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NUMERICAL SOLUTION FOR
NONLINEAR PERIODIC BOUNDARY-VALUE PROBLEMS

PHAM KY ANH and BUI DUC TIEN

Abstract. An appromimate method for nonlinear periodic boundary value problems (PB-
VP) is discussed. Under suitable hypotheses, the stability and convergence of the scheme are
established. Some numerical examples are given.

1. INTRODUCTION

The most frequently used method for the numerical solution of nonlinear
PBVP is the finite-difference method. This method is, at least conceptually, easy
to perform. However, it may be difficult to solve the obtained systems of nonlinear
equations and to verify the stability of the scheme.

This paper deals with a numerical method for solving the following PBVP:

v™ = g(t,y,9,...,y™), 1€ (0)w), - {(11)
y(i)(o) :y(i)(w) (i:ﬂ’n—l); y,gEIRl. (].2)

The simple case, when n = 1, has been studied in our previous work 13]. For
recent presentations of the Seidel - Newton method, see [1-7].

Problem (1.1), (1.2) may be written in the vector form
= Az Hflt, 2,2y @l0). = z{w), (13)
where z = (y,y,...,y("“))T; e m el o |
oz Yol Bodiam @
6 bls Hlidsliz O
44 — . X 5 = .
a1 ... 0
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Discretizing (1.3) we obtain a system of nonlinear equations with a linear
singular part:

{eris — ze)fh= Az + s, on ey — m)ih), (1.4)
o = TN, (15)
k=g N 1R RVY S OV NN =2 O
We shall use the notation.|.| for the max-norm of vectors and the correspond-
ing norm of matrices. The transpose of a matrix or vector will bear a super script

T, and the scalar product in R™ will be denoted by (.,.). For any linear operator
A, N(A) and R(A) will denote the null space and the range of A respectively.

Problem (1.4), (1.5) is reduced to the operator equation
Anzh = Fi(zn), (1.6)

where [Apzh), = (Tht1 — k) /b = Azis [Fu(zn)]g i= f(te Ts (Trer — zk)/R) 5
(kZO,N—l); An,Fn: Xp — Ya,
Xp = {2, = (25w IN) RV+UR . g0 = zx);

Yh = {yn = (vo,-..,yn_1) € RV},

e s — : = 3 S e
Hyh||h—OS§.nSa]3](_1[yjlv lHl‘h|Hh OrSI}aSXN|:l:]]+h og?lgaz\)r(—1|$]+l $J|’

g Xy —di Yp = Nn,

We always assume that C,f: =0, Vi > k. Denote by e € Y, and e € itk AR
the vectors, whose elements are : € = (C,'c‘_lh”_l,CZ_zhn_z,...,C’,ﬁh,l)T and
(e)k = €1 (k =0, N) respectively, where e; = (1,0,...,00T € R".

A simple computation shows that

- e N
B 1 Wl W

(B bt =} _ : : (k. =0, N).
0 0 0 1

The remainder of the paper is organized as follows: in Section 2, an abstract
Seidel - Newton method is described. Then, in Section 3, some basic properties
of the linear and nonlinear difference operators are studied. In Section 4, we state
some existence and uniqueness theorems for continuous problem (1.3) (see [2,6]).
Section 5 deals with an iterative method for solving nonlinear system (1.4)—(1.5).
Section 6 is concerned with the stability and convergence of scheme (1.4)-(1.5).
Finally, some numerical results are presented in Section 7 and we conclude with a
discussion of the results.
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2. SEIDEL - NEWTON METHOD

Let us consider the problem
Az =FlL), (2.1)

where 4 : X — Y is a bounded linear Fredholm operator (of index zero),
F: X — Y is a possibly nonlinear operator, X and Y are Banach spaces.

Together with (2.1) we consider the following ”discrete” problem
Ruz = 1012y, (2.2)

where Ay, F : X}, — Y}, are linear and possibly nonlinear operators respective-
ly, and X3, Y, are finite-dimensional Banach spaces. We always suppose that
dim X} = dim Y}, < oo, hence A}, is a Fredholm operator (of index zero).

