1852-1927) and Issai Schur (1875-1941)
developed ordinary (complex) representation theory, i.e. homomorphisms

¢ G~ Gl(n, C)>.

Such a representation is said to be irreducible, if C™ does not contain a
proper G-invariant subspace. The traces of the irreducible representations are
called ‘characters™. The character of an element ¢ € G depends only on its
conjugacy class K, := {z ¢z '}:eq. By CT(G) we denote the character table,
whose rows are the irreducible characters, and the columns are the conjugacy

classes of the elements in G.

More generally, let R be an integral domain, then we can consider R-repre-
sentations of G; i.e. homomorphisms

$¢: G — Gl(n, R).

Since Gl(n, R) C Mat(n, R), the R-algebra of all n X n—matrices over R, which is
a ring, the matrices {#(g) }scc generate the R-algebra

Ag = {Z To(g)  ¢(9)} -

geG

2 Frobenius called them characters because the name Carl Friedrich Gau$(1777-1855) had
given to his homomorphism from classes of integral binary quadratic forms to Z/n-Z, the
units in Z/n - Z.

3 This is to be interpreted as an action of G on the vectorspace C".

4 Note that this is not the original definition, but a theorem of Frobenius.
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Now, there is a universal R-algebra, the group ring of G over R, RG :=

{3 ,ec'ry - 9}, where the addition is componentwise and the multiplication is
induced from the multiplication in G. Since Z is the universal commutative ring,
there is a natural homomorphism ZG — RG for every commutative ring R.

As mentioned above, the origin of representation theory was to get informa-

tion on a finite group from its characters. This original aspect was also stressed
by Richard Brauer in his Harvard Lecture on "Modern Mathematics’ [2], where he
asked in 1963 among others:

What in addition to the character table determines a finite group?

There are several invariants of a finite group G arising in representation

theory:

1. the character table, CT(Q),

2. the spectral table, ST(G); i.e. the character table with the p-power maps:
lLe. the map K, — K for K, the conjugacy class of ¢ € G and p a
rational prime.

3. the 2-characters, CT?(G) - discussed by G. Frobenius in 1896 [8] — which
describe the obstruction to characters being homomorphisms; i.e. the 2—
character associated to an irreducible character X is defined as x2%(g,h) =
x(9 k) —x(9) - x(h).

4. the 3-characters — more generally the k—characters, CT*(G) — which Frobe-
nius derived from the group determinant [8]; the k—characters occur as co-
efficients of some monomials in the group determinant, we shall discuss this
construction below in Section 2.4.

5. the group determinant Det(G) [8]; i.e. det(X,.,-1); for the definition we
refer to Section 2.3.

6. the table of marks, B(G) - the Burnside ring, Q2(G) - which tries to describe
the group via its permutation representations [4], cf. Section 3.

7. the rational group algebra QG,

8. the group algebra FG for all fields,

9. the group algebra over all p-adic rings of integers,

10. the integral group ring ZG,

11. the integral cohomology ring H*(G, Z), for the definition we refer to Section
4.5.

12. the mod p cohomology ring H*(G,F) for a field F of characteristic p > 0.

I shall elaborate here on some aspects of each of the problems related with
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the above topics. The central question here is:
Which properties of the finite group are reflected by these invariants?

To my knowledge, none of the questions has a satisfactory answer up today.

2. CHARACTERTABLES AND RELATED QUESTIONS

2.1. The character table

Remark 1. The quaternion group of order 8 and the dihedral group of order 8
have isomorphic character tables — this was known already to Burnside, Frobenius
and Schur, and was presumably the reason, that the question "What properties of
a finite group are reflected by the character table’ was addressed only relatively
late in this century. ' '

On the other hand, the character table reflects quite a lot of properties of
the underlying group: ‘

Theorem 1, The character table of a finite group G determines

1. the length of the conjugacy classes; i.e. the indez |G : Cc(g)| of the cenira-
lizer of a group element in G, -

the lattice of normal subgroups of G,
the character table of quotient groups,

4. the chief series of G; a result that was proved by W. Kimmerle and in collab-
oration with R. Lyons, R. Sandling and D. Teague [11], [18]; i.e. a normal
series of mazimal length,

5. whether or not for a set m of primes, G has abelian Hall w—subgroups ®. If the
Hall w-subgroups are abelian, then they are determined up to 1somorphism.
This was proved by Kimmerle and Sandling (/11], [18]) and answers another
question of R. Brauer [2].

Problem 1. Find necessary and sufficient conditions on the two groups G and
-H such that CT(G) = CT(H).

2.2. Brauer pairs

In 1964 E. C. Déxde [6] has constructed the first Brauer pair ; i.e. two non

5 A mHall subgroup H of G is a subgroup, such that all prime divisors of |H| lie in =, but
the index is prime to m — this generalizes Sylowsubgroups.
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isomorphic groups with isomorphic spectral tables — answering another question
of R. Brauer [2]. Further series with this property, which we shall discuss in
detail later (cf. Section 3), are certain subgroups of the groups of semi-linear
transformations of finite fields; i.e., subgroup of

Fpn e F;fn ¥ ¢n (]‘)

where F - is the field with p" elements and F:n is its group of units. Moreover,
®n is the Frobenius automorphism, sending z to zP. This type of example was
first considered by G. CIiff and Suri. K. Sehgal [3].

Problem 2. Find necessary and sufficient conditions on the two groups G and
H such that both have isomorphic spectral tables.

2.3. Group determinant

Before we come to the results of the group determinant and higher charac-
ters, let us recall the definitions:

Definition 1. Let G = {g1,...,gn} be a finite group, and let X = Xayig o X5 05
X} be independent indeterminants over the field K. Let us denote by K(X) the

field of rational functions over K in these indeterminates. Dedekind has defined
the GROUP DETERMINANT - in connection with generic discriminants — as

Dg = Da(X) = det(X,, 1) € K(X). (2)

9:i°9;

Then Dg is a homogeneous polynomial of degree |G| in the variables X,.
The group determinant is independent of the numbering of the group elements, as
follows from the definition of the determinant.

We assume now — as was done in early times — that K = C. In modern
terminology we interpret the group determinant: Let

¥e =) X, g€ K(X)G
geG

be the ‘generic’ elements. Then D is the determinant of Hc under the regular
representation, and a decomposition of D¢ into irreducible factors is obtained from
decomposing K(X)G into simple modules.

