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SOME SOLVED AI{D UI\SOLVED PROBLEMS

Oi..{ GROUP RINGS

K. W. ROGGENKAMP *

,dbstract. In this note we discttss seuerol problems in representation theory ol finite groups.
We first deal urith prcblems centering arcund the chamcter table : We discuss Brauer pairs,
the group determinant and higher charucters, and prc.sent seueral eramples eluminding the
isomorphisrn question. Then ue turn to the table of rnarlcs and Burnsid,e ings, and. again
we d,iscu,ss isomorplism questiow. Then we reprt on the state ol the integral and nduls
isomorphisrn problem lor group ings of f,nite grou,ps and lor cdtomdogy rings. Finally we
describe group rings as prcjectiue limits and intrcduce a kind of Cech cohomdqy, which giaes
the obstruction lor the zassenhatts corujecture on the prcjectiue limits of goup rings.

1. INTRODUCTION

The theory of groups had its origin in the work of Evariste Galois (t3ft-
1832), Augustin Louis Cauchy (1789-1857) and Alfred Serret (teto-taaS). The
importance of group theory - apart from solving algebraic equations (Galois) -
became apparent through the results of Sophus Lie (ta+Z-1899) and Felix Klein
(f aaO-fOZS) on continuous and discontinuous geometry.

Two independent clevelopments lead to representation theory of finite groups:
In his studies on generic discriminants Richard Dedekind (1831*1916) introduced
the group determinantl. He proved in 1886, that the number of linear factors of
the group determinant - in modern language, the number of linear characters - is
eqxal to lGlct l ,  where G'is the derived group. Georg Frobenius (ts+o-rotz) -
taking up the work of Dedekind, who was interested in the irreducible factors of

* The research was partially supported by the Deutsche Forschungsgemeinschaft.
r For details on group determinants and FYobenius /c-characters we refer to [221.
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the group determinant - introduced and studied k-characters2. Frobenius proved -

without the notion of group representations the orthogonality relations for charac-

ters, and later showed that his characters were actually the traces of the irreducible

representations.

Already then Frobenius has asked, which properties of the finite group G

are reflected by their'characters'.

On the other side, at that time the theory of abstract finite groups was little

developed, and it was natural to study groups by their action as bijections on

sets and as linear transformations on vectorspaces. Time has shown that studying

linear actions of groups on vectorspaces is a much richer theory, than letting groups

act on sets, since one can involve the arithmetic of the general linear groups.

In this spir i t  Wilf iam Burnside (fasZ-rOZ7) and Issai Schur (raZS-roaf)

developed ordinary (complex) representation theorY, i.e. homomorphisms

6,  G - - - - -  Gl (n,C)s.

Such a representation is said to be irreducible, if C' does not contain a

proper G-invariant subspace. The traces of the irreducible representations are

called 'characters'4. The character of an element g € G depends only on its

conjugacy class K, ;: {r. g - r-L)rec. By Cf @) we denote the character table,

whose rows are the irreducible characters, and the columns are the conjugacy

classes of the elements in G.

More generally, let .E be an integral domain, then we can consider .R-repre-

sentations of G; i.e. homomorphisms

6 ,  G  - - - -  G I ( n , R ) .

Since Gl(n,n) C Mat(n,.R), the -R-algebra of al l  n. x z-matrices over R, which is

a ring, the matrices {d(g)}e66 generate the -R*algebra

[ . 4 : :  { D  " o t r l  
' d @ ) .

c€G

I

4

Flobenius called them characters because the name Carl FYiedrich GauS(1777-1855) had

given to his homomorphism from classes of integral binary quadratic forms to Z f n ' Zx , the

u n i t s  i n  Z / n . 2 .

This is to be interpreted as an action of G on the vectorspace Cr.

Note that this is not the original definit ion, but a theorem of Frobenius.
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Now, there is a universal ,R-algebra, the group ring of G over R, RG ::
Ifn.", ", 

' g), where the addition is componentwise and the multiplication is
induced from the multiplication in G. Since Z is the universal commutative ring,
there is a natural homomorphism zG -----+ RG for every commutative ring .R.

As mentioned above, the origin of representation theory was to get informa-
tion on a finite group from its characters. This original aspect *u,, u,lro stressed
by Richard Brauer in his Harvard Lecture on 'Modern Mathematics, [2], where he
asked in 1963 among others:

what in addition to the character table determines a finite group?

There are several invariants of a finite group G arising in representation
theory:

1. the character table, CT(G),,

2. the spectral table, sr(G); i .e. the character table with the ppower mapsj
i.e. the map Ks - Koo for Kn the conjugacy class of g i C and p a
rational prime.

3' the 2-characters, cr2(G) - discussed by G. Frobenius in 1g96 [g] - which
describe the obstruction to characters being homomorphisms; i.e. the 2-
character associated to an irreducible character x is definedas y2(g,h):
x (g  .h )  -  x (g )  . x (h ) .

4. the 3-characters - more generally the k-characters, CfkG) - which Frotre-
nius derived from the group determinant [8]; the k-charu.i"r, occur as co-
efficients of some monomials in the group determinant, we shall discuss rhis
construction below in Section 2.4.

5. the group determinant Det(G) [a]; i .e. d,et(xn.1,-,);  for the definit ion we
refer to Section 2.3.

6. the table of marks, B(C) - the Burnside ring, O(G) - which tr ies to describe
the group via its permutation representations [a], cf. section 3.

7. the rational group algebra eG,
8. the group algebra FG for all fields,

9. the group algebra over all p-adic rings of integers,
10. the integral group ring ZG,

11' the integral cohomology ring H. (G , Z) , f.or the definition we refer to Section
4 . 5 .

12. the mod p cohomology ring H. (G,F) for a field F of characteristic p > o.
I shall elaborate here on some aspects of each of the problems related with
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the above topics. The central question here is:

Whibh properties of the finite group are reflected by these invariants?

To my knowledge, none of the questions has a satisfactory answer up today.

2. CHARACTERTABLES AND RELATED QUESTIONS

2.1. The character table

Rernark 7. The quaternion group of order 8 and the dihedral group of order 8

have isomorphic character tables - this was known already to Burnsidei Frobenius

and Schur, and was presumably the reason, that the question 'What properties of

a finite group are reflected by the char'acter table' was addressed only relatively

late in this century.

On the other hand, the character table reflects quite a lot of properties of

the underlying group:

Theorem L, The character table of a f,nite group G determines

1. the length of the conjugacy classes; i .e. the ind'erlG: C6(g)l of the centra-

lizer of a group element in G,

2. the lattice of normal subgroups of G,

9. the character table of quotient groups,

4.  the ch, ie f  ser ies of  G;  aresul t that  was prouedbV W.Kimmer le andin co l lab-

oration with R. Lyons, R. Sandling and D. Teague [lt], [lS]; i.e. a normal

series of marimal length,

S. whether or not for a setn of primes, G has abelian Halln-subgroupss. I7 the

1{q!l v=subgroups are abelian, then they are d,etermined up to isomorphism.

,This was proue,d,by Kimmerle and Sandling ([ll], [ls]) and answers another

qupstion of R. Brauer lZJ'

Problem l. Find necessary and sufficient conditions on the two groups G and

fr such th-at CT(G) : Cf @).