Consider the diagram

AF
XoCcX — Y

5 l l"‘ (2.3)

Ah)Fh
Xh A s Yh

where X is a set containing a solution z* of ”continuous” problem (2.1). mp, 73
are bounded linear operators which satisfy

Imnzlln — llzl] (A —0), VzeX; |lmyllh — [lyll (h—0), VyeY.

Suppose that the discrete and continuous problems (2.1), (2.2) are compa-
tible in the following sense:

a) Diagram (2.3) is asympotically commutative on Xo, i.e.
[[An(mhz) — Th(AZ)||h — 0 (h—0), Vze Xo,
| Fr(mhz) — 10 (F(2))|ln — 0 (A —0), Vz € Xo.
b) The scheme (2.2) is stable, i.e. Jeg,hg > 0,Vh < hg,Vy, € Y}, : llyr||n < €o,

the perturbed problem A,z = Fj(z) + y has a unique solution z;, € fipoe
X,
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Moreover, suppose that Yh < hg,mhz* € Q, and ||Zh — zi||r < Cillynllr,
where Zj is a solution of problem (2.2). Then under some additional hypotheses

we can apply the Seidel - Newton method to discrete problem (2.2). Let m,(Lm) be
a m-th approximation of £, defined by the Seidel - Newton method and let

1z{™ — Z4|[n < Caqll,

where 0 < g, < ¢ < 1. Then ||:E£m) — mhz*||n £ p(h) + C2q), where p(h) :=
Cl{‘iﬂh"rhx* = Thﬂ.’E*Hh = I]Fh(ﬂh.’t*) = ThF(I*)Hh}.
In many cases an estimate for ©(h) can be found. Thus, to find z* with

an accuracy € > 0, we first choose the sufficiently small step A > 0 such that
©(h) < €/2. With that fixed h we make m > mq(h) iterations to get Caq;* < €/2.

Before concluding this section, we collect some facts which will be of later
use. To simplify notations, we are going to state results for problem (2.1). The
same results hold for problem (2.2).

Since A is a Fredholm operator, X,Y can be decomposed into direct sums
of closed subspaces: X = X, ® X2, Y =Y, @Y;, whereY; = R(A) C
Y, X;= N(A)C X, and codim Y; = dim X3 < oo. Further, the restriction A
of A to X; has a bounded inverse. Let P and @ be the bounded linear projections
satisfying conditions

R(P)=N(@Q)=Yi; R(Q)= N(P)=Ya.

Theorem 1.1 (see [1-3]). Assume that the mapping F : 1 C X — Y 1s con-
tinuously Fréchet differentiable in an open set Q) including the closed ball S with
center at o and radius r > 0 and satisfies the conditions

IPF(z)|| < a; |IQF' ()| <B8; [IQF (2)lx,ll < s

IQF'(z) — QF'(W)II < o(llz—yll) (Yz,y € 5},
where p(t) is a continuous, nondecreasing function and p(0) =0, p(t) > 0.

If the coefficients o, 3, 7, the radius r and the initial approzimation zo
satisfy the relations

1
g 2aﬁ7||ﬁ_'1||+7/ p(6t)dt <1 and 26(1-¢q) ' <r,
0

where 6 := By||A~1]| ||[Az — PF(z0)|| +1||QF(z0)||, then the sequence {z,}, con-
structed by the Seidel - Newton method
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Unt1 = —A_IPF(xn);
5 ~ =i ~
Tn =Unt1 +Vn; Vngr =0, — [QF(2,)]x, QF(Z,) ;

Tpt1 = Upny1 + Upyg (un & Ay); { N E Xz)

converges to a solution * € S(zo,r) of (2.1) at the rate:

l|lzn — z*|| < 26(1 — ¢) " 1q™ < rg™!

- Besides, if dim N(A) = 1, then z* is the unigque solution of problem (2.1)
in the set Qo = {x € S(zo,7) : ||Jv — vo|| < r/2}, where v,vo are projections of
T,zo onto Xy = N(A) respectively.

3. LINEAR AND NONLINEAR DIFFERENCE OPERATORS

3.1. Basic properties of the linear difference operator

Theorem 3.1. The mapping Ay, : X\, — Y}, is bounded linear Fredholm operator
(indez zero). Moreover, N(An) = X? = span {e};R(An) =Y ={yn € Yy, :
N-1 N

D Ven =0}; Xn = X} @ X2, X} = {zn: (O (B + hA)" 2y e1) = 0}, ¥ =
k=0 k=0
Yi® : o ,Y,) = span {€}.