Frobenius in 1896 did not know about semi-simple algebras. He tried to
find group theoretical interpretations of the following invariants:
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1. The number of the distinct irreducible factors in the decomposition of the
group determinant.

We know that this is the number of conjugacy classes.
2. The degrees of these factors.
We know that these are the degrees of the irreducible representations.

3. The multiplicity with which the different irreducible factors occur in the
~ group determinant. ' '

We know that the multiplicity coincides with the degree.

Frobenius eventually gave answers to all of these questions.

The importance of the group determinant is apparent in the next surprising
result: :

Theorem 2 (E. Formanek, D. Sibley 1991). The group determinant determines
the group up to tsomorphism ([7]).

Formanek and Sibley proved this result using invariant theory. R. Mansfield
[19] has given an easy short and direct proof of this result by Formanek and Sibley.

In the spirit of Dedekind, this result can be interpreted as: The generic
discriminant determines the Galois group of a Galois extension L/K, where K is
an algebraic number field.

2.4. Higher characters

Frobenius’ intention was to generalize the linear characters of an abelian
group — i.e. homomorphisms to C - to an arbitrary finite group G — as maps
from G to C. Dedekinds main goal was to generalize the decomposition of the
group determinant of an abelian group into linear factors (cf. Introduction). He
was mislead by the fact, that the irreducible 2—characters of CHsg, where Hg is the
quaternion group of order 8, involved norms of elements in the quaternion algebra.

Frobenius associated to the group determinant functions — the characters —
from the finite group G to C is as follows:

Definition 2. If & is an irreducible factor of Dg, then:
1. The CHARACTER x4 associated to @ is defined as
o xo(1) = f, where f is the degree of (®).
e For 1 # g € G the value x(g) is defined as the coefficient of X{—l - X
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in ®.
In Frobenius opinion, the most important property of these ‘charac-
ters’ is that they are constant on conjugacy classes; i.e. xo(g-h) =
Xo(h-g).

2. More generally, for a natural number k, the k—character associated to ® is

defined as follows: For k < f where f is the degree of ® the k-character x’&,
has value on a k—tuple of group elements (y1,vz, ...,¥x) , defined as follows:

o the coefficient of le_k-Xn,
o If v, =1, then

..+ X4, in @, provided none of the v; = 1.

l.'

X](;(Wla’YZa vy Vi—1s 1a7i+17 "')’Yk) == Xi;)-l(’)/lafyz’ ey Vi—1y Vid1y 00y ’Yk)
(3)

It is then clear that for an irreducible factor ® of the group determinant

e (l/f') ( Z Xé('Yla'YZ,---,'Yf) - X, Xy X’Yf) (4)

{gl 1’721-"1'7_/'}

Moreover, already Frobenius noticed that the k—characters can be derived
inductively from the ordinary characters. The k—characters can be derived from
the ordinary characters, if one knows in addition to the character table LIt =
(x:(K;))1<i,j<n — K; are the conjugacy classes — the values of Xi(V1 - ... - k) for

_k bounded by the maximum of the degrees of the irreducible representations; i.e.
one has to know the map

Wi e B0 X %G s UK (5)

('713 ~~~,’7k) TR K’Yl’---"Yk . (6)

This apparently is not as strong as the knowledge of the multiplication table for
G. (But note, that for abelian groups, ¥, determines the group multiplication.)
However, as we shall see later, this is a very powerful condition.

For the higher characters we have the following results:

Theorem 3.

1. It was noted by K. W. Johnson and Surinder K. Sehgal [10] in 1991 that
the groups from Equation 15 also have the same 2-characters. Their -
characters though are different.
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2. It was shown independently by H. J. Hoehnke in collaboration with K. W.
Johnson [9] and with different techniques by Kimmerle-Roggenkamp [16]°,
that the character table and the 3—characters determine a finite group up to
isomorphism, and hence they also determine the group determinant.

This is one answer to R. Brauer’s question:

» What is needed in addition to the character table, to determine the finite
group G?”

This result can be rephrased: The character table of G and the knowledge
of the map of Equation 5

U,:GXxGxG— UKy, (z,y,2) — Kzyz

determine the group G up to isomorphism.

The remaining problem here is

Problem 3. Which properties of the finite group G are determined by the
character table and the 2—characters?

A partial answer is given in Proposition 1.

It should be noted, that the finite simple groups are determined by their
character table, and hence the 2—characters should have some influence on exten-
sions. We come back to this problem in Section 3

3. TABLES OF MARKS AND BURNSIDE RING

Let us recall the definition of the Burnside ring and the Burnside matrix,
i.e. the table of marks: For the finite group G let '(G) be the category of finite
left G—sets with G—equivariant maps. Every finite G-set can be written uniquely
as a disjoint union of transitive G-sets; i.e. G-sets isomorphic to G//H - the
left cosets of the subgroup H in G. Two such transitive G-sets are isomorphic if
and only if the corresponding subgroups are conjugate in G. These isomorphism
classes generate the Burnside ring (1(G) over Z; multiplication is given by the
cartesian product and the sum is the disjoint union. A Z-basis is given by the
isomorphism classes of transitive G-sets. The Burnside matrix has the rows
and columns indexed by the conjugacy classes of subgroups of G, and the entry
corresponding to the classes of subgroups ((U),(V)) is given by

6 It was reported to us, that other people had made the same observation.
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Homgq ) (G//U,G//V) ={G € G|U c V}".

It is easy to construct two non isomorphic groups which have isomorphic
Burnside matrices — i.e. table of marks (cf. Example 1, below); this means essen-
tially that the groups have the same lattice of subgroups. It is not so easy though
- and was a long open problem - to construct a Brauer pair with the same table
of marks. A detailed analysis of the Brauer pair in [3] shows however, that they
also have the same table of marks, as was noted by Kimmerle and the author [16].

Ezample 1. We consider the two groups

G := (a,b,c|a’,5'3,¢3,[a,b], a = a?, %b = b®) and (7)
H = (a,b,c|a”,6'%,¢% [a,b], “a = a*, b = 7).

Then these groups are not isomorphic, but it is easily seen, that they have isomor-
phic Burnside matrices, though the character tables of ¢ and H are different.

