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SOME RESULTS ON SI-RINGS

DINH VAN HUYNH, HONG KEE KIM and JAE KEOL PARK

We give a brief report on the main results of our paper [4] which has been
accepted for publication in the Journal of Algebra. The following results on a ring
R are obtained : (i) R is the ring direct sum of a semiprimary SI-ring and a right
C'S right SI-ring with zero right socle if and only if every cyclic semiprimitive right
R-module is a direct sum of a projective module and an injective module; (ii) R is
the ring direct sum of a semiprimary SI-ring and a right and left S I-ring with zero
right (and left) socle if and only if every finitely (or 2-) generated semiprimitive
right R-module is a direct sum of a projective module and an injective module;
(iii) R is the ring direct sum of a semisimple ring and a right SI-domain if and
only if every cyclic semiprimitive right R-module is projective or injective, as a
.consequence, R is semisimple if and only if every 2-generated semiprimitive right
R-module is projective or injective.

All rings discussed here are associative rings with identity and all modules
are unitary. A right R-module M is called semiprimitive if the Jacobson radical
of M is zero, i.e. if the intersection of all maximal submodules of M is zero. Let
M be a right R-module, where R is a ring. Then M is defined to be a C.S-module
if each submodule of M is contained essentially in a direct summand of M. A
ring R is called right CS if R is a CS-module as a right R-module. Recently,
CS-modules have been extensively studied, and the number of papers devoted to
them is so large that we are unable to quote them here. Therefore we only refer
to Dung-Huynh-Smith-Wisbauer [1] for basic properties of C'S-modules as well as
their application to the structure of rings.

Right (resp. left) S/-rings, i.e. rings for which all singular right (resp. left)
modules are injective, have been introduced and investigated by Goodearl [2] and
the structure of right S/I-rings was obtained by him in Theorem 3.11 of [2]. In |5,
Corollary 5|, Osofsky and Smith showed that a ring R is right ST if every cyclic
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singular right R-module is injective. This enables us to show that a ring R is right
S1, if and only if every cyclic semiprimitive singular right R-module is injective.
In particular, if the singular submodule Z(C) of every cyclic semiprimitive right
module C over a ring R is injective, then R is right SI. The complement B of
Z(C) in C is then a non-singular direct summand of C which is not projective
in general. However, if for example R is the ring direct sum of a semiprimary
SI-ring and finitely many right SI-domains, then such a submodule B is always
projective. Therefore it is natural to ask the following question

(*) Which rings R can be characterized by the property that every cyclic
semiprimitive right R-module 1s a direct sum of a projective module
and an tnjective module?

On the other hand, rings each of whose cyclic (resp. finitely generated)
right modules is a direct sum of a projective module and an injective module
(briefly, right C DPI-rings (resp. right FGPI-rings)) have been introduced and
investigated by Smith [6] (resp. (7)). In [5, Proposition 2] it was shown that right
C D PlI-rings are right noetherian and right SI1. However, as shown in (6, Example
4.12], there are artinian SI-rings which are not right CDPI. In connectmg this
with (*) we show that a ring R is the ring direct sum of a semiprimary SI-ring and
right CS right ST-ring if and only if every cyclic semiprimitive right R-module
is a direct sum of a projective module and an injective module. One direction of
this statement is clear. Assume conversely that every cyclic semiprimitive right
R-module is a direct sum of a projective module and an injective module. Then R
is right ST and it splits into a ring direct sum of a ring A and a ring B such that
A/Soc(A,) is semisimple and Soc(Bp) = 0. For showing that A is semiprimary
and B is right C'S it requires much work and this is the main part of the paper.

" If we strengthen the hypothesis on a ring R by assuming the same decompo-
sition property for finitely (or -2-) generated semiprimitive right R-modules, then
R is exactly the ring direct sum of a semiprimary S/I-ring and a right and left
S I-ring with zero (right or left) socle. In particular, a right FGPI-ring is the ring
direct sum of a right artinian SI-ring and a semiprime right and left noetherian,
right and left SI-ring.

Finally we consider the property that every cyclic semiprimitive right module
over a ring R is injective or projective and show that R is then exactly the ring
direct sum of a semisimple ring and a right S/-domain. This improves the main
result of [3] and [6, Theorem 2.12]. As a consequence we obtain that a ring R
is semisimple if and only if every 2- generated semiprimitive right R-module is
projective or injective.
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