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DISTRIBUTION AND VARIANCE OF STEREOLOGICAL
ESTIMATORS OF VOLUME AND SURFACE AREA

DAO HUU HO

Abstract. An analytical expression of the stereological estimators of volume and surface
area 1s derived. By using this ezpression we will give some formulae for density functions, the
variances of the stereological estimators and upper bounds of the variances for a case of balls.

15 INTRODUCTIQN :

A new set of fundamental stereological formulae based on isotropically ori-
entated probes through fixed points has been derived by Jensen E. B. et al. (cf.
(1], (2], [3]). These formulae are special cases of a generalized version of an integral
geometric formula of Blaschke - Petkantschin type (cf. [4], [5]).

The following stereological formulae for volume and surface area in three
dimensions are of practical importance: '

Let Z be a bounded, convex subset in IR®. Select a fixed arbitrary point
X € Z. Suppose Ly(X) is an isotropic random plane through X, generating the
random section Z N Ly(X).

Let

A

V(z) = 2/ d(X,Y)vs(dY), (1)
ZNL,(X)

S(Z) = 2/ d(X,Y)/sin (Y )y (dY), (2)
ZNL2(X)

where

d(X,Y) is the distance between the two points X and Y,
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a(Y) is the angle between the tangent plane to the boundary surface dZ at
Y € 8Z and L,(X),

v1(dY) is the differential element of i- dimensional volume measure in IR,
{=1,2.3

Then V(Z) and §(Z) are unbiased stereological estimators of the correspond-
ing volume and surface area of the subset Z:

EV(Z) =V (Z), (3)

" ES(Z) = S(Z). (4)
In particular, the mean values do not depend on the choice of the point X € Z.

In the present paper, we will study the variances and probability densities
of these estimators in the special case where Z is a sphere. Upper bounds of the
variances are given. Direct proof of the unbiasedness is also given in spherical
case.

2. AN ANALYTICAL EXPRESSION OF THE STEREOLOGICAL
ESTIMATORS OF VOLUME AND SURFACE AREA

Without loss of generality, we can suppose that the sphere under consid-
eration is centered at the origin O. Coordinate axes are denoted by n,n3,ns.
Because of the summetry of the sphere, we need only to consider the case where
the fixed point X lies on the nz-axis, i.e. X = (0,0,X3), 0< X3 <R

It is obvious that Z N Ly(X) is a circle of center I where OI coincides with
the normal of Ly(X) . The radius r of the circle depends on the orientation of
Ly(X). Now, let us consider the integrands of (1) and (2), in particular, the
function d(X,Y) and let us give a geometrical interpretation of the estimators of
V(Z) and 5(2).

The integrand d(X,Y) forms a cone with the top at X, its symmetrical axis
through X is perpendicular to section plane Z N Lo(X) and its top angle is right
(cf. Fig. 1).

Therefore,
V(Z) = 2/ d(X,Y) vz (dY)
ZNL2 (X)

is equal to 2 times of the volumé of the bounded set enclosed by upper surface:
d(X,Y) (the cone), lower surface: Z N L2(X) and lateral surface: cylinder with
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Fig . {
lower base is the circle of center I and of radius r (cf. Fig. 1). This is also true
for any bounded, convex subset.

When Z is a sphere, the tangent plane to the surface Z at Y € 9Z N Ly (X)
is always perpendicular to radius vector OY (cf. Fig. 2).

Therefore e :
sina(Y) = cos(OYI) = 7
and analogously,
A : 2R
S(Z) = 2/ d(X,Y)/sina(Y) v (dY) = —/ d(X,Y)v,(dY)
8ZNLy(X) T 48maL,(X)

is equal to %Itimes of the surface area of the lateral surface of the cylinder

described above (Fig. 1).

Now, we reduce the calculation of stereological estimators V (Z), 5(Z) deter-
mined by (1) and (2), to that of the volume and surface area by double integrals.
We determine a system of coordinates (z,y,2) with I as the origin, Ly(X) as
(z,y)- plane and with the normal vector OI as the Z-axis (cf. Fig. 3).

Then, the cone equation is
z=1/(z —b)? + y2

and the equation of the circle section is
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Fig .3

Therefore,

V(Z) 2 / / V(z — b)% + y2dzdy. (5)
{2442 <22}

Using the polar coordinates

z=b+ ucost
g =higih) 0IOYLP

we get, after some calculations,

™
V(Z) = %/ (4b% cos? t + r? — b%)v/b2cos?t + r2 — b2 dt
0

(6)

v 8 w/2
- §/ (4b% cos®t + r? — bz)\/b2 cos? i + r? — b8 di.
Jo
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Similarly, for .§'(Z), we can use the equations of the lateral surface y = ++/r2 — z2

A

R ) '
S(Z):gr—// 1#y2+y2dadz
(D)

where =

24 y2=1r

(D) = 2 =5 =
e i 9 == ’ = =
(z=b)°+y*=2°,2=0, —r<z<r

= {2? = o b2 20br —(2)0/, -

to get finally

™
S’(Z) = 4R/ \/r2 + b2 — 2rbcostdt. (7)
0

Note that (7) can be obtained more directly as follows: In the (z,y)- plane , by
the law of cosines, the integrand d(X,Y) is

d(X,Y) = \/IX2 +IY2 — ZIX.IY.cos()m’) = /b2 + 12 — 2br cost

and
v1(dY) = rdt.