A detailed analysis of the groups Equation 1 have led W. Kimmerle and the
author to give partial answers to the question of when two groups

1. have isomorphic spectral tables,
2. have isomorphic Burnside matrices,
3. have isomorphic 2—characters.

A partial answer is given by

Proposition 1 (Kimmerle-Roggenkamp [16]).

1. Isomorphic spectral tables.

Let Gy and G, be isomorphic groups, which act linearly on an elementary
abelian p-group V such that

(a) the groups G; act fized point freely on V; i.e. Stabg,(v) =1 for every
0#v eV, where Stab.(x) is the stabilizer.

(b) For every v € V we have for the orbits

Og, (v) = Og, (v); (8)

t.e., G1 and G, have the same orbits on V.

7 We write U :=¢ - U . ¢~ 1,
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Then the semi-direct products H; = V X G;® have tsomorphic spectral tables®.
2. Isomorphic Burnside matrices.

Under the assumptions in 1., there is a unique bijection for eachv eV
7y : G1 — Gy defined by ‘v ="(91) y (9)

for g, € G;.

Moreover, these maps 1, determine maps
py 1 G1 X Gy — G defined by 1'”(9)("1)) —pu(9h) Ry (10)

where g,h € G;. We assume now that
(a) all minimal subgroups of V are conjugate under G; and Go,

(b) there exists vg €V such that for every subgroup H < G; we have
poo L Hx H = H, (11)

i.€., py, somehow preserves the subgroup structure of G;.

Then the above semi direct products Hy and Hz have isomorphic Burnside
matrices.

8. Isomorphic 2-characters.

Assume that p : G — H is an isomorphism of finite groups and that M 1s
a module for both G and H. If

(a) there exists a p-equivariant bijection — not necessartly a group homo-
morphism - ;

o: M — M with o(g-m)=p(g)-o(m):geGmeM, (12)

(b) M\ {0} consists of a single orbit for both G and H,

then the semi direct products M X G and M X H have isomorphic 2-charac-
ters.

8 If M is a G-module, then the semi-direct product M XG consists of pairs (m,g) with
multiplication (m, g) - (n,h) = (m+g-n,g - h). ’

9 The examples of Cliff and Sehgal [3] are of this type; as a matter of fact, there V \ {0}
consists of exactly one orbit under G;. '
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However, these conditions are surely not sufficient. So we still have an open
problem:

Problem 4. Find necessary and sufficient conditions for when two groups
have isomorphic spectral tables and have isomorphic Burnside matrices and have
isomorphic 2—-characters.

Let us briefly describe the groups, which satisfy the above hypotheses:

For a prime p we denote by F,» the field with p” elements. ¢, is the Frobenius
automorphism, and

Q(psn) = (Fprxt Fa)xq (¢n)- (13)

Then the groups '? are certain subgroups of Q(p,n), which are described in detail
in [16]. The smallest example is for p = 7 and n = 3. Then for these numbers

70 = (a) - (b} - {(c) (14)
is the product of cyclic groups of order 19,2 ,9 resp. and
Hy:=Fp:X(a,b,c ¢3) (15)

and
H, ::F73><](a,b,c-¢§) (16‘)

are non isomorphic groups, which have
1. isomorphic spectral tables,
2. isomorphic 2-characters and

3. isomorphic Burnside matrices.

4. THE ISOMORPHISM PROBLEM AND COHOMOLOGY

4.1. Rational group algebras

We now turn to the various aspects centering around the isomorphism prob-
lem.

10 These groups are very similar to those considered by Cliff and Sehgal [3].
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We first consider rational group algebras. Since abelian groups are deter-
minéd by their primary parts, it is easily seen, that an abelian group is determined
by its rational group algebra. But a much stronger statement is valid:

Let A =[] A, be the p-primary decomposition of A. Then A = lim.proj, A,
(cf. Section 5.1) is the projective limit of its p-primary parts. The group ring QA
though is not the projective limit of the group rings of the p-primary components.
Let T'q4 := lim.proj.,QAp; then I'q4 is in general a proper epimorphic image of

QA.

Lemma 1. Let Tqa ~ I'qp for an abelian group A, then A ~ B; i.e. the
structure of the abelian group is captured already in a small part of the rational
group algebra.

In order to show the difference between QA and I'q 4, let p and g be different
rational prime numbers, and denote by C;, and Cg resp. the cyclic groups of order
p and ¢. For a natural number n we denote by ¢, a primitive nth root of unity.

Then
QG = Q x Q(¢p) X Q(sq) X Ql¢pq) and (17)

F'ee =Q X Q(gp) X Q(sy) 5 iee
the faithful representations of G are missing in 'qg.

We shall turn to these projective limits later in Section 5.

Also for rational group algebras it is not known:

Problem 5. Which properties of G are reflected in QG?

4.2. Modular group algebras

E. C. Dade has in 1971 [5] constructed two non isomorphic groups G and H
of order p3-¢® which have isomorphic group rings over every field and even over the
p-adic integers Zp for every prime p. These groups though have non isomorphic
integral group rings, since they are metabelian. One can construct smaller groups
than Dade’s with these properties [26].

One of the main problems in modular group rings is

Problem 6. Can there exist non isomorphic p—groups G and H with ¥, e
F,H?
P

M. Waursthorn [30] has checked with the help of a computer that the answer
is ‘no’ for 2-groups of order at most 26



Problems on group rings 13
4.3. The isomorphism problem

We shall briefly recall some properties, which are detected by the integral
group ring:

Proposition 2. Assume, that ZG = ZH as augmented algebras; i.e. the
tdentification is compatible with the augmentation maps 1. Then

1. the class sums '? of G and those of H coincide inside ZG,
2. G and H have isomorphic lattices of normal subgroups.

8. The group ring determines nilpotent Hall subgroups up to tsomorphism, as
well as hamiltonian Hall subgroups (cf. '* W. Kimmerle [11] ond R. San-

dling [18]).

4. G and H have isomorphic spectral tables - hence abelian Hall subgroups are
determined.

Problem 7. It is an open problem, if one has Z,G = Z,H as augmented
algebras, where Z, is the localization at p, whether one st111 has a class sum
correspondence for p—power elements.