Proof. First, we prove the following relations:
i) N(An) = X2

ii) R(Ar) =Y
iii) Xy =X!o x}
it o el A

Then, from (i)-(iv) it is obvious that A is a Fredholm operator.

i) Note that z;, € N(Ap) if Vk = O,N -1 (zpyq — Zr)/h — Azy 20 or
Zk+1 = (E + hA)xk, k =0,N—1.1f 2z, € N(A,) then Bzy = 0, where
B :=(E + hA)N -- E, hence zo = ae; and therefore z;, = ae.

Conversely, if £, = ae then z), € N(A4).

ii) The relation yp, € R(Ar) means that there exists an element zo, € IR” such
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that

zis1 = (B + hA) 2o+ ) (B +hA) 0y, (k=0,N-1),
=0
N-1
Bzo+h Y (E+hA)N* 1y, =0.

¢==0

Multiplying both sides of the last equality by e, and noticing that (Bzo,e,) =
0, we get

N-1
R {(E+hA)N 7 yiea) = 0.
1=0
=
Therefore L Yin=0.
=0
iii) First, we show that XN X% = {0}. Indeed, if z» € XPriXg then oy = 0F.
N
Since zj, € X!, we have 0 = aZ ((E + hA)N - Fei,e1) = o, thus =) = 0.
k=0

Let &5 € Xy, T = pE .G Xé‘,ich := zp — I. Choosing a € IR! such that
Zijh = Xl, i.e.

N N N
= (e1, Y _(E+hA)N *iy) = el,z E+hA)N ~a ) ((E+hA)" Fer,e1)
k=0 k=0 k=0

we obtain a =

N
N + 12 <(E + hA)N—ka:k,el>. Thus the relation X} = X{l@)(éh

has been proved.

iv) Finally, let yp € Ylh N Yzh then y, = ae. The inclusion yj, € Ylh implies that
N=1
=0 Z éxn = alN, hence a = 0, and therefore y, = 0.
k=0
For every yp € Yh, we put §p = ae € Y2h and choose a such that y, =
N-1
yn — Un € Y*. It is obvious that a = — Z Yk,n, and hence the relation (iv) has

N k=0

been proved.
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Theorem 3.2. The restriction Ah of the operator A to Xh has a uniformly
bounded inverse defined by the formula

k
= ff;lyh; Tet1 = (E +hA)*1zy + h’Z(E +hA) iy, (k=0,N 1}
10
gh== (Ela"'s gn)T = "
ek e 1L h"—;c;:,—; £ n
0 SR e €3 M2
. = By ol ek (3.1)
0 0 hC}V ﬁn Nn—1
& = : (3.2)
o oy Tl '
Nt N k-1
where n = —h Y (E +hA)N-*-1y Z}: E+hA)N =1y,
k:O : 8=0
Finally there holds the estimation
1451 < o (3.3)

(p1 will be shown just below).

: N-1
Proof. Suppose that y, € Y}* and 5 := —hZ(E +hRAN R 1y As gy € ) f

N k—1 n
we have n = Zn,el Lef i ¢= hzz N_i_lyi —= Zﬁiei.
k=11=0 t=1]
k
Putting 4, ; = (E+}LA)k+lxo+hZ(E+hA)k_iyi = 6;—]\7—‘1) , Where
2=0

ro = (&1, ..., €,)T and using relation (3.1) we have Apzy =y, , 2z, € Xp. Further,
choosing &; such that z, € X} and noting that z = zy = (E+ hA)Nzo — 1,

N N k-1
we get 0 = (e, (E + hA)N_kJEk) = ((N + 1)(E + hA)"zo + hZZ(E e
K—=0 k=090
= . E e
hA)" =1y, e1) = {(N + 1)(zo + 1), e1) + (7, e1), thus & = e G