The radius r of the circle section and the length b of .segment I1X depend on
“the radius R of the sphere and on the position of the point X (i.e. the length of
a segment OX) as well as on the random plane L3(X) passing by X.

As we noted previously, the vector OI coincides with the normal of a random
plane L3(X). A determination of a random plane Ly(X) passing by X is equivalent
to the determination of its normal OI. The orientation of the normal OF is
determined by (v, 8)-angles in the spherical coordinates. Fortunately, a section
Z N Ly(X) is insensitive to changes of the angle p. Thus, after a rotation Ly (X)
with a fixed angle 6, and varying angle ¢, the radius r and length b.of the circle
section do not change. Therefore V (Z) and $(Z) do not change when p varying.

Angle 6 varies from O to 3 with the probability density p(#) = sin 6.
We have (cf. Fig. 2)

b=asind, (8)

r =vVR? — a2 cos?4. (9)
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In two special cases, V (Z) and 5(2) can be given in a closed form. If point
X coincides with the origin (X = O), then @ = 0,b = 0,r = R. From (6) and (7)
we have

V(z)= 3R =V (2), -

$(z) = 4nR* = S(Z).

If point. X lies on the sphere, then a = R,b = r = Rsinf. From (6) and (7) we
get

A

64 '
V(Z) = —9—R3 sin® 9, - (11)

S(Z) = 16R*sin . (12)

The unbiasedness of estimators V (Z) and S(Z) can be proved as follows.

From (6), (8) and (9) we have

: ] z
EV(Z) = §/ sm0d0/ (4b? coszt 4% = bz)\/bi2 cos?t + r2 — b2dt

/ di/ (40’ cos® tsin 20+ R® - 2)\/a2 cos2tsin®§ + R? — a?sin 0d6.

Leaving out most of the detailed calculations, we get

= % I3 3
BVI(Z)s=o= / {(R2 dig¥dhi §a2\/ R? — a?cos® t+
0.

3a acost

22 cost(R? — a® + a®cos? t) arcsin % }dt
2 VR2 —a? 4+ a?cos?t

4 1

= §7r(R2 —a?): +7a’V/ R? ~a2+4a/
0

: au
arcsin = du.
VR? — a? + a?u?

{—L—(R2 a’® + a*u?)

V1-—1u?

We need to calculate the last integral

. au
2 4 a*u?)arcsin du.

= 4a
VR? — a? + a?u?

f s



Stereological estimators of volume and surface area 47

2 __q2
Putting arcsin \/R——“L—_—— =t wegetu= 3@tgt and hence

2~a2+a2 u?

Zie gl
(R? —a®)(1 + tg%t)t.d (—L‘_tgt>
a

to
to
+ — / \/1 = ————tgzt tg2t dt.

Futher, putting @tgt = cos v yields

8 2 sin?v 4a? 3
I= §R2\/R2—a2 L dv+—3—\/R2—a2/ sin® vdv
0
a?

0 + cos? v
4 4
= §7rR3 - §7r(R2 = az)% —a’rV/R? — a2.
Consequently,

EV(Z) = gwRB = Vi{Z}

Thus equation (3) is proved.
Now from (7), (8) and (9) we have

ZL

sin 0d0/ \/R2 — a? cos 20 — 2asin 0\/R2 — a2 cos?fcostdt.
(13)

ES(Z) = 4R/

0

If the point X lies on the sphere, from (12) we get

ES(Z) = 16R2/2 sin? 0d0 = 47 R? = S(Z).

0

If the point X is inside the sphere (0 < a < R), then by the numerical integration
method (with R = 1) we can see that the right-hand side of (13) is equal to S(Z).

3. THE VARTANCE AND PROBABILITY DENSITY OF ESTIMATORS

In this section we consider some special cases of the above result.
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a) If the point X is coincides with the origin, from (10) we have
Var V (Z) = 0,

Var $(Z) =0,
where Var denotes the variance of an estimator.

b) If the point X lies on the sphere, from (11) we get

64> 3 642 16
= 2 -7 = 6
E{V(Z)}* = —9712_ /0 sin’ 0d6 = o ggR ’
Y 64° 16 ) 2
Var V(2) = o B° (—— - 7r2> ~ —R63,14~ HRE))
9 9.35 9 %
- EV(2Z)

If 0<X§%4—R3:cthen

Prob {V(Z) < z} = Prob {0 < arcsin i/g} .
¢

The probability density of V(Z) is
1

From (12) we get

WA

. 51
E{S5(Z)}* = 16*R* " sin®0d0 = ———2—R4
0
32
Var §(Z) = 16R* (? - ) ~ 12,8R*,

. R .
=/ Var §(2) ~ -~ E5(Z) ~ 0,28E5(Z).

If 0 < z < 16 R?, the probability density of 5(Z) is

T

slz) = »
ps(z) 16 R2+/256 R4 — 12
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c) If the point X is inside the sphere, then

64 [Z 2 2
e { / (4a*sin® G cos®t + R — a2)\/a2 sin®f cos? ¢ + R2 — azdt} sin 0d6,
0 0

z v 2
16 R? / : {/ \/R2 — a?cos 20 — 2asin 0\/R2 — a? cos? 0costdt} sin 6d6.
0 0

By the numerical integration method (with R = 1) we note that E{V(Z)}? and
E{S(Z)}* decrease when a decreases from R to 0, i.e. Var V(Z) and Var 5(z)

are maximal when X lies on the sphere and tend to 0 when z tends to the origin.
We have

Var V(Z) < 5,6R°,
Var S(Z) < 12,8R*.
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