Under the aspect of Dade’s examples with respect to Z the most far reaching
result on the isomorphism problem is the following ([27]):

Theorem 4. Let G be a finite group with a normal p-subgroup N, such that
Ca(N), the centralizer of N is a p-group. If ZG ~ ZH, then G and H are
p-adically conjugate '*; in particular, G and H are conjugate in QG.

This implies, that for a solvable group G, the various quotients G/O0./(G) are
uniquely determined by the integral group ring. The group itself is the projective
limit of the projective system generated by the various G /0, (G); but as mentioned
above for abelian groups, the group ring ZG is not the projective limit of the group
rings ZG /O, (G). We shall come back to this problem in Section 5.

Important consequences of this result are

11 The augmentation €g : ZG — Z sends deG rg.g — deG rg.
12 The class sum of an element geGis Z z € ZG.

13 A finite group is said to be Hamiltonian, prov1ded every subgroup is normal. These have
been classified by Dedekind.

14 This means, that there exists a unit « in ZPG' such that *G = H.
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Proposition 3.

1. Let E be a finite group given via the eract sequence

0—N—FE—G—0,

where N is an abeiian group and G = [, <;<, Gi, where Op (G;) =1 and
the various G; have relatively prime order, then the isomorphism problem for
ZG has a positive answer. (This was proved by L.L. Scott in collaboration
with the author in case G was nilpotent and in the general situation by A.
Zimmermann [28] following suggestions of the author.)

2. Assume, that (G, G| is nilpotent, then the isomorphism problem for ZG has
a positive answer. ([12]) :

The isomorphism problem is still an active area of research.

Problem 8. Let G and H be finite groups with ZG ~ ZH. Does it then fqllow
that G and H are isomorphic?

4.4. The Zassenhaus conjecture

We have listed above some classes of groups for which the isomorphism
problem

26G~ZH = Ge=H"
has a positive answer.
This is closely related to the Zassenhaus conjecture:

Conjecture 1 (Zassenhaus).
727G =ZH = G=a-H-a~' for some a€ QH.

If one looks at the integral group ring, then this is a very strong condition,
since one consequence is, that all possible automorphisms of ZG coming from
automorphisms of the centre — these can be Galois automorphisms — are induced
from group automorphisms.

The Zassenhaus conjecture is equivalent to the following statement [26]:

Assume that ZG = ZH as augmented algebras. Then the class sum cor-
respondence says, that there is a bijection 15 3. G — H such that in ZG we

15 Note that not every bijection between groups is an isomorphism.
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have
K, = Kg(g) for every g € G'.

Lemma 2. The Zassenhaus conjecture is true if and only iof B can be chosen, to
be a group isomorphism.

Yet another way of phrasing the Zassenhaus conjecture is as follows:

Lemma 3. The Zassenhaus conjecture is true if and only if
1. the tsomorphism problem has a positive answer for G and

2. for every augmented automorphism a of ZG there is a group automorphism
p of G suchthat a-p~! is a central automorphism ; i.e. it is given by
conjugation with a unit in QG.

The above rephrasing of the Zassenhaus conjecture gives rise to an inter-
esting modification — the Zassenhaus conjecture for p-power classes — which has
mainly been considered by W. Kimmerle:

Conjecture 2 (Variation of the Zassenhaus conjecture). Assume that ZG = ZH
as augmented algebras, then there ezists an isomorphism f : G — H such that
K, = Kp(g) for g € G a p-power element for some prime p.

Clearly this variation also implies, that the isomorphism problem has a po-
sitive answer.

Let me summarize the known results on the Zassenhaus conjecture and its
variation.

Proposition 4.
1. To the Zassenhaus conjecture:

(a) The class of groups, for which the Zassenhaus conjecture holds 1s closed
under direct products - the same statement holds for its variation.

(b) The Zassenhaus conjecture is true for groups which have a normal p-
subgroup containing its centralizer - and hence for products of those.
In particular, it is true for nilpotent groups.

(¢c) The Zassenhaus conjecture is true for symmetric groups, as was noted
by G. Peterson [20] (cf. also W. Kimmerle [12]).

(d) If G is solvable, and ZG = ZH as augmented algebras, then the Sylow
p-subgroups of G and H are conjugate in QG [14].
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(e) There is a metabelian group and an automorphism o of ZG which 1s
a counterezample to the Zassenhaus conjecture [25], [26].

(f) Zassenhaus has further - after the above counterezample was known -
conjectured, that the Zassenhaus conjecture is true for abelian Sylow
tower groups 1°. There ts not yet known a complete proof. However,
in a first step M. Hertweck - advised by W. Kimmerle — has shown,
that for metabelian groups with abelian Sylow subgroups, it central au-
tomorphisms are inner, thus verifying the variation of this conjecture
for certain nilpotent extensions of these groups.

2. To the variation of the Zassenhaus conjecture.

(a) The variation surely holds for a class of groups, provided the Zassen-
haus conjecture holds for this class.

(b) The variation of the Zassenhaus conjecture holds for G provided the
commutator subgroup |G, G| s nilpotent. The counterezample to the
Zassenhaus conjecture mentioned above is of this form.

Let me speculate about the isomorphism problem: It was known to.L. Scott
and the author, that a counterexample to the isomorphism problem would imply
the existence of a counterexample to the Zassenhaus conjecture. Therefore it was
necessary to construct a counterexample to the Zassenhaus conjecture. Once we
had done this, we thought, that a counterexample to the isomorphism problem
should now be relatively close. This was not the case though.

We did not have thought of a counterexample to the variation of the Zassen-
haus conjecture, and one can show, that a counterexample to the isomorphism
problem would imply the existence of a counterexample to the variation of the
Zassenhaus conjecture.

Recently, the author and A. Zimmermann have constructed semilocally such
a counterexample.

4.5. Cohomology rings

For a finite group G and a commutative ring we put H°(G, R) := R and for
i > 0 we put H*(G, R) := Ezty (R, R), where the latter denotes the equivalence
classes of long exact sequences

0——>R—+Mi———>M'_71——%---4——>M1———>R——>0.

18 These are defined inductively, such that G has an abelian normal Sylow subgroup A and

G/A is again an abelian Sylow tower group.
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Addition in Ezt%, (R, R) is the addition of exact sequences; i.e. the pushout along
the codiagonal followed by the pullback along the diagonal. The multiplication

Extyo(R,R) ®r Estlyo(R, R) — Ezt'JI(R, R)

is the composition of exact sequences. This way H* (@ R} =% ©i—0,1,2... H'(G, R)
becomes a graded ring, which is commutative in the graded sense.