2.2. Brauer pairs

In 1g64 E. C. Dade [6] has constructed the first Brauer pair I i.e. two non

5 A n-H.ll subgroup H of G is a subgroup, such that all prime divisors of lf/ l  l ie in zr, but

the index is prime to r - this generalizes Sylowsubgroups'
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isomorphic groups with isomorphic spectral tables - answering another question
of R. Brauer [2]. Further series with this property, which we shall discuss in
detail later (cf. Section 3), are certain subgroups of the groups of semi-linear
transformations of finite fields; i.e., subgroup of

E e "  . F ; " . 6 n

where Fo* is the field with p' elements and FN. is its group of units. Moreover,
dn is the Frobenius automorphism, sending r to np. This type of example was
first considered by G. Cli f f  and Suri. K. Sehgal [3].

Problem 2. Find necessary and sufficient conditions on the two groups G and
-Ff such that both have isomorphic spectral tables.

2.3. Group determinant

Before we come to the results of the group determinant and higher charac-
ters, let us recall the definitions:

Def in i t ion l .  Let  G :  {gr  , . . . ,go}  be a f in i te  group,  and le t  {Xn,  :  Xr , . . . ,Xs*  :
X") be independent indeterminants over the field K. Let us denote by lf (Xi ihe
field of rational functions over K in these indeterminates. Dedekind has defined
the GROUP DETERMINANT - in connection with generic discriminants - as

Dc :  Dc (X)  : :  de t (Xo . ,e ; , )  €  K (X) .

Then Dc \s a homogeneous polynomial of degree lcl in the variables Xr.
The group determinant is independent of the numbering of the group elements, as
follows from the definition of the determinant.

we assume now - as was done in early times - that K : c. In modern
terminology we interpret the group determinant: Let

)t6 :: D *n .s e K(X)G
geG

be the 'generic' elements. Then Dc is the determina.nt of )lc under the regular
representation, and a decomposition of Dc into irreducible factors is obtained from
decomposing lf(X)G into simple modules.

Frobenius in 1896 did not know about semi-simple algebras. He tried to
find group theoretical interpretations of the following invariants:

( 1 )

(2)
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1. The nrrmber of the distinct irreducitrle factors in the decomposition of the

group determinant.

We know that this is the number of conjugacy classes'

2. The degrees of these factors.

We know that these are the degrees of the irreducible representations.

B. The multiplicity with which the different irreducible factors occur in the

group determinant.

We know that the multiplicity coincides with the degree.

Frobenius eventually gave answers to all of these questions.

The importance of the group determinant is apparent in the next surprising

result:

Theorem 2 (E. Formanek, D. Sibley 1991) . The group determinant determtnes

the group up to isomorphism ([l]).

Formanek and Sibley proved this result using invariant theory. R. Mansfield

[fg] has given an easy short and direct proof of this result by Formanek and Sibley.

In the spirit of Dedekind, this result can be interpreted as: The generic

discriminant determines the Galois group of a Galois extension L I K ' where K is

an algebraic number field.

2.4. Higher characters

Frobenius' intention was to generalize the linear characters of an abelian

group - i.e. homomorphisms to c - to an arbitrary finite group G - as maps

from G to C. Dedekinds main goal was to generalize the decomposition of the

group determinant of an abelian group into linear factors (cf. Introduction). He

was mislead by the fact, that the irreducible 2-characters of Cfle, where f/s is the

quaternion group of order 8, involved norrls of elements in the quaternion algebra.

Frobenius associated to the group determinant functions - the characters -

from the finite group G to C is as follows:

Definition 2. If O is an irreducible factor of. Dc, then:

1. The CHARACTER Xo associated to iD is defined as

o Xo(t) :  / ,  where / is the degree of (O).

o For I I  g € G the value Xo(g) is defined as the coeff icient of X{-r 'Xn
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i n  O .
' 

In Frobenius opinion, the most important property of these 'charac-

ters' is that they are constant on conjugacy classes; i .e. Xo(g .h) :
xo(h .  g) .

2. More generally, for a natural number ft, the fr-character associated to iD is
defined as follows: For k ( / where / is the degree of iD the k-character X$
has value on a k-tuple of group elements (1r,1r,.. . , tr) ,  defined as fol lows:

o the coeff icient of X{-k .Xrr. . . . .Xrr in O, provided none of the 1i :  I .
e If l; : 1, then

x 3 ( r r  , 1 2 t  " . t 1 i _  r t  1 , ' y ; + r  , . . . , ' l t )  :  x T t  ( 1 r , l z ; . . . t 1 i _  r t 1 i + r , . . . , 1 k ) .
(3)

It is then clear that for an irreducible factor Q of the group determinant

o  :  ( 1 / / ! )  . ( x L h t , 1 2 , . . . , r i '  x t , '  X r ,  .  . . . .  x r , ) (4)

Moreover, already Frobenius noticed that the k-characters can be derived
inductively from the ordinary characters. The k-characters can be derived from
the ordinary characters, i f  one knows in addit ion to the character table C?(G) ::
&; (Ki ) ) r< i , j<h -  K i  arc  the conjugacy c lasses -  the va lues of  X; ( l r  . . . . . r r )  for
k bounded by the maximum of the degrees of the irreducible representations; i.e.
one has to know the map

Vp : G x G x .. .  x G ---+ l) Ki,

(? t ,  " ' ,1 t )  - - - - *  Kt r " . . , r  '  (6)

This apparently is not as strong as the knowledge of the multiplication table for
G. (But note, that for abelian groups, V2 determines the group mult ipl ication.)
However, as we shall see later, this is a very powerful condition.

For the higher characters we have the following results:

Theorem 3.

1. It was noted bV K, W. Johnson and Surinder K. Sehgal [lO] in 1991 that
the groups from Equation 75 also haue the same 2-characters. Their S-
characters though are different.

t
1 z r ' . . 1 1 I I{ 9 . ,

(5)
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g. It was shown independently by H. J. Hoehnke in collaboration with K. W.
'Johnson 

[o] and with d,ifferent techniques by Kimmerle-Roggenkarnp [16f ,

that the character table and the T-characters determine a t inite group up to

isomorphism, and hence they also determine the group determinant.

This is one anEuer to R. Brauer's question:

" What is needed in add,it ion to the character table, to determine the f inite
group G?"

This result can be rephrased: The character table of G and the knowledge

of the map of Equation 5

\L3 :  G x G x G ----+ u Ks, (r ,y,r)  -----+ Kx,.y.z

determine the group G up to isomorphism.

The remaining Problem here is

Problem 3.
character table

A partial

It should
character table,
sions. We come

which properties of the finite group G are determined by the

and the 2-characters?

answer is given in ProPosition 1.

be noted, that the finite simple groups are determined by their

and hence the 2-characters should have some influence on exten-

back to this problem in Section 3

3. TABLES OF MARKS AND BURNSIDE RING

Let us recall the definition of the Burnside ring and the Burnside rnatrix,

i.e. the table of marks: For the finite group G let f!'(G) be the category of finite

left G-sets with G-equivariant maps. Every finite G-set can be written uniquely

as a disjoint union of transitive G-setsl i.e. G-sets isomorphic to G I lH - the

left cosets of the subgroup 1/ in G. Two such transitive G-sets are isomorphic if

and only if the corresponding subgroups are conjugate in G. These isomorphism

classes generate the Burnside ring O(G) over Z; multiplication is given by the

cartesian product and the sum is the disjoint union. A Z-basis is given by the

isomorphism classes of transitive G-sets. The Burnside matrix has the rows

and columns indexed by the conjugacy classes of subgroups of G, and the entry

corresponding to the classes of subgroups ((U)' (y)) is given by

6 It  was reported to us, that other people had made the same observation.
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,  H o m o ( c ) ( G l l U , G l l V ) : { G  e G l o u  r - V } r .