Setting ¢ := |E 4+ hA| = 1 + h, we have
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N=1 N =1

ml <k S IE+RAN Myl <k DV lunlln
k=0 k=0

=[x+ AN = 1llynlln < (e - 1) yn |-

N k-1

- e et :
Note that || < hl;;q ynlln < <|w - 1|——h— + E)”yh”h Hence

I w—1 1 ;
il < { Bty D
W w

Now we shall estimate the norm of zo. We have

-1
|$0| o lrgta'gnlézl _<_ max {l&l'alcN l |7I|},

where
R RO . R
" ol o SROLT ..av RP-2app
=
0 0 hCl
g lﬁll l ll w
Since |&] < |m|+ 7 < She bt e lynlln  and |n| <
(e“ —1)||yn||n it follows that lxol < C’o||yh||h, where
— 1

i 1 max{ew—1+| e |cN1|( )}. T

From

k
k1] < |E +hAF  zo| + kY |E+ RAI*[ynlln
1=0

k+1 gt -1
& s
= [(Co+1)g**! —1]llynlln  (k=0,N —1),

it f < N :
it follows that Og}castle < [(Co+1)q 1)||yn||n. Thus
1
[llznllla < max o + 5 max |zj41 = 2] < [2(Co +1)e” = 1{yalln-

Summing up, we obtain that Ilﬂh < gy 3= 2(Co + 1)e* — 1, where Co is
defined by (3.4).
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3.2. Nonlinear difference operator

3.2.1. Bounded linear projections in Y}

N-1
‘Let Qrusr= Zyk n€ € Y We first show that Q) is a bounded linear
k 0
projection with R(Qy) = Y and N(Qh) = Y.
: = y 1 3 =1
Indeed, Q%yh ="M= Yrinele= L Yk,n > €kn€ = Qnyn,
N N N
k=0 k=0 k=0
therefore Q% = Q. :
Note that
N(N-1)---(N—-k+1) w*
£ " = e
e S R 3 K N
= w 3 1 : k-1 = w*
e . K N ik ockep-t by
n=1/ln - 1)} WER
Since C; = max w*/k! = e ) 2
W n — 1) USpe—1lSw<n " w,

and  ||Qnynlln < HN|lynlln ||é]ln  we have ||Qu]| < C).

Clearly, P, := I, — Qy, is also a bounded linear projection and R(P) =
Y[, N(Py) = Y. Moreover |Pr|| <1+ Cy.

3.2.2. Some hypotheses on g and its derivatives

In the sequel we assume that the following hypotheses are satisfied:

1) 0,61, 1) 0,0 X R R g, 22 e o2y
‘:—g(t,f)lga ((=T,n+1), forall (t,¢)eA,
where A = {tf €0,w]x R*!:|¢| <R, t=1n+1)}.

3 n+41 > . - E el
h2) |SE (6= 52 teJ<L]§|£J—s] 4.6, ea =T+
w dg
h3) EaEC‘[O,w]:/ a(s)ds >0 and Y(t,¢6) €A, 2L > qp).

0 &1

Set 1 = {.T:h & A% ]”thh 2t R}'
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Theorem 3.3. Suppose that the function g : A — IR! is continuous in the
first variable and continuously differentiable in remaining vartables. Moreover, as-
sume that the conditions (h1)-(h3) hold. Then the operator Fy,(zr) ts continuously
differentiable (in the Fréchet sense) and its derivative satisfies the inequalities:

|1 Fy(zn) = Fr(2n)ll < Ln®|llzn — Znllln;  YZh, Zn € On,
|PLFL(zh)|| < @ := (1 + Ci)na;  ||QrFi(zh)|| £ B := Cina.
Furthermore, the restriction of (QnF}(z1)] to X} is given by the formula

~ N-1

Y Z _ai i Tk4+1,m = Tkin
ER kyZk, 5 .

k=0

Yup = e, [QhFﬁ(xh)]xg Y=

2|

w -1
If we denote by v = (/ a(s)ds> and let N be sufficiently large such that
0

N-1
hZa(kh) >~y 1 _e>0and|Cy'| <|CTY +¢, where
k=0
B <o fat o\l T O eI
0 w v w2 (n —2)!
b= ]
0 0 w
) & w
Then Vzj € Qp, H[Qth,L(zh)]Xgll < pibus g