Let G and H be non isomorphic groups such that for every rational prime p,
the groups G/0, (G)!7 and H/O, (H) are isomorphic, then the cohomology rings

(G, Bbys . Ob H*’(G,R) and H'(H,R):= Y H'(H,R)

i=0,1,... i=0,1,...

are isomorphic for all fields R and all complete Dedekind domains of characte-
ristic zero with finite residue field. Since H*(G,Z) is determined by the p-adic
cohomology rings, this shows at the same time, that

H*(G,Z) ~ H*(H,Z).

Examples of such groups can easily be given: the groups in Example 1.

Problem 9. Can one find necessary and sufficient conditions for two finite groups
G and H to have the cohomology rings H*(G, Z) and H*(H, Z) (resp. H*(G,F,)
and H*(H,F,)) isomorphic?

5. CECH COHOMOLOGY
The details of the results in t}}is section can be found in [17]

5.1. Projective limits of groups

Let G be a finite group and let {N;|1 < ¢ < n} be a family of normal
subgroups. We let ¢, : G — G/N; := G, be the natural map. P, is the powerset
of {1,...,n}; it is partially ordered by inclusion.

For

17 0,/(G) is the largest normal subgroup of G of order prime to p.
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S € P, weset Gg := G/(HNi) and let ¢5: G — Gg (18)
1ES
be the natural projection. For S < T we have a corresponding induced homomor-
phism
¢s,r:Gs — Gr and {Gs,¢s,7|S € Pr}

is a projective system, and we can form the projective limit
G := lim.proj.sep, (Gs, ¢s,1)

= {gs € Gs : ¢s5,1(95) = ¢5',7(g9s') for S,5" < T and gs € Gs,95' € Gs'}.

The special structure of the index set simplifies the situation considerably:

Claim 1. Let Gp := {(g:)1<i<nlgi € Gi : &i (i;j3(9:) = b5,4ii3(95)} 5
then G = é\l
We pst K ; .= Ker (Gy — Gigig)ls
Since the elements in G satisfy the above relations of the pullback, there is
a unique map :
7:G—'G:9— (g: =9 Ni)icicn, |
which has kernel the group ﬂlgign N; . Thus ~ is injective iff ﬂlgign s e

The next result is of importance to check whether G is a projective limit of
quotients.

Lemma 4. Let G be a finite group, and let {N;}1<i<n be a family of normal
subgroups of G. Assume that ' '

1
(] M=y, (19)
I<ixn
2. for every rational prime divisor p of |G| there is at least one indez v := i(p)

such that (p, |Nip|) = 1.
Then G is the projective limit of {G/Ni}1<i<n; t.€. ¥ 15 an isomorphism.
Remark 2.

1. These conditions are satisfied for example for G a solvable group, if {N; =
O, (G)}1<i<n, Where {p;}1<i<n runs over all prime divisors of |G|. Here we

tak‘e Ni(p) s
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2. The above result holds more generally for G a periodic group (i.e., every

element in G has finite order ~ for example a locally finite group) and
{Ni}i=1,2,... a countable set of normal subgroups.

The pullback is easily handled if the groups G, ; coincide:

Claim 2. Assume, that G is the projective limit of the groups G; := G/N;, and
that for each pair (i,5) with ¢ # j the groups Gi,; := G/(N; - N;) coincide. Then
the projective limit consists of

{(9:)1<i<nlg: € Gi: b1 (1,01(g1) = bi(1,i3(9:),2 < i< m}. (20)

In this case a family of tsomorphism o; : H; — G;,1 < { < n, gives rise to an
tsomorphism lim.proj.(Hi,QS,-,{i’j}) — G 1f and only if 0y = 0; mod ffia:

5.2. Projective limits of group rings

We assume, that the finite group G is a projective limit of the groups G; :=
G/N;, 1 <1 < n. We use the notation of Section 5.1. The group homomorphisms

¢S’,T 5 Gs = GT for ScT (21)
induce augmented homomorphisms
¢s,r 1 ZGs — ZGp '® (22)

Though G is the projective limit of {Gs, ¢s,1}, the group ring ZG is by no means
the projective limit of {ZGs,¢s,1} (cf. Equation 17). As a matter of fact

i) 1= lim.proj.sep(ZGs, ¢s,1) (23)

is in general rationally a proper quotient of ZG. The induced ring homomorphism
¢ : ZG — T'(G) has kernel

Ker (¢) = mlSiSnI(G) Ni), (24)

where I(G, N;) is the kernel of the natural map ZG —s ZG;.

As for groups one shows

18 1t should not cause any confusion that we use the same name as for the group homomorphism.
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F(G) = {(IE,;) II,‘ € ZG; : ¢i,{,-,j}(:1:,-) = ¢j,{i,j}(xj)} ] (25)

Definition 3. Let G be a solvable group and put N; := Op: (G). Then we have
seen above, that G is the projectiive limit of the groups G/N;. In this case we shall
write I'o(G) for the projective limit of the group rings ZG /Oy (G).

Remark 3.

1. In case the projective limit is a pullback; i.e. there are only two factors
G1,G3, then the natural map

d)ZG“—)Fo(G) J

is surjective.

2. In general, I do not know, whether this map is always surjective.

Claim 3. Let "
bl il (26)
be a projective system of rings or groups o

Assume, that there exists an indezx iy such that for every j # 1o the map ¢;:, :
Aj — Aj i, 1is the identity. Then the natural map

A;, — lim.proj.({A;}) (27)
z = (Bi,5(2)s ) %o (28)
s an 1somorphism.

Thanks to Theorem 4 we may assume, that for every prime divisor p of |G|
the groups O, (G) # 1. We shall always assume that.

Definition 4. Let {p;}1<i<n be the different prime divisors of |G|. We denote by
Bp, the principal block 20 in Z,,GNQG ?'. e,, denotes the corresponding central
idempotent in ZP{G N QG ?22. We now let € be the smallest central idempotent in

19 For the sake of simplicity we shall assume, that the rings A; ; are quotients of A; and Ay

resp. and that the maps {¢; ;} are the associated quotient maps.

20 The blocks are the indecomposable ring direct summands, and the principal block is the

unique block containing the trivial module.