It is easy to construct two non isomorphic groups which have isomorphic
Burnside matrices - i.e. table of marks (cf. Example 1, below); this means essen-
tially that the groups have the same lattice of subgroups. It is not so easy though
- and was a long open problem -' to construct a Brauer pair with the same table
of marks' A detailed analysis of the Brauer pair in [3] shows however, that they
also have the same table of marks, as was noted by Kimmerle and the author [f6f.
Erample 7. We consider the two groups

G  : :  ( a , b , c l a 7  , b ' " ; " " , 1 a , b 1 ,  " a :  a 2 ,  c b :  b 3 )  a n d

H  : :  ( a , b , c l o '  , b " , r " , [ o , b ] ,  " o :  a 4 ,  t 6  :  b 3 )  .

Then these groups are not isomorphic, but it is easily seen, that they have isomor-
phic Burnside matrices, though the character tables of G and H are different.

A detailed analysis of the groups Equation t have led W. Kimmerle and the
author to give partial answers to the question of when two groups

have isomorphic spectral tables,

have isomorphic Burnside matrices,

have isomorphic Z-characters.

A partial answer is given by

(7)

1 .

2 .

3 .

Proposit ion 1 (Kimmerle-Roggerrkamp IfO]).

1. Isomorphic spectral tl,bles.

Let G1 and G2 be isomorphic groups, which act linearly on an
abelian p-group V such that

(") the groups G; act f ired point freely onV;i.e. Stab6,(r) :
O # u e V, where Stab*(*) rs the stabil izer.

(b) For euery u € V we harse for the orbits

) c , ( u )  :  2 c " ( u ) ;

i .e . ,  G1 and Giy  haue the  same orb i ts  onV.

e lementary

1 for euery

7  W e  w r i t e  g [ J  : =  g  . L I  . g - r

(8)
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Then the semi-d,irect prod'ucts H; : V X G;8 haue isomorphic spectral tablese '

2. Isornorphic Burnside matrices.

(Jnd,er the assumptions in 7., there is a unique bijection for each a €V

r r :  G1  -+  Gz  de f i ned '  bY  o t )  = ' " k ' )  , ,  ( g )

fp ,  g r  €  Gr .

Moreouer, these maps r, determine maps

Pu i  Gt  x  G1 - - - -+ G1 d 'e f 'ned '  by " (e) (n ' )  
-o 'k 'h) 'h  u '  (10)

where grh € G1. We assume now that

(") all minirnal subgroups of v are conjugate under G1 and G2,

(b) there exists u6 € V such that for euery subgroup H 1Gr we haue

P , o I s x H ; H x H ' - ' - +  H ,  ( 1 1 )

i.e., pro somehow preEert)es the subgroup structure of G1'

Then the aboue semi direct products H1 and H2 haue isomorphic Burnside

matrices.

9. Isomorphic 2-characters.

Assume that p : G ----- H is an isomorphism of finite groups and that M is

a module for both G and H. If

(") there erists a p-equiuariant bijection - not necessarily a group homo-

morPhism -

o  :  M  - - +  M  u i t h  o ( g ' m )  :  p ( g ) ' o ( * )  : g  € G , m €  M ,  ( 1 2 )

(b) M \ {0} consists of a single orbit for both G and H,

thenthe semi d,irect products M XG and, M AH have isomorphic Z-charac-

ter  s .

s Itr M is a G-module, then the semi-direct product MXG consists of pairs (rzr,,9) with

m u l t i p l i c a t i o n  ( r n ,  i l ' @ , h )  =  ( m *  g ' n , g ' h ) '

e The examples of Clif i  and Sehgal [3] are of this typel as a matter of fact, there I/ \ {o}

consists of exactly one orbit under G;.
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However, these conditions are surely not sufficient. So we still have an open
problemr

Problem 4. Find necessary and sufficient conditions for when two groups
have isomorphic spectral tables and have isomorphic Burnside matrices and have
isomorphic 2-characters.

Let us briefly describe the groups, which satisfy the above hypotheses:
For a prime p we denote by Fo^ the field with po elementr. 6n is the Frobenius
automorphism, and

{ l (p ,n ) :  (Fp ,X  F i ' - ) x  (d " ) .  ( 18 )

Then the groupslo are certain subgroups of O(p,n,), which are described in detail
in [16]. The smallest example is for p :7 and z : B. Then for these nurnbers

Fi .  :  (a)  . (a)  . (c)  (14)

is the product of cycl ic groups of order Lg,,Z ,g resp. and

H 1  : :  F z ' X  ( o ,  b ,  c .  6 s  )  1 t S ;

and

H 2 : :  F z " X  ( o ,  b ,  r . 6 3 )  1 f O ;
are non isomorphic groups, which have

f . isomorphic spectral tables,

2. isomorphic 2-characters and

3. isomorphic Burnside matrices.

4. THE ISOMORPHISM PROBLEM AND COHOMOLOGY

4.1. Rational group algebras

We now turn to the various aspects centering around the isomorphism prob-
lem.

ro These groups are very similar to those considered by cliff and sehgal [3].
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' 
We first consider rational group algebras. Since abelian groups are deter-

mindd by their primary parts, it is easily seen, that an abelian group is determined

by its rational group algebra. But a much stronger statement is valid:

Let A : llAp be the pprimary decomposition of A' Then '4 : lim'ptoioA,

(cf. Section S.fl-is ihe projective limit of its pprimary parts. The group ring QA

ihough is not the projective limit of the group rings of the pprimary components.

Let fqa :: lim.proj.oQAp; then fqe is in general a proper epimorphic image of

QA.

Lemma 1. Letlqe - fqr for an abelian group A, then A = B; i 'e'  the

structure of the abetiin group- is captured alread,y in a small part of the rational

group algebra.

In order to show the difference between QA and fqe, let p and q be different

rational prime numbers, and denoteby Co and Co resp. the cyclic groups of order

p and q. For a natural number z we denote by g' a primitive zth root of unity'

Then
QG :  Q x Q(rp)  x  Q(Cc)  x  Q(fp s)  and ,

Iec :  Q x Q(ep)  x  Q(Eo)  ;  i .e .

the faithful representations of G are missing in lqc'

we shall turn to these projective limits later in section 5.

Also for rational group algebras it is not known:

Problem 5. Which properties of G are reflected in QG?

(17)

4.2. Modular grouP algebras

E. C. Dade has in 1971 [5] constructed two non isomorphic groups G and' H

of order ps .qB which have isomorphic group rings over every field and even over the

padic integers 2o fo, every prime p. These groups though have non isomorphic

integral group rings, since they are metabelian; One can construct smaller groups

than Dade's with these properties [26].

One of the main problem.s in modular group rings is

Problem 6. Can there exist non isomorphic p-groups G and I/ with E oG 
-

EeH?