Proof. Let zj = (20,Z1,..,ZN) € Qp, Tk = (zk,l,...,zk,n)T e R u =
(vo,v1,...;vN) € Xh, vk = (0, 15+ 5Wm) T € AR" . (k- 5, 03N)., 5 Fromh
[F!(zx)vn]; = (0,...,0,m,n)T (5 =0, N — 1), where

n
dg Titin = Tin
Mim =D e (tf’zj’ ST T o

1=1

1 ag Zit1i,n — Tyn

3 ti,xy, 21T DR ) (y, 2% ,
ha£n+1<' : h (V5410 = Vsn)

and using hypothesis (h1) we get

n
1
1Fh(zn)onls| = Insinl < a3 Wil + Floja = v31) < nalloaliln.

=1



Nonlinear periodic boundary-value problems 93

Therefore [|Fi(zr)]| < na.

Further, {[F}(zn) — F}(Z4)|vn}; = (0,44,0,%5,0 — fijn)” ( =0,N-1),
and from hypothesis (h2) we have

{[Fr(zn) = Fj(2n)lva};]
= ~ & ag Tj+i,n — Ty
= lnj,n'. = nj,nl < ;’8—51 <t]',13j, T

ag ( ~ 5_7'—}—1 v i]'n)! 1 ag ( Lit1,m — 23_7'71.)
. e t.,z.’__’“’ v.,i+_h t.’x.’%’"
afi JIE=g h l] ' h a£n+l L3 h

ag £'+1n_5'n
— b = g . Rl |t o ‘ v, Ly
a€n+l ( vy h l Jt+1in Jynl

n n ~ ~
b — I, L — T
§ : § : = J+Ln Jt+1,n Jsn Jn
S {L( |xj,s = xj,s’ = h + h )lv].;i’}
o = |
1=1 s=1
Zn z i z z v v
~ .7.+17"' . ].+1vn jyn = j1n j+11n = j:n
a=1

Ti+1,n — Zj+1,n i Tjin — Tjn

h h

)

(IJ'+1 ~ Byay )} — (zj — ;)
h

= L<Z |Zjs = Fjo| +
a=1
X (Z fvj,,-] =t
f=1
< LZ(I%‘ - Z;[ +

8=

)

Yi+l,m — Yjn
h

>—i (’vjl v !U]--{—lh— vy

)

< Ln?|||lzn — Z4]||n |||vallln-

These inequalities imply that [|F}(z,) — Fp(Zr)lln < Ln?|||zh — Z4]||n.
Finally, for

vh = Xe, [Fp(Zh)vhlkm = Nkn

n
dg Tktin — Tkn
= ‘—E 1 3t <tk,:13k, ———h : > €1,
A 89 Tktin — Tkn
TR t b ,‘;—-—*’ [y /a—— n
= h8§n+1 ( ks Tk & ) (61, €1, )

— _a—g t T zk+1)n = xkyn)
651 ky Lk, i g
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Thus
1 N-1
Q@nFi(za)lxsvn = 5 2 [Fal(za)vnline

k=0
N-1

X x— 0% Thie-{ st BRIAR ~

- — ] ¥ 33
N ‘;—‘ 85 (k')zka h

Using the last hypothesis (h3) we get

N —1

Zﬁi b g EhrLn X Th@ 1
2o 96 \ T8 h

|
>, i ehlonlin = S (2525 ) o

1w FL (el oalls = 220

: = w + R
For sufficiently large N we have Fiz < — :
y large ! H@nFh(zn)eall < G- 700
wk
Noting that C; = max -, 2w Wwecan rewrite the last inequality as

0<k<n-1 k!

1QnFr(zn)l 1| < 4/(1 = e).

4. ANALYSIS OF THE CONTINUOUS PROBLEM

In order to show the stability of difference scheme (1.4) and to prove the
convergence of an iterative process for solving (1.4), we should consider problem.
(1.3), which can be written in the operator form :

Az seliz) (4.1)
where 4. F : X — Y jafr—i= Az ;s3] S f{5,6,%) ;- X = ==
ci(jo,w], R™) : 2(0) = z(w)} ; ¥  C(0,0],R™) 5 llzllf = lizli+]l2ll 5 [lwll =
— )

In this section we only state some results. The reader is refered to [1-3] for
details.
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4.1. Linear Fredholm operator