= Zp is the localization of Z at p.

22 Note that — our group is solvable — the idempotents do lie in QG.



Problems on group rings 21

QG such that €-e,, =e,, for every 1.

We note that T'(G) is an augmented Z-order in the separable Q-algebra
QG - e. However, as remarked above (cf. Remark 3), I do not know, whether
NGy =26 %,

Ezample 2. Let G := [T1<i<, Pi be a nilpotent group with P; a Sylow p;—sub-
group. Since products are special cases of projective limits, G = lim.proj.lgis_n (P;)
is a projective limit, and T'¢(G) is the product of {ZP;} in the category of Z—aug-
mented algebras 23; i.e., if

€c LG — 7

is the augmentation, then
Lo(G) = {(zd)1<icn : 2i € ZPi,ep,(2:) = €p,(2;)}; (29)

i.e., rationally, I'o(G) consists of those irreducible modules, where at most one of
the groups P; acts non trivially. :

One can easily determine a Z-basis of [o(G).
Definition 5. Let

* 1 LG, — Z2G;, 2z " T — Z Bosall (30)
zE€G; zEG;

be the involution of ZG;. Then (#;);<i<n induces an involution *g on I'o(G),

which is induced from the involution on ZG.

Lemma 5. Let G and H be solvable groups with [o(G) = To(H) as augment-

0
ed algebras. If the involutions ¢ and %5 coincide on [o(G), then G = H in
To(G) 24 25,

Let us list some more properties of T'o(G) or more generally of I'(G) (cf.
Equation 23), provided G is a projective limit.

23 This shows, that o (G) is a very natural construction. The corresponding group ring is the
tensor product, which is the product in the category of Z-algebras.

24 The result holds for arbitrary projective limits.

25 For ZG this is a result of Banachevski [1].
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Lemma 6.
1. To(G) has no non trivial idempotents.
2. Let u := (u;)1<i<n n V(To(G)), the group of units of augmentation 1 n
T'o(G), such that u™ =1 for n a divisor of |G|, then either
(a) the coefficient of 1 in u; is zero for all 1 < 1 <n or
(b) there is an indez iq with u;, =1, but then

u; €1+ Ker (2G; — BGR ). (31)

Lemma 7. Let H < V(ZG), then ¢(H) < V(['o(G)) ?° is isomorphic to H
provided GG 1s nilpotent.

The next result can be deduced from theorems of A. Weiss [29].

Lemma 8. Let G be nilpotent, and assume that either H < V(ZG) or H <
V(To(G)) is a finite group, then H is isomorphic to a subgroup of G and more-
over, ¢(H) in T'o(G) rationally conjugate to a subgroup of G; t.e. the Zassenhaus
conjecture for finite groups holds for T'o(G).

We point out one important property of I'o(G), which follows easily from
the proof of the isomorphism problem for nilpotent groups [24]:

Theorem 5. Assume that G is nilpotent. If To(G) = To(H) - with the usual
modification (cf. [26]) we may assume, that this is an equality of augmented
algebras — then G ~ H; moreover, even the Zassenhaus conjecture is true for I'o;
i.e. there exists a unit a € QT'(G) witha-G-a~!' = H in T(G).

Claim 4. Assume that A =1],c;<, P 15 an abelian group written as a product
of its Sylow p-subgroups, and let us denote by V;(To(A)) the augmented units of
finite order in To(A) 27. ThenVy(To(A)) = Vs(ZA) = A; i.e. the group of units of
finite order is the same in the integral group rings and in this very small quotient,
and 1t 1s just A.

Remark 4. Let G be a solvable group and put N; = Op:,(G) for the prime divisors

26 Recall that ¢ : ZG — TI'o(G) is the natural homomorphism.

27 j.e., units of augmentation one. Note that in case of a commutative ring, V¢(Io(A)) is a

group.
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pi of |G|. 1t is well known, that Z,,G; ?® - with G; = G/N; - is the principal
block Bo(p;) of ZP‘G. Let e; be the central idempotent in QG such that B, (pi) =
Z,.G -e;. If we put e =Y e;; then QIs(G) =QG -e.

This shows also, that ZG and Ty do have the same cohomology rings, since
the cohomology rings are defined p-adically and live in the principal blocks.

The next example was pointed out to me by Wolfgang Kimmerle:

Ezample 3. Let G = Psl(2,q), then ZG = ['o(G), quite contrary to the situation
of a solvable group. The reason is, that for every p, the p-adic group ring is of
the form Z;,G = Bo(p) x M(p), where By(p) is the principal block and M(p) is a
block of defect zero 29.

5.3. Cech cohomology

These results were essentially noted by L. L. Scott in collaboration with the
author.

Definition 6. For the finite group G we denote by Aut(G), Aut.(G) and
Auty(G) the group of automorphisms of G, and of automorphisms ~ € Aut(Q)
resp. such that for every g € G the elements g and 7(g) are conjugate in G and
of automorphisms § € Aut(G) resp. such that for every p-power element g € G
(i.e. it has order a power of p ) the element g and §(g) are conjugate in G for all

P resp.

Claim 5. Let p € Aut(G), and let M be a G-module. For the split extension
1 —-M—E—G—1 (32)

representing an element in H2(G, M) - notation £ € H?(G,M) - the automor-
phism p extends to an automorphism pg of E if the G-modules M and "M are
1somorphic — where PM is M but the G-action is twisted by p.

We would like to stress, that the pullback along p gives always rise to an
isomorphism of groups but this is in general not an automorphism. There
is no hope, that the modules M and M are isomorphic. As a matter of fact,
the automorphism p induces an auto equivalence of the category of ZG-modules.
This equivalence is trivial iff p induces an inner automorphism on ZG.

s Z,, is the p—adic completion of Z.

2° This is a block which is a full matrix ring over an unramified extension of Z,.



24 K. W. Roggenkamp

The following result was essentially noted by L. L. Scott and the author.

Lemma 9. Let v € Aut.(G) be an automorphism such that g and ~(g) for every
g € G are conjugate, and let

Eil—M —E-— G—1 (33)

represerit 0 in H2(G, M) for a finite G-module M = Zl<,<.. M;, where M, are the
various p;-primary components of M. If M, is a characteristic section in a finitely
generated projective Z .G-module ~ t.e. there is a finitely generated projective
Z .G-module P and characterzstzc submodules Ly C Lo such that M; ~ Lo/Ly -
then ~ extends to an automorphism ~o of £, in particular 1t ertends to a group
automorphism of E.