M. Wursthorn [eO] has checked with the help of a computer that the answer

is 'no' for 2-groups of order at most 26.
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4.3. The isomorphism problem

We shall briefly recall some properties, which are detected by
group ring:

the integral

Proposit ion 2. Assume, that zG : zH aE augmented algebras; i .e. the
identification is compatible with the augrnentation maps rr. Then

1. the class Eurns'2 of G andthose of I I  coincide inside ZG,

2. G and H haue isamorphic lattices of normal subgroups.

9- The group ring determines nilpotent Hall subgroups up to isomorphism, as
well as hamiltonian Hall subgroups (cf. l3 w. Kimmerle [l1J and R. san-
dtins [18]).

1- G and H haue isomorphic spectral tables - hence abelian Hall subgroups a,re
d,etermined.

Problem 7. It is an open problem, if one has ZoG - zoH as augmented
algebras, where Zo is the localization at p, whether one stili has a class sum
correspondence for p-power elements.

Under the aspect of Dade's examples with respe ct b 2o the most far reaching
result on the isomorphism problem is the following ([ZT]):

Theorem 4. Let G be a fi,nite group with a normal p-subgroup N, such that
cc(N), the centralizer of N is a p-group. If zG - zH, then G and H are
p-adically conjugate tn; in particular, G and, H are conjugate in eG.

This implies, that for a solvable group G, the various quotients G f oo,(G) arc
uniquely determined by the integral group ring. The group itself is the projective
limit of the projective system generated by the various G I O o, (G); but as mentioned
above for abelian groups, the group fing ZG is not the projective limit of the group
r\ngs zGf op,(G). we shall come back to this problem in section 5.

Impor:tant consequences of this result are

I 3

l 1

t 2

13

L 4

The  aug rnen ta t i on  c6 :ZG -  Z  sends  Dnr " r s . !  +Dsa6  rn .

The class sum of an element g € G is Drr*o E € ZG.

A finit,e group is said to be Hamiltonian, provided every subgroup is normal. These have
been cllassified by Dedekind.

This noeans, that there exists a unit u inhoG such that uG = H.
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Proposit ion 3.

1. Let E be a fi,nite group giuen uia th'e etact sequence

K. W. RoggenkamP

Q ---r f{ -----+ E --"+ G ----+ 0,

where N is an abeiian group and G: f lr<;<r, G;, where Or1(G;) : L and'

the uarious G; haue relatiuely prirne ord'er, thin the isomorphism pr.oblem for

ZG has o polj;,;,, ansu)er. (This was prouel, b.y L.L' Scott in collaboration

with the author in case G was nilpotent qnd in the genert'l situation bv A'

zimmermann [ea] following suggestions of the author.)

2. Assume, that lG,G) is nilpotent, then the isornorphism problem for zG has

a positiue ansuer. ittul)
The isomorphism problem is still an active area of research.

Problem 8. Let G and .F/ be finite groups with zG - zH. Does it then follow

that G and fI are isomorPhic?

4.4. The Zassenhaus conjecture

some classes of groups for which the isomorphism

Z G - Z H + G - H ?

We have listed above
problem

has a positive answer.

This is closely related to the Zassenhaus conjecture:

Conjecture I- (Zassenhaus).

Z G : Z H  +  G :  a ' H ' a - '  I o '  s o r n e  a € Q H  '

If one looks at the integral group ring, then this is a very strong condition,

since one consequence is, tnat att possible automorphisms of ZG corning from

automorphisms of the centre - these can be Galois automorphisms - are induced

from group automorPhisms'

The zassenhaus conjecture is equivalent to the following statement [26]:

Assume tha+ ZG : ZH as augmented algebras. Then the class sum cor-

respondence says, that there is a bijection 15 g : G ---+ H such that in ZG we

rs Nobe that not every bijection between groups is an isomorphism.
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have

K s : K B O f o r e v e r y g € G .

Lemrna 2. The Zassenhaus conjecture is true if and only if p can be chosen, to
be a group isomorphism.

Yet another way of phrasing the Zassenhaus conjecture is as follows:

Lemma 3. The Zassenhaus conjecture is true if and, onty if

1. the isomorphism problem has a positive dnswer for G and

2. for euery augmented automorphism q. of ZG there is a group automarphism
p 

"f 
G such that a.p-L rs o centrar autornorphism ;i .e. i t  is giuen by

conjugation with a unit in QG.

The above rephrasing of the Zassenhaus conjecture gives rise to an inter-
esting modification - the Zassenhaus conjecture for ppower classes - which has
mainly been considered by W. Kimmerle:

Conjecture 2 (Variation of the Zassenhaus conjecture). Assume that ZG : ZH
as augrnented algebras, then there erists an isornorphism g : G ------+ II such that
Kc : Kpk) for g € G a p-power element for some prime p.

clearly this variation also implies, that the isomorphism problem
sitive answer.

Let me summarize the known results on the Zassenhaus conjecture and its
variation.

Proposit ion 4.

1. To the Zassenhaus conjecture:

(") The class of groups, for which the Zassenhaus conjecture hold,s is closed
under direct products - the same staternent holds for its uariation.

(b) The Zassenhaus conjecture is true for groups which haue a norrnal p-
su,bgroup containing its centralizer - and hence for products of those.
In particular, it is true for nilpotent groups.

(r) The Zassenhaus conjecture is true for syrnmetric groups, as l1as noted
bv G. Peterson [eo] (cf. also W. Kimmerle [te]).

(d) If G is soluable, and zG : zH as o,ugrnented algebras, then the sylow
p-subgroups of G and H are conjugate in qG [U].

1 5

has a po-
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(") There is a metabelian group and an automorphism a of ZG which is

a countererample to the Zassenhaus conjecture [ZS], [ZA].

(f) Zassenhaus has t'urther - at'ter the aboue countererample was known -

conjectured,, that the Zassenhaus conjecture is true for abelian Sylow

tower groups rG. There is not yet known a complete proof . However,

in a first step M. Hertueck - advised bV W. Kimrnerle - has shown,

that for metabelian groups with abelian Sylow subgroups, it central au-

tontorphisms are inner, thus uerilying the variation of this coniecture

for certain nilpotent ertensions of these groups'

2. To the variation of the Zassenhaus conjecture'

(o) The uariation surely holds for a class of groups, prouided 7fte Znssen'

haus conjecture holds for this class'

(b) The variation of the Zassenhaus conjecture holds for G prouided the

commutator subgroup [G, G] is ni lpotent. The countererample to the

zassenhaus conjecture mentioned aboue is of this form.

Let me speculate about the isomorphism problem: It was known to L. Scott

and the author, that a counterexample to the isomorphism problem would imply

the existence of a counterexample to the Zassenhaus conjecture. Therefore it was

necessary to construct a counterexample to the Zassenhaus conjecture. Once we

had done this, we thought, that a counterexample to the isomorphism problem

should now be relatively close. This was not the case though.

We did not have thought of a counterexample to the variation of the Zassen-

haus conjecture, and one can show, that a counterexample to the isomorphism

problem would imply the existence of a counterexample to the variation of the

Zassenhaus conjecture.

Recently, the author and A. Zimmermann have constructed semilocally such

a counterexample.

