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A Short Cornmunication

A COMPLETE PROOF OF BEAUVILLE'S CONJECTURE

NGUYEN KHAC VIET

Let f : X - Pl be a non isotrivial semi-stable fibration over the projec-

tive line whose generic fibre is a complex algebraic curve of genus g >- l' Then

Beauville,s theorem ([1]) asserts that s > 4, where s denotes the number of singular

fibres on X.

The aim of this note is to give a proof of the following statement conjectured

by A. Beauvil le ( loc. ol.)

Theorem (Beauvil le's conjecture). s ) 5 i f  g > 1'

For convenience we shall prove this theorem in a series of several claims

below.

l. Xiao's equality (12]). Denote by u.r the relative canonical class of / and

a s s u m e t h a t s : 4 . T h e n
w 2  : 4 ( g  -  r )  ( 1 )

The idea of proving this equality is to apply the Sakai-Miyaoka inequality

in the following form.

2. The sakai-Miyaoka inequali ty ([sl).  Let f :  x - B be a semi-stable

fibration with g > 1 and q : g(B) > I then

Tr( "+r -#)  
<e. , (x )  -  " ' , (X)

where crrc2 denote Chern's classes of X and the sum is taken over all chains of

(-2)-curves on X corresponding to singularities p; of the type A,,'

(2)
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3. The beginning of the proof. Take a cyclic covering of degree n : Bn --+ pl
( t o ta l l y )  b ranched  ove r  s  c r i t i ca l  po in t s  o f  p l  , i . e . , 2g (8 . ) - z :  -2n+  ( z -  1 )s
by the Riemann-Hurwitz formula. Let Xn be the relatively minimal resolution of
X xp, 8,, Now we apply (z) to X.

(3 )

where p; has the type A- on Xr, . By an easy computation we have the following
equalities

t ) 7 i + l : z ( r ; + 1 ) ,

z)  c l (x")  :  nu)2 - t  Z(ns -  2n -  s)(zs -  z) ,

3 )  
" r (X" )  

:  n6  +  (ns  -  2n  -  s ) (Zs  -  Z ) ,

where
6 ::# {double points of singular f ibres on X} .

Thus by substituting these equalities in (f) we obtain

t
i

r (e+ t - i * )  S rcz (x " )  -  c? (x . )

s(zs -  4  -  
T  <, | (zs-  z ) ( "  -  z )  - , ,1

4, The end of the proof. Now putting
Xiao's equali ty (1) one has

8 (g  -

Evidently the latter is possible as z
the proof of the theorem.

(4)

s : 4 in (a) and taking into account

36- < 0 .
n

if and only if I : I . This completes

1 )  -

--+ oo

5. Remarks.

1) It is not difficult to see that (4) combined with Xiao's inequality for the
slope of /  (cf. ial) implies Xiao's equali ty (t) fcrr the case s:4 which actuallv
does not occur in view of our theorem above.

2) The idea used in the proof above enables us to get the following variant
of the canonical class inequali ty. Let f :  X --* B be as in 2. with g > l .  Then
there exists a universal constant A: A(q,s) < 2q - 2 + s (effectively computed
b y q  a n d s ) s u c h t h a t

w2 < l (zs -2) .
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A detailed vercion with other applications will appear somewhere else.
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