Remark 5.

1. The above conditions are satisfied for a semi-simple finite G-module M. In
fact, such a module decomposes into a direct sum of simple modules, and
they are the radical quotients of p-adic indecomposable projective modules.

2. The above conditions are satisfied, if the modules M; have order prime to
|G|. In fact, we can assume, that M = M; is an indecomposable Z,G-mod-
ule. Since p does not divide |G|, the ring Z G is a direct sum of matrix

rings '(R,')n‘., where R; is an unramified extension of Zp. Since M is inde-
composable, it is a module for (R;)n, for some 7. Then M =~ L/p™ - L for
the projective indecomposable (R;),,~-module L. This shows, that M is the
epimorphic image of a projective module modulo a characteristic ideal.

Definition 7.

1. Let G be the projective limit with respect to normal subgroups { N:}, ., (cf.
Section 5.1). We require, that the normal subgroups N; are characteristic.
We write

Gj; :=GfNyand Gy ='G[(N;y= Ny)

with natural homomorphisms
¢;: G — G;and ¢;; : G; — G, 5, (34)

We use the notation G for G, if we want to stress, that we view G as a
projective limit.
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2z

We define the cocycles
2(G, Aut.(G)) = {(pi)1<ijzn : pij € Aut(Gi,)™:  (35)
pii=1id, p;; = p;i}, (36)

where Aut.(~) stands for Aut(—) or Aut.(—) or for Aut p(—) 3. Then this
is in general not a group with multiplication componentwise — for this one
needs oy ;, - p;; = p;; - 0y ;.

We next define an equivalence relation on Z(G, Aut . (G)):
(pi,;) = (04,5) iff pi - pi -pfl =045 for p; € Aut.(G)),1<i<n. (37)
This is easily seen to be an equivalence relation. With pi,; also the famlly

o o --1 is a cocycle for p; € Aut.(G;),1<7 < n.

The equivalence classes form a pointed set, denoted by H(G Aut.(G)), the

Cech cohomology set. The class of the identity is the point and consists of
the coboundaries

B(G, Aut.(G)) := (38)
{(p:;) € Z(G, Aut.(G)) 5= i p]-_1 for p; € Aut.(G;)}, (39)

which is easily seen to be a subset of the cocycles. This is a Cech style
cohomology set 22 and if we consider homomorphisms of such sets, then
these should be morphisms in the category of pointed sets.

Remark 6. G is the projective limit induced from {Gz‘}lgign- Hence, given

(pi)1<i<n » pi € Aut (Gy);! = (40)

there exist p € Aut, (G) which induces p; on G; 32 iff p; -,oj_1 =4,

The importance of this cohomology is apparent, if one deals with the question

of isomorphisms of projective limits.

30

32

observe that G, G

instead of requiring, that N, is characteristic, it is often enough to require that N, is *—
invariant; i.e. invariant with respect to Aut. (G)

our projective limit should be compared to the covering of a topological space by n open
sets.

This is where we need, that the normal subgroups are *—invariant.
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Assume in addition, that H is the projective limit of H; := H/M;;1<:<mn,
where M, are *—invariant. Assume that we are given isomorphisms

o; : G; — H; € Iso.(Gy, H;) =5 (41)

The obstruction, to when G and H are isomorphic via an isomorphism in Iso. (G, H)
lies in the cocycle

—= : s T o
3.3 =0 .aj < Hi;] Hl,]’ 1 S t,] S n,

(015) € Z(H, Aut,(H)). (42)

In fact, we have
Lemma 10. Let o(s,5) be defined as in Equation 42. Then there exists

o € Iso.(G, H) iff the cocycle (o; ;) lies in B(H, Aut.(H)); (43)

i.e. there exist p; € Aut.(H;) with o;; = pi - p]l.

The situation becomes quite simple, if we assume, that the groups H,,;
coincide for all 7, 7.

Claim 6. Assume that M; - M; = Mg is the same for all 1,5 with 1 # j. Let
0i; be defined as in Equation 42. Then there ezists 0 € Iso.(G, H) iff there exist
p; € Aut,(H;) with o, ; = p; modulo M for 2 < t < n; t.e. if the maps o1, lift to
p; in Aut. (H;) for 2 < i< n.

The importance of H(G, Aut.(G)) lies also in the construction of the various
modifications of projective limits.

Lemma 11. Let G = lim. proj.(Gg) be the projective limit.

1. Given a cocyele p = (pi;) € Z(G, Aut.(G))(cf.Definition 7). Then the
definition shows, that :

Glp) ={(g:) € [ Gi:ris-¢ile) = bil9:)}

1<i<n

1S a group.

34 This notation should be selfexplanatory.
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2. G(p) ~ G with an isomorphism in Iso.(H(p),G) as “projective limit” if and
only if p € B(G, Aut.(G)) is a coboundary.

5.4. The Zassenhaus conjecture revisited

We assume from now on, that G is a finite solvable group, and hence I'g (cf.
Definition 3) is defined. Moreover, we put N; = O, (G’) 1 <1 < n, for all prime
divisors p; of |G|, and G = G/N;. Then I'o(G) is the projective limit of the group
rings ZG;. We denote by

: ¢:ZG — To(G) (44)
the projection map, which is an augmented homomorphism. Let I(G,N;) C ZG
be the augmentation ideal of N;; we denote by [o(G, N;) = ¢(I(G, N;)) its image
in T'o(G). The group homomorphism ¢; : G — G, induces an augmented ho-
momorphism of Z-orders I'o(G) — ZG;, which we also denote by ¢,. Its kernel
is ['o(G, N;). This kernel is characteristic in T'o(G), since p-adically the quotient
modulo T'o(G, N;) is the principal block of T'o(G). We shall keep this notation for
the rest of this section

Assume, that I'y := I'o(G) = T'o(H) as augmented algebras. Since Ker (¢;)
is characteristic in I'y, we get an equality :

ZG,-:ZH,-andsoai-Gi-afl':Hi,lgiSn (45)

for units a, in QG;. We denote this homomorphism by o; : G; — H;, g —
*g-a; . We have the induced homomorphisms ¢, gyt ZG — ZG, ; and so
-conjugatlon with a; will act on ZG, ; = ZH; - We now consider the map

Ofy «— Oy 'UJ-_I i dliyy b H; ;. (46)

Then o := (0;,;) is a cocycle in Z(H, Aut.(H)), since o; ; is a central automor-
phism.