4.5. Cohomology rings

For a finite group G and a commutative ring we put Hj(G,.R) :: ,R and for

i > 0 we put H,(G,R) ::  Ext '*.(n,R), where thej latter denotes the equivalence

classes of long exact sequences

0 ----r R ----+ M; -----+ Mt-r -) '' ' ---.' Mt --+ R -----+ 0 '

16 These are defined inductively, such that G has an abelian normal Sylow subgroup A and

G/A is again an abelian Sylow tower group'
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Addi t ion in  Er t i * " (R,- ,?)  is  the addi t ion of  exact  sequences;  i .e .  the pushout  a long
the codiagonal followed by the pullback along the diagonal. The multiplication

Ert'*6(R, R) I p Extl^"(R,, R) -- nrtif/(R, ,?)

i s  the  compos i t ion  o f  exac t  sequences .  Th is  way H*(G,B)  : :  @i :o ,1 ,2 . . .  H i (GrR)
becomes a graded ring, which is commutative in the graded sense.

Let G and ff be non isomorphic groups such that for every rational prime p,
the groups G lor, (G)tt and H f or,(H) are isomorphic, then the cohomology rings

H*(G,rB)  : :  t  H ' (G, .R)  and H*(H,R)  : :  I  H i (H,R)
i : 0 , 1 , . . .  i : 0 , 1 , . . .

are isomorphic for all fields ,R and all complete Dedekind domains of charactb-
r ist ic zero with f in i te residue f ield.  Since H*(G,Z) is determined by the p-adic
cohomology rings, this shows at the same time, that

H *  ( G , Z )  -  H .  ( H , Z )  '

Examples of such groups can easily be given: the groups in lJxample l.

Problem g. Can one find necessary and sufficient conditions fof two finite groups
G and fI to have the cohomology rings 11* (G,z) and.fr* @,2) (resp. r/.(G,Fp)
and .F/* (H, Fo)) isomorphic?

5. CECH COHOMOLOGY

The detai ls of the results in this section can be found in [f  Z].

5.1. Projective l imits of groups

Let G be a finite group and let {N, 11 < i < n} be a farnily of normal
subgroups. we let 6;: G -, Gf N;:: Gi be the natural map. pn is the powerset
of {1, . . . ,n}; i t  is part ial ly ordered by inclusion.

For

17 Opt(G) is the largest normal subfroup of G of order prime to p.
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S € Pn we set Gs :: G l(nN;) and let.Ss : G ' Gs (18)
i€s

be the natural projection. For ,S ( ? we have a corresponding induced homomor-

phism

6s,r  ,  Gs . - *  Gy and {Gs,6s, r ls  €  P")

is a projective system, and we can form the projective limit

d : :  l im.proj .se p.  (Gs,6s,r)

:  { g s  €  G s  :  d s , r ( g s )  :  6 s , , r ( g s , ) f o r , S ,  S t  <  T  a n d  9 5  €  G s , 9 s '  € G s ' } '

The special structure of the index set simplifies the situation considerably:

Claim 1.  Let et  ' :  { (g;)  r l i . -n lg;  e C;:6; ,p, iy(ot ;  :  d i , { r , i }  (gr)}  '

t hen  i :  e .
We put  Ki , j  i :  Ker  (G;  . *  Gr , { ; , r } ) .

Since the elements in G satisfy the above relations of the pullback, there is

a unique map

1 t G  - - - - -  e : g  - - +  ( g r , :  g ' N ' )  L l i { n t  ,

which has kernel the group f-]r.r.,, N; . Thus 1 is injective iff 0r.;.r, N; : 1'

The next result is of importancq to check whether G is a projective limit of

quotients.

Lemma 4. Let G be a finite group, and, let {N;}r<;<, be a family of normal

subgroups of G. Assurne that

1 .
/1

,l_1, 
N, : {1}, (1e)

2. for every rational prime diuisor p of lcl there is at least one ind,er ; :: i(p)

such that  ( r , lN;10; l )  :  t .

Then G is the projective t imit of {GlNi}r1i.ni i .".  ^ ' t  is an isomorphism.

Rernarle 2.

1. These conditions are satisfied for example for G a solvable group, if {Ni :

Oor (G))r<;<,r, where {p;}r<;<" runs over al l  prime divisors of lcl '  Here we

take N;10; - Nt.
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2. The above result holds more generally for G a periodic group
element in G has finite order - for example a locally finite
{Nl};: t ,r, . . .  a countable set of normal subgroups.

The pullback is easily handled if the groups G;,y coincide:

claim 2. Assume, that G is the projective lirnit of the groups G;:: Gf N;, and
that for each pair ( i ,  j)  with i  * j  the groups G;, i  i :  cl(Nr.N) coincide. Then
the projective limit consists of

{ (gd ) t<d<"10 ,  e  c ,  :  6 r ,1 r , i y (g t )  :  d ; , p , ; y (g ; ) , 2  <  i  <  n }  .  ( zo )

In this case a, farnily of isomorphism o; : H; -----+ G;, 1 S 
' 

< n, giues rise to an
isornorphisrn l im.proj.(H;,,d;,{; ,r}) .---+ G if  and onty i f  01= oi modG1,;.

5.2. Projective l imits of group rings

we assume, that the finite group G is a projective limit of the groups G; ::
GlNi, l  < i  < z. we use the notation of section s.1. The group ho-o-orphisms

Q s , r : G s - G y f o t , S c T

induce augmented homomorphisms

(21)

6s,r  :  ZGs -  ZGr ' "
(22)

Though G is the projective l imit of {G", ds,r},the group ringzG is by no means
the projective l imit of {zGs,dr,r} (cf. Equation 12). As a matter of fact

f  (G)  : :  l im.pro j .s6 p(ZG s,ds, r ) (23)

is in general rationally a proper quotient of ZG. The induced ring homomorphism
Q : ZG ----+ f (G) has kernel

1 9

(i .e. ,  every
group) and

Ker ( / )  :  a t< i<nl (G,N,) ,

where 1(G, N,) is the kernel of the natural map ZG n ZG;.
As for groups one shows

(24)

lE It should not cause any confusion that we use the same name as for the group homomorphism.
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(25)

(26)

map $i,;n :

r ' (G)  :  { ( " r )  l r ; €ZG; :  6 ; ,g , i y ( t ; )  :  6 i , { ; , i }@i ) )

Definition 3. Let G be a solvable group and put N; :: ooip). Then we have

seen above; that G is the projective limit of the groups GIN;. In this case we shall

write fo(G) for the projective limit of the group tings ZGf Oo,,(G).

Remark 9.

1. In case the projective limit is a pullback; i.e. there are only two factors

Gr,Gi, then the natural map

6 : ZG ---* f o(G)

is surjective.

2. In general, I do not know, whether this map is always surjective'

Claim 3. Let
lr, % lrr,i t! Iri

be a proje.ctiue system of rings or groups re.

Asswme, that there erists an indet io such that for euery i * io the

Aj - Ay,;o ls the id'entity. Then the natural map

A;o  l im.pro j . ( {A ; } )

n  "  -+  (6 ;o3@), , r ) i * ;o

is an tsomorphisnt.

Thanks to Theorem 4 we may assume, that for every prime divisor p of lGl
the groups Oo,(G) I 1. We shall always assume that.

