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A Short Communication

A COMPLETE PROOF OF BEAUVILLE’S CONJECTURE

NGUYEN KHAC VIET

Let f : X — P! be a non isotrivial semi-stable fibration over the projec-
tive line whose generic fibre is a complex algebraic curve of genus ¢ > 1. Then
Beauville’s theorem ([11) asserts that s > 4, where s denotes the number of singular
fibres on X. '

The aim of this note is to give a proof of the following statement conjectured
by A. Beauville (loc. cit.)

Theorem (Beauville’s conjecture). s>5 if g >1.

For convenience we shall prove this theorem in a series of several claims
below.

1. Xiao’s equality ([2]). Denote by w the relative canonical class of f and
assume that s =4 . Then

w?=4(g—1) ' (1)

The idea of proving this equality is to apply the Sakai-Miyaoka inequality
in the following form.

2. The Sakai-Miyaoka inequality ([3]). Let f : X — B be a semi-stable
fibration with ¢ > 1 and ¢ = g(B) > 1 then

23 (r,'+l— riil> < 3¢a(X) — 4(X) (2)

where ¢;,c; denote Chern’s classes of X and the sum is taken over all chains of
(-2)-curves on X corresponding to singularities p; of the type A,,.
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3. The beginning of the proof. Take a cyclic covering of degreen : B, — P!
(totally) branched over s critical points of P! | i.e., 29(Bp)—2=-2n+(n—1)s
by the Riemann-Hurwitz formula. Let X, be the relatively minimal resolution of
X xp1 By, . Now we apply (2) to X,

By (a pya.af i 1) < 365(X,) — ¢2(X.) (3)

where p; has the type A~ on X, . By an easy computation we have the following

.
equalities

1)_7,'+1:n(r,~+1),
2) ¢} (Xn) = nw? + 2(ns — 2n — s)(29 — 2),
3) c2(Xn) =nbé + (ns — 2n — s)(2g — 2),

where
6 :=* {double points of singular fibres on X},

Thus by substituting these equalities in (3) we obtain

s(2g—2)—3n—65n[(2g—2)(s—2)—w2]. (4)

4. The end of the proof. Now putting s = 4 in (4) and taking into account

Xiao’s equality (1) one has

36
-1 - —%9

Evidently the latter is possible as n — oo if and only if ¢ = 1 . This completes
the proof of the theorem. '

5. "Remarks.

1) It is not difficult to see that (4) combined with Xiao’s inequality for the
slope of f (cf. [4]) implies Xiao’s equality (1) for the case s = 4 which actually -
does not occur in view of our theorem above.

2) The idea used in the proof above enables us to get the following variant
of the canonical class inequality. Let f : X — B be as in 2. with g > 1. Then
there exists a universal constant A = A(g,s) < 2¢—2 + s (effectively computed
by ¢ and s ) such that

w? < A(2¢9 - 2).
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A detailed version with other applications will appear somewhere else.
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