When we now apply Lemma 10, then we obtain the following result, which
probably is also known to L. L. Scott.

Theorem 6. Let G be a solvable group and assume, that FO(G) = I'o(H) as
augmented algebras, and assume that the central cocycle (0i,;) ts defined as in
Equation 42.

1. The groups G and H are isomorphic if and only if (0:,;) € B(H, Aut(H)).

2. The Zassenhaus conjecture (cf. Congecture 1) is true for I'o(G) =To(H) for
the groups G and H if and only if (0; ;) € B(H, Aut.(H)).
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/

8. The p-version of the Zassenhaus conjecture (cf. Conjecture 2) is true for

To(G) = To(H) for the groups G and H 1if and only if (0;;) € B(H, Aut,(H)).
An immediate consequence is the following result:

Proposition 5. Assume that G is a solvable group and T'o(G) = To(H). If the
groups H, ; are abelian, then the Zassenhaus conjecture holds for To(G).

Remark 7. Assume that in Theorem 6 all the groups H; ; are the same, then
the conclusion of the theorem are valid, provided, the maps 01,2 <1 < n can
be lifted to elements in Aut.(H;) (cf. Claim 7). If we now invoke Claim 6 and
Lemma 9 we obtain:

Theorem 7. Assume that G is a solvable group and To(G) = To(H). If
the groups H;; = Go are the same for all pairs {1,j} and if the groups G; are
extensions

E:l1l— M; — G, — Gy — 1 (47)
with finite Go-modules M; = sz‘s" Mik, where M¥ are the various px-primary
components. If Mf is a characteristic section in a finitely generated projective

Zka-module, then G ~ H.

The hypotheses of the last theorem are satisfied in particular, if M; are
semi-simple Go—modules or char(M;) is prime to |G]|.

In case n = 2 we get the following result, since the hypothesis H; ; = Ho is
then automatic.

Corollary 1. Assume that G is a pullback

s S
1

Q——h—)

- G2
with G; = G/N;.

1. If the Zassenhaus conjecture holds for ZG;, then the tsomorphism problem
holds for G, provided for every central isomorphism ~ of Go, there exist
pi € Aut(G;) such that p, - p5 ' = 7. This latter condition is satisfied, in
case M, := Ker (G; — Go) 1s abelian and semi-simple as Z.Go-module or
the characteristic of My is prime to |G| ®®.

35 |t suffices to assume that M; satisfies the hypothesis of M in Theorem 7.
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2. (a) Assume, that the p-version of the Zassenhaus conjecture holds for ZG;,
and assume :

(b) that every p-central automorphism v of Gy can be written as
p1-p3 " =7 for p; € Aut(G;). (48)
Then the tsomorphism problem has a positive answer for ZG.

Ezample 4. In the paper [25] an example of a group ring ZG and an augmen-
ted group basis H was given such that for these two group bases G and H the
Zassenhaus conjecture is not valid. However, in the projective limit with respect to
{Op: }, all the groups H;,; are abelian, and hence by Proposition 6, the Zassenhaus
conjecture holds for I'o(G) = I'o(H). :

Assume now again that 'o(G) = I'o(H). The main result now describes &
in terms of H and the cocycle o from Equation 46:

Theorem 8. Assume, that Ty := I['o(G) = To(H) as augmented algebras, and
let the cocycle o € Z(H, Aut.(H)) be defined as in Equation 46.

Then G ~ H (o), where H(0) = {(hi)1<i<n | ki € H; : o ithi =kt

Remark 8.

1. Assume that ZG ~ ZH as augmented algebras, for G a finite solvable group,
then also H is solvable, and we have T'o(G) ~ ['o(H), and so the conclusion
of Theorem 8 says G ~ H(o) for the associated cocycle o.

2. Given a central cocycle 0 := (0, ;) € Z(H, Aut.(H)), we can interpret o
also as an element oz = o '€ Z(T'o(H), Aut.(To(H)))3. We can then
form the group H(c) and the ring T'o(H)(0z) ~ [o(H(0)). Then H(o) ~
H if and only if 0 € B(H, Aut(H)); i.e. ¢ is a coboundary with respect
to all automorphisms of H. Similarly, T'o(H)(cz) ~ H if and only if
o € B(I'o(H), Aut(To(H))); i.e. 0z is a coboundary with respect to all
automorphisms of I'o(H).

3. In order to find two non isomorphic solvable groups G and H with T'o(G) ~
T'o(H) it is thus necessary and sufficient, to find a group H and 0 € Z(H,
Aut(H)), such that 1 # [o] € H(H, Aut.(H)) but 1 = [o] € H(Ty( ¥
Aut(To(H))). We just point out, that it is necessary to have such an example

49 _Here Aut.(R) are the ring automorphisms of the ring‘ R, which leave the centre of the ring
R elementwise fixed.
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if one wants to construct a counterexample to the isomorphism problem.
Indeed we have found such an example.

A special case needs some attention:

Proposition 6. Let H be a solvable group and write 1t as the projective limit
with respect to {Op(G)}1<i<n. Assume, that Ho := H, ; is the same for all pairs
{i,7},4 # j. For the kernels K; := Ker (H; — Hy) we require that K; is a Sylow
p; subgroup of H;. If

o€ Z(H,Aut (H)) (49)

such that 1 # [o] € H(H, Aut.(H)) , then there is a group G not isomorphic to H
with
Z, Qg FO(G) ~Z,QRzg FO(H), (50)

where Z, is the semilocalisation of Z at all the prime divisors of |G]|.

Note 1. The above conditions just mean, that we have central automorphisms o ;
of Ho, 2 < i < n, such that there can not be found automorphisms o; : H; — H;

with 0; ; = 01 -orj_l.

Claim 7. Given an ezact sequence of groups with K a p-group
1— K +— G — H —lg (51)

If (|K|,|H|) = 1, then a central automorphism oo € Autc(ZgH) can be lifted to a
central automorphism o € Aut.(ZyG).

|
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