Definit ion 4. Let {p;}r( i(n be the different prime divisors of lcl.  We denote by

Bon the principal block 20 in Zo,G n QG ". "0, 
denotes the corresponding central

idempotent \n 2r,G n QG 
22. We now let e be the smallest central idempotent in

re For the sake of simplicity we shall assume, ihat the rings A;,i are quotients of A; and Ar'

resp. and that the maps {/;, i} are the associated quotient maps.

20 The blocks are the indecomposable ring direct summands, and the principal block is the

unique block containing the trivial module.

" 2o is the localization of. Z at p.

22 Note that - our group is solvable - the idehpotents do lie in QG.

(27)

(28)
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QG such that e . €p, : eo, for every f.

We note that f (G) is an augmented Z-order in
QG .e. However, as remarked above (cf. Remark 3),
f  ( G )  :  Z G  . e .

21

the separable Q-algebra
I do not know. whether

fo(G) :  { ( " ; )  r1 i . -n :  r ;  €  ZP; ,e pr( " ; )  :  ep i@i) } ;  (29)

i.e., rat ionally, f6(G) consists of those irreducible modules, where at most one of
the groups P; acts non trivially.

One can easily determine a Z-basis of f6(G).

Definit ion 5. Let

Erample 2. Let G :: ff r<;<r, P; b" a nilpotent group with
group. Since products are special cases of projective limits, G :
is a project ive l imit ,  and f  6(G) is the product of {Zp;} in the
mented algebras 23; i .e. ,  i f

e6; : ZG -----+ Z

is the augmentat ion. then

*; :  ZG; ------ ZG;,8,"r.r ---+ 
E ",."-t

This shows, that f6(G) is a very natural construction.
tensor product, which is the product in the cat.egory of

The result holds for arbitrary projective l imits.

For ZG this is a result of Banachevski f 1l.

P; a Sylow p;-sub
lim.proj.l< ,9 @nj
category of Z-aug-

(30)

The corresponding group ring is the
Z-algebras.

be che involution.of zG;. Then (*;)r<;.o induces an involution x6, on r6(G),
which is induced from the involution on ZG.

Lemma 5. Let G and H be solvable groups with lo(G) : fo(H) as augment_
ed algebras. If the inaolutions *s and, *s coincid., on iolc),'then G : H in
f o ( c )  2 4  2 5 .

Let us list some more properties of f6(G) or more generally of f (G) (cf.
Equation 23), provided G is a projective l imit.

2 4

2 5
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Lemma 6.

1. Io(G) has no non triuial idempotents.

2. Let u ' :  (r;) L.- i1n inV(ts(G)), tne group of units of augmentation 7 in

fo(G), swch that u,n : L for n a diuisor ol lcl ,  then either

(") the coefficient of L in u; is zero for all I 3 i 3 n or

(b) there is an inder ia u;th u'io I, but then

u i  € I  *  Ke r  (ZG1  - ,  ZG;o , i ) . ( 31 )

Lernma 7. Let H < V(ZG), then o@) < y(lo(G)) 26 is isornorphic to H

prouided G is nilpotent.

The next result can be deduced from theorems of A. Weiss [291.

Lemma g. Let G be ni lpotent, and dssutne that either H < v (zG) or H <

v(fo(c)) * a f inite group, then H is isomorphic to a subgroup of G and more-

ouer, $(H) rn fo(G) rationally conjugate to a subgroup of G; i .e. the Zassenhaus

conjecture for finite groups holds for fo(G).

We point out one important property of f6(G), which follows easily from

the proof of the isomorphism problem for nilpotent groups [24]:

Theorem 5. Assume that G is nilpotent. 4 fo(G) : fo(f1) - with the usual

mod,ifi,cation (cf. [e6]) we may assurne, that this is an equality of augmented

algebras - then G = H; nl,oreouer, euen the Zassenhaus conjecture is true for 16;

i . e .  t h e r e  e i i s t s  a  u n i t  a €  Q I ( G )  w i t h a ' G ' a - r  :  H  i n t ( G ) .

Claim 4. Assurne that A: l lr<;<r, P; is an abelian group written as a product

of its Sylow p-subgroups, and let us denote by Vy(ls(A)) the augmented' units of

f inite order rn fs(,4) 27. Th"nVf (fo(,4)) :  V1(ZA) : A; i .e. the group of units of

finite order is the same in the integral group rings and in this uery small quotient,

and it is just A.

Rernark l . '  Let G be a solvable group and put N;: Op',(G) for the prime divisors

26 Recal l  that  /  :7 .G -  lo(G) is  the natura l  homomorphism.

,' i ..., units of augmentation one. Note that in case of a commutative ring, Vy(f6(A)) is a

grouP.
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pi of lGI. I t  is well  known, that Lo,G;28 - with G;: GIN; _ is the principal

l,t"t 
aa@l of 20,G. Let e; be the central idempotent in eG such that Bo(p;) :

Z o , G  . e ; .  I f  w e  p u t  r :  D e ; ,  t h e n  e f o ( G )  :  e G . e .

This shows also, that zG and f6 do have the same cohomology rings, since
the cohomolory rings are defined p-adically and live in the principaiblocks.

The next example was pointed out to me by wolfgang Kimmerle:
Erarnple g. Let G : Psl(2,g), then zG: ro(G),quite contrary to the situation
of a solvable group. The reason is, that for every p, the p-adii group ring is of

l l" 
f :rT 4C: noQ) x M(p),where Bo(p) is the principal block and M(p) is a

block of defect zero 2e.

5.3. dech cohomology

These results were essentially noted by L. L. Scott in collaboration with the
author.

Definition 6. For the finite group G we denote by Aut(G), Aut"(G) and
Auto(G) the group of automorphisms of G, and of automorphisms 1 €'Aut(G)
resp. such that for every g € G the elements g and 1(g) are conjugate in G and
of automorphisms 6 e Aut(G) resp. such that for every p-power element g € G
(i.e. it has order a power 

"f 
p ) the element g and 6(9) are conjugate in G for all

p resp.

claim 5. Let p € Aut(G), and let M be a G-module. For the split ertension

6 :1---+ M ------+ E -+ G ---- 1 (32)

representing an element in H'(G,M) - notation € e H2(c,M) - the automor_
phism p ertends to an automorphism po of E if the G-modulis M and, pM are
isomorphic - where pM is M but the G-action is twisted, by p.

We would like to stress, that the pullback along p gives always rise to an
isomorphism of groups but this is in general not an automorphism. There
is no hope, that the modules M and pM are isomorphic. As a matter of fact,
the automorphism p induces an auto equivalence of the category of ZG-modules.
This equivalence is trivial iff p induces an inner automorphism on ZG.

"" 2o is the p-adic completion of Z.

2e This is a block which is a full matrix ring over an unramified extension of io.
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The fo l lowing resul t  was essent ia l ly  noted by L.  L.  Scot t  and the author '

Lemma 9. Let 1 € Aut"(G) be an automorphism such that

g € G are conjugate, and let

t : 1 ----* fu[ -----+ E --+ G ----- 1

g and l(g) t 'or eueru

(33 )

represent O in H2(G, M) t 'or a f inite G-module 191 : L rr,.u Mr, where M; are the

uarious p;-primary cornponents of M. If  M, is a characterist ic section in a f initely
generated projectiue Zo,G-module - i .e. there is a f initely generated projectiue

Lo,G-^odule P and character is t ic .submodules L1 c  L2 such that  Mi  -  Lz lL,  -

then 1 extends to an automorphism 1s of € , in part icular i t  ertends to a group

automorphism of E.