Theorem 4.1.  The mapping A: X — Y s a bounded linear Fredholm operator
with N(A) = X3 = span {e;};R(A) = Y| = {y ey :/ U 88 = ()}. Further
0

X,Y are decomposed into direct sums of closed subspaces :
X:X1®‘¥27 Y:Yl@)/Q’

where

Yo = epan {E(1)}; . €(t) := ((;i])!’ (:i‘f)g"”’tJ) '

Moreover, the restriction A of the operator 4 to Xy has a uniformly bounded
inverse defined by the formula

t
-1y er+/ "My (s\ds  (Vye ),
3]

where £ = (£y,...,£,)T, whose components &,, ..., {n are determined from a linear
triangular system:

et (R Wt e =1 € 71
0 W UJ"'WQ/(TL o= 2)' 53 Up)
0 0 e, w T Mn-1

i w — s)!
and & = —n; - —L/ Ti_l‘;%( )dc, where n, = ~\ / 4 =t i:lelds

Finally, the estimation }’ﬁ'l,f < po = 2C5(1 + C3) + 1 holds, where Cy =

- and 1Ca = Cdmex (Z,./C )
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4.2. Projections in Y

Consider an operator @ : Y — Y3//Y;, defined by 11 @y =
l w
(—U-{E(s)}/ yn(s)ds. Clearly, N(Q) = Y1, R(Q) = Ya, and Q%y = Qy, hence @
e k wk
: ; ket ; e L s
is a bounded linear projection in Y. From |[[e|| o?tagxw e OSrI?Sar)i1 o Cy
oSk —1

it follows Qu| < L[&(t)lw [lyll < |[2ll [|y]l, therefore [| Q| < C1.

Set P := I — Q. Obviously, P is also a bounded linear projection in Y and
P =1, M P= Y5, || Pl £ THCT

4.3. Nonlinear differential operator

Theorem 4.2. Assume that the function g satisfies hypotheses (h1-h3) in Section
2, then the operator F(z) = f(t,z,1) = (0,...,0,g(t,z,2,))T 1s continuously dif-
ferentiable in Fréchet sense. Moreover, [|[F'(z)|| < na and | F'(z) — F'(y)]] <
Le?lllz —ylll, Vz,ye S ={z € X : ||z]|] £ R}. Further, the restriction
[QF'(z)|x, of the operator (QF'(z)] to X3 is of the form

IR e T
F'(z = —(t n)ds,
@P@)xo =2 [7 22 12,500
where v = ey € Xo. Finally, H[QF'(SE)])};H . Huj!l'y < 7.
é

4.4. The Seidel - Newton method for nonlinear PBVP

Suppose that the m-th approximate solution is found (m > 0). Let

G (t) = g(t, Y Gms - U 5
tn—k

(m) () .= 2 B s
z, (t) = oo o B! /o gnitids [(k=1,n~1)

A1) = glt) - [ o)

I(m) i (ymayma --~ay$7r1l~1))T = ]R";
}‘(m) = f(t,fl?(m),i'(m)) i (O,,O,gm(t))T,

; et «
Sl i opgim) o plm) Qp(m) B i L %2/ gm(s)ds;
0

w
0
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Then
=g,
(m) = [ les o g
F=0
= P w—a] T
] —Z —Wzk (S)ds (l = l,n ST 1)
k=20 .

The vector £(™) = (dm), 5o fnm))T is determined as follows

™ = =n{™ — Z/ (m)( )ds,

and Egm), ok f,(Lm) are defined from the following linear triangular system
W@ f2l s (= Y ém) ngm)
0 w w" 2% /(n - 2)! é"‘) ﬂém)

.
Set u,(cm+l) = (e¥1£(m), +/ {e(t’s)"z(m)}kds (k =0,N), and put
0

: / gm(s)ds
nal) _ y(m) . SO
A = A T
(s)ds
o' 9%y

/ g(, w4 A D) ) g
= /\(m) o

0 651

Finally, let z(m+1) — w(m+1) 4 A(m+1) e, Note that WAg = u£m+l) + A1, then
d* d 1 m+1 T
wymﬁ»l(t) P R (m+ ) = u,&_ﬁL )(t) (k=1,N —1).