Rernark 5.

1. The above condit ions are satisf ied for a semi-simple f inite G-module M. ln

fact, such a module decomposes into a direct sum of simple modules, and

they are the radical quotients of p-adic indecomposable projective modules.

Z. The above condit ions are satisf ied. i f  the modules M; have order prime to

lcl.  In fact, we can assume, that M . 'Mi is an indecomposable zrG-mod-

ule. since p does not divide lGl, the f ing irG is a dlrect sum of matrix

rings (.R;)n;, where ft;  is an unramified extension of 20. Since I1 is inde-

composable, i t  is a module for (-R;)r,,  for some i. Then M - Llp^'L for

the projective indecomposable (R;)-,-module 'L. This shows, that M is the

epimorphic image of a projective module modulo a characterist ic ideal.

Definit ion 7.

1. Let G be the projective l imit with respect to normal subgroups {N;},. , . , ,  (. f .

Section 5.1). We require, that the normal subgroups N; are characterist ic.

We write
G ;  : :  G  l N ;  a n d  G ; , i  : :  G  l ( N ; '  N i \

with natural homomorPhisms

d; :  G ,  G;  and $; , i  :  G;  ' - - -+ G; , i  , ( 34 )

G a s aWe use the notat ion G for G, i f  we want to stress, that we view

projective limit.
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2 . We define the cocvcles

z ( a , A u t . ( G ) )  ' :  { ( p ; , i ) r ( , , i ( n  :  p ; , i  €  A u t * { G ; , i ) 3 0 :  ( 3 s )

p i , i  :  id ,  p i j r  :  p i , i \ ,  (36)

where  Aut . { - )  s tands  fo r  Aut ( - )  o r  Aut " ( - )  o ,  fo r  Auto( - )  3 r .  Then th is
is in general  not a group with mult ipl icat ion componentwise -  for this one
needs o i , j , .  p i , j  :  p l , i  .o i , i .

We nex t  de f ine  an  equ iva lence re la t ion  on  Z(a ,Aut . (G) ) :

( o ; , i ) :  @ ; , 1 )  i f f  p i . p i , j  .  p i t  :  o ; , i  f o r  p ;  e  A u t * ( G n ) ,  t  < ; n .  ( 3 7 )

This is easi ly seen to be an equivalence relat ion. with pi , i  a lso the family
p i ' p i , j  ' f i  I  i s  a c o c y c l e  f o r  p ; €  A u t * ( G ; )  ,  l K i 1 n .

The equivalence classes form a pointed set,  denoted by rr(c,431_(g)),  thu
dech cohomolog, set.  The class of the ident i ty is the point anr l  consists of
the coboundaries

B ( G , A u t * ( G ) )  : :

Z D

observe  tha t  G; , ;  =  G j , i .

ins tead o f  requ i r ing ,  tha t  N,  i s  charac ter is t i c ,  i t  i s  o f ten
invar ian t ;  i .e .  invar ian t  w i th  respec t  to  Aut - (G) .

our project ive l imit should be compared to the covering
s e i s .

ss  Th is  i s  where  we need,  tha t  the  normal  subgroups  are

(38 )

,  (39)

eech sty le
sets ,  then

enough to requi re that  N,  is  * -

of a topological space by z open

{ ( o ; i )  €  Z ( Q ,  A u t . ( G ) )  |  p n , i  :  p i .  p ; r  f o r  p ;  €  A u t * ( C ; ) }

which is easi ly seen to be a subset of the cocycles. This is a
cohornology set 32, and if we consider homomorphisms of such
these should be morphisms in the category of pointed sets.

Remark 6. G is the project ive l imit  induced from iGr)r  Ki .n.  I lence, given

( P ; ) t < t < " ,  P i  €  A u t . ( G ; )  ,  ( 4 0 )

t h e r e  e x i s t  p  €  A u t * ( G )  w h i c h  i n d u c e s  p ;  o n  G ; . t  i f f  p ; . p i ,  :  L

The importance of this cohomology is apparent,  i f  one deals with the quest ion
of isomorphisms of project ive l imits.

30

3 1

*-invariant
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Assume in addiiion, that fr is the projective limit of H; :: H lM;, I I i 3 n,

where Mi are *-invariant. Assume that we are given isomorphisms

o; : G; -- '-+ H; € lso* (G;, H;\"n. (41)

The obstruction, to when G and H arcisomorphic via an isomorphism in .Iso* (G' H)

lies in the cocycle

oi , j  : :  o i '  o ;L ,  H; , i  -  Hi , i ,  L  I  i r  j  3  n,

(o,, i)  e Z(H,Aut.-(H))- (42)

In fact, we have

Lemma LO. Let o(i,i) b" defined as in Equa tior 42. Then there exists

o € Iso*(G,,H) i f f  the cocycle (o;, i)  l ies in B(.F/, Aut.(H)); (43)

i.e. there exist p; e Aut*(f l ;) with oi, i  :  pi '  p;L.

The situation becomes quite simple, if we assume' that the groups I/;,i

coincide for all f,i.

Clairn 6. Assume that M;' Mj : M6 is the same for all i,i with i + i' Let

o;,i be d,efined as in Equation 12. Thenthere erists o € Iso*(G,H) iff there exist

p; € Aut*(H;) with 6r,i : p;modulo Ms Jor 2 < i < n; i.e. il the mapE o1,; lift to

p ;  i n  A u t * ( H ; )  l o r  2 1 i  1 n .

The importance of tt (C, Aut.(G)) lies also in the construction of the various

modifications of projective limits.

Lernma 11. Let G: l im. proj.(Gs) be the projectiae l imit.

1. Given a cocycle p : (p;) € Z(G,Aut.(G))(cf .Definit ion 7). Then the

definition shows, that

G(p) :  { (g;)  e I1 G;:  P; i  '6 ib i ) :  d; (g;) }
I1 i1n

rc a group.

84 This notation should be selfexplanatory'
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2. G(p) = G with an isomorphism
only i f  p e B(G, Aut.(G)) is a
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in Iso*(H(p),G) as nprojectiue lirnit', if and
coboundary.

5.4. The Zassenhaus conjecture revisited

We assume from now on, that G is a finite solvable group, and hence 16 (cf.
Definition 3) is defined. Moreover, we put Ni - opi(G), 1 S-i < n, for all prime
divisors p; of lGl, and G : GIN;.Then fo(G) is the projective l imit of the group
rings ZG;. We denote by

$:  ZG - - :  fo (c ) (44)

the projection map, which is an augmented homomorphism. Let I(G,Nr) c zc
be the augmentation ideal of N,; we denote by Ie(G,N,) :  6(I(C,N;)) i ts image
in Is(G). The group homomorphism d; : G -+ G; induce" un uug-ented ho-
momorphism of Z-orders fo(G) ----+ ZG;, which we also denote by h. Its kernel
is f6(G,N;). This kernel is characterist ic in fo(G), since p--adical ly the quotient
modulo fo(G,N,) is the principal block of f6(G). We shall  keep this notation for
the rest of this section

Assume, that f6 ::  fo(G) : fo(11) as augmented algebras. Since Ker (/;)
is characteristic in fs, we get an equality

Z G i :  Z H ;  a n d  s o  0 i .  G ; . a ; r  -  H i , l  1 i  1 n

for units -a; in QG;. We denote this homomorphism by o; : Gt ------+ Hr, g -j
a ; .g .  a | l .  We have the induced homomorphisms 6; ,1 ; , iy  :  ZG;  ,  ZG; , j  and so
conjugation with o; will act on 7G;,i - 7H;,i. we now consider the map

oi,j :: oi . o;r : Hi,j -+ Hi,j.