Let a:= (14 Cy)na; B:=Cina; |=CiLn?;

Suppose that ¢ := 2af8vypo + £67/2 < 1 and 26(1 —¢q)~! < r, where

: d"=
ri= R [llz0]], +® = (yD,560,., s a9,
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Put § = Bypo||Az(® — PF(z()[|+ y||QF (z(?)]}. Now we shall estimate the
residual 6. For this purpose, let

: d .
go(t)zg(t,y(o),y(o) ol ) FO = (0,...,0,g0(t)) .

e(?)

w Cv
Then QF(©) = ——/ go(s)ds, and therefore ||QF(O)|| . !/ go(s)ds|.
w 0 w 1 Jo

Since
Az — pF(£(9)) = £ — 4z — F(z(9) + QF (%),

dr o
o e N LN
z Az < | Y ,dtny L

~—PF(z®) = QF(z9) - F(z(?)
tn-—l w ¢ Ui v 1 w
= _— / gods, ey / gods, - / gOdS =00
W(n e 1)! 0 w 0 w 0

it follows

g1 w w ! = ar
(0) Lup Bl 0N V= _—t————/ ds. .. i/ G l/ e gt}
Az®)—PF(£'™) (w(n—l)! i sz 3 9605, = 3 gnas — G 12 ¥

We put

5T iy e 5
Go = — / g (t,y(o),y(o), iy dt" ( )> dt‘ Go := miak
0 >

w

(n) I
¥, —go+—/ gods| .
W Jo

Thus ||Az(©) — PF(z(9)]|

dn
8 e (0 )\
. s {O(k(n lk'w‘/ gods |, /o G = o+ dtny }

Consequently [|Az(®) — PF(z(?)|| < max {C1Gy,Go} = C4and § < PypoCy'+
vC1Go.

Theorem 4.3. Assume that all conditions of Theorem 4.2 are fulfilled. Moreover,
suppose that the coefficients o, 8,7, radius r and the residual 6 satisfy the relations

g<1;¥26(1=q) <.
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Then there ezists a unique solution z* € S(:c(o),r) C X and the sequence {z(™)},
constructed by the Seidel - Newton method, converges to =* at the rate:

112 — 2*||| < rg™

4.5. Comparison with the discrete problem

Note that po = 2C5(1 + C3) +1 < 2¢¥(1 + €“ max (2,|C"![)+1 and
p1=2(1+Cp)e” —1 < 2¢“(1+Co)+1, where Cy = max {e""—1+|“’T_1’e“’+£,
e = 13

Now for definiteness, we suppose that w > 1.

Since |[Cy'|(e¥ — 1) o IC7Y(e¥ — 1) < [C1|e¥, for sufficiently large

N, we have ]C;,ly(e“’ — 1) < |C71]e¥. Tt is obvious that p;,pg < p = 2e“(1 +
e“ max (2,|C~1])) + 1.

A comparison table

The discrete case The continuous case
|Qnll < Cii|[Phl| <1+ C QI < Cy;||P|| <1+ Cy
1PRFy(@a)l| < (1+ C1)na = a IPF/(@)]| < (1 + C1)na = a
|QnFy(zn)|] < Cina =4 IQF'(z)|| < Cina =4
I[@nFn(zn)l |l < b 2= (B BN it NQF' ()5, 1l <~
L= C.Ln* = Cidnz,

5. ITERATIVE METHOD FOR DISCRETE PROBLEMS

We shall use the Seidel - Newton method for solving discrete problem (2:2).
The reader is refered to Theorem 1.1 and [1-3] for details.

(0) (0)

Let the initial approximation be chosen as xgo) = (Th 05 Th n)» Where

xg; = (Yo (tk), 9o (tk), -, "~ (t))T for some yo € C™[0, w].