(45)

(46)

Then o : :  (o ; , i )  i s  a  cocyc le  in  Z(H,Aut " (H) ) ,  s ince  o ; , i  i s  a  cent ra l  au tomor-
phism.

When we now apply Lemma 10,
probably is also known to L. L. Scott.

then we obtain the following result, which

Theorem 6. Let G be a soluable group and assume, that fo(G) : fo(I/)
augmented algebras, and assunre that the central cocycle (o;,i) is def,ned as
Equation .12.

1. The groups G and H are isomorphic i f  and onty i f  (o;, i)  e B(f l ,Aut(H)).

AE

in

2. The Zas.senhaus conjecture (cf. Conjecture 1) is true forl6(G) : ts(H) for
the groups G and H if  and only i f  (o;, i)  e B(L,Aut"(H)).
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S. The p-uersion of the Zassenhaus conjecture (cf. Conjecture 2) is true for

fo(G) : fo(I{) for the sroups G and H if  and only i f  (o;, i)  e B(E,Auto(H)).

An immediate consequence is the following result:

proposit ion 5. Assume that G is a soluable group andts(G): fo(t/) .  I f  the

groip, H;,i are abelian, then the Zassenhaus conjecture holds /or f6(G).

Remark 7. Assume that in Theorem 6 all the groups H;,i are the same, then

the conclusion of the theorem are valid, provided, the maps or, i ,2 < i  < n can

be lifted to elements in ,4.ut*(rr,) (.f. claim 7). If we now invoke claim 6 and

Lemma 9 we obtain:

Theorem 7.
the groups Hi,i
ertensions

C ; : 1 - - - - * M i - G t - G o - 1

with f inite G6-mod.ules M;: I , . , .* M!, wherc M! are the various pk-prirnary

components. If M! is a characteristic section in a f,nitely generated projectiue

LorG-module,  thenG = H.

The hypotheses of the last theorem are satisfied in particular, if M; are

semi-simple Gs-modules or char(M;) is prime to lcl '

In case n:2 we get the fol lowing result,  since the hypothesis H.i, i  :  I lo is

then automatic.

Corollary 1. Assume that G is a pullback

G1 "----+ Gs
t t

G G 2

w i t h G ; : G l N ; .

l. If the Zassenhaus conjecture holds for ZG;, then the isornorphism problern

holds for G, prouided, for euery central isomortrthisrn 1 of Gs, there erist

p; € Aut(G;) such that py.pit :  ^t.  This latter eondit ion is satisf ied, in

case M1:: Ker (G, --- G6) fs abelian and semi-simple as zGo-rnodule or

the characterist ic ol Mr is prime to lGl35'

Assume that G is a soluable group and ls(G) : fo(f l) '  I f
-  Go are the same for al l  pairs { i , i}  and if  the groups G; are

(47)

35 It suffices to assume that Mt satisfies the hypothesis of Mr in Theorem 7.
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2. (a) Assunte, tha,t the p-uersion of the Zassenhaus conjecture hold,s for ZG;,
and assume

(b) that euerv p-central automorphism 1 of Go can be written as

pr pi t  : ' t  fo,  p;  e Aut(G;) . (48)

Then the isomorphism problem has a positive anEuer for zG.

Erample l. In the paper [zs] an example of a group .,ng zG and an augmen-
ted group basis fI was given such that for these two group bases G and I/ the
Zassenhaus conjecture is not valid. However, in the projective limit with respect to
{Opi}, all the groups H;,i are abelian, and hence by Proposition 6, the Zassenhaus
conjecture holds for f6(G) : fo(//).

Assume now again that fo(G) : fo(/{). The main result now describes G
in terms of fI and the cocycle o from Equation 46:

Theorem 8.
let the cocycle o

Then G -  H(o) ,

Assurne, that ls:: fo(G) : fo(f1) a,s augnxented, algebras, and,
€ Z(8,,4ylrjD be defined as in Equation 16.
where  H(o)  :  { (h ; ) t< r<" lh ;  e  H;  :  o ; ; (h1)  :  h ; } .

Remark 8.

1' Assume that ZG = ZH as augmented algebras, for G a finite solvable group,
then also 11 is solvable, and we have ro(G) - fo(/{), and so the conclusion
of Theorem 8 says G - H(o) for the associated cocycle o.

2.  Given a centra l  cocyc le o: :  (o ; , i )  e  z(E,Aut" (H)) ,  we can in terpret  o
a lso as an e lement  os :  o '€  Z( to(H) ,e" tdryH)) ; .u .  We can then
form the sroup f / (o)  and th*  r ing. f6( f l ) ( "z I -T. ( f f ( " ) ) .  Then H(o)  -
fI  i f  and only i f  o e B(H,Aut(H)); i .e. o is a cobounjary with respect
to.al l  automorphisms of A. Si- i tui ly, ts(H)(os) - f l  i f  and only i f
o € B(lo(I1) ,Aut(ro(H))); i .u. o7 is a coboundary with respect to al l
automorphisms of f o (J7).

3" In order to find two non isomorphic solvable groups G and .Fr with fo(G) -
fo(H) it is thus necessary and sufficient, to find a group fr and o e'z(H,

1"t"9)),. ".h 
that 1 * lol € rt (8, Aut"(H)) but 1 : [o] e f1r.1ay,

e*F;tn))). W" just point out, that it is necessary to have such an 
""urrrplu

Here Aut"(R) are the ring automorphisms of the ring rR,
R elementwise fixed.

which leave the centre of the r ing
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if one wants to construct a counterexample to the isomorphism problem.

Indeed we have found such an example.

A special case needs some attention:

Proposition 6. Let H be a soluable group and write it as the projectirte limit

with respect to {Oo,(G)}tSr<" . Assume, that Ho ,- H;, i  is the same for al l  pairs

{i ,  j} ,  r + j .  For the kernels K;;: Ker (11; '  Ho) we requirethat K; is a Sylow

pi subgroup of H;. If
o  €  Z ( H , A u t " ( H ) )

Zn  8z  fo (G)  =  Zn  Az  fo (H)  '

is the semilocalisation of Z at all the prime diuisors of lcl.

The above conditions just mean, that we have central automorphisms o1,;

< i < n, such that there can not be found automorphisms o; : H; '----+ l{;
-  o ,  . o j  t .

(4e)

such tha t t * l " l €  H (E ,Au t " (H) )  ,  t hen the re  i s  a  g roup  G  no t  i somorph ic  to  H

with

where Zn

Note 7.
of .  H6 ,2
with o;,i

Claim 7. Giuen an eract sequence of groups with K a p-group

| ------+ l{ ----'+ G '--+ H ---+ L .

I f  { lKl, l f / l )  :  l ,  then a central automorphisrn o6 € Aut"(ZnH) can be l i f ted' to a

central automorphism o € Aut"(ZoG).

I
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