By the mean-value theorem, we have

(0)

Lhebiz zf(z : '
__T’_ = (yo(fkl),yo(sz) ,yo (fkn)) )

(0) (0)
Trkty  Chk

where ty < {kn < tky1 (K =0,N —1), and hence [Apzy] = ki _—rk _
[A:E;lo)]k — (?)o(ﬁkl) — Yo(tk), - ,y(()n 1)(Ek,n—1) 77 yén_l)(tk) (n)(fkn)). Further,
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e — g(tk,yo(tk),...,yén_l)(tk), yén)(fkn))T, [Fh(IngLO))]k B (0"",09 gk)T'

1

Fh(:cgo)) — g€, and therefore [PhFh(zELO))]k = (~C,'cl_1h"_1gtb, vy —CRhaeb, g —

gt5)T (0 < k < N —1). These relations show that [ﬂhxio) - PhFh(zglo))]k
= (Wolékn) — Fo(tr)s -8V (Erm1) = 85" (k) 86" (kn) — g)T + guet
0<k<N-1).

From the last relation we find
||:4h93$10) - PhFh(-'CELO))Hh < max {mgx |yc(Jn)(Ekn) — gk + gth,ml@X u;—'gtb} -

Since g — Go and max |yén)(£kn) — gk +9gtp| — max lwd™ () = g(t, o (t), -y
& 1 [ % ;
y(() )(t)) + —/ g(s,y0(8),...)ds| := Go, as N — oo, for N sufficiently large, we
w0

can assume that

lyo (Skt)_yo (k)lﬁmgx lyék)(fkn)—gk\ (1 =0,n ~1; J=0,N = 1)

Consequently, ||,4h:z:£ PhFh(a:h )Hh < C4 := max {C;Go,Go}.

Suppose that g, := 2087,p + €¥r6r/2 < 1 and 26x(1 — gn) "~ LS r = i,
where 6), := ByppC4q + YhC1Go, Th := R — IHzgo)H}h >R - H]z(o)m = r, and the
m-th approximate solution is found (m > 0)

T L i e ] C R (= BN,

m) (m)
Letting g,(cm) =g (tk, (m)’ ﬁl,nh_z,k;>,

f(m) = (fom sy I(an_)])s fk i (Oaao)gl(cm))T (k e 0,—]\’—:—1_)7

N-1
and setting g, 1= Lgk/N we have y(™) = f(m) _g 6. Further, put
k=0
N-1 N k—1
n0m) = —p S (B G hA) VT T AR 20RY SN (B hAN oyl
k=0 k=1ls=0



Nonlinear periodic boundary-value problems 101

The first component of uémH) = (dm),..., ,(Lm))T is defined by the formula
gﬁ"‘) = —ngm) - (ﬁgm)/(N + 1)) and the remaining components are computed
from the triangular system of linear equations

Lo e AR T s AL L nim™
B Wk v ailbio gl n{™
BaiaiP gilasol s o S0E & 5
k
Then u{?7 ") = (B + hA)Et 0™ L 1 S°(F £ ha)k—2y(m) (=0, N = 1).
=0

d
Let 73 = u,(cmH) + x(me; (£ = 0, N) (m > 0). Denote by §£m), h e

dy
dg *
values of g and éh’ calculated at #(™). Then,
Y :
e B owia
Alm+1) _ y(m) _ { ak } {Zﬁl(cm)}'
y
k=0 k=0
Finally,
x’(cm+1) i5 ul(cm+1) {78 /\\(m—f—l)e1 (k =0, ) (5'1)

Theorem 5.1. Suppose that the function g : /\ — ;[Rl satisfies hypotheses hl-
h3 (in Section 3.2.2). Let the initial approzimation y(°) of the problem (1.1)-(1.2)
be chosen such that

di
=
dt”
h5) 260(1 — go) ! < r, where 6y := BypC4 + 7C1 G,
h6) qo = 2aBvp + €460 /2 < 1.

Then whenever h < hg, the iterative process for solving the nonlinear differ-
ence equations (1.4) converges to an tsolated solution &), and the following estimate

holds

h4) max max

<R,
0<t<w 0<i<n

2™ — 24| |5 < rrgl,

where 0 < g, <§<1 and r, <R.
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Proof. ~ Putting 6 = Bvbl|Anz) = PuFa(z)ln + wllQnFr(zi))lln,
N

—

=i
qr = 2af8vpp + Lynén/2 < 1. Then as h — 0, ~p = (hZa(kh)) e

k=0
w =
(/ a(s)ds) = ~, 6, — 60,qn — qo < 1. Hence h < hg implies g5 <
0
¢ < 1. Denoting r, := R — IH‘E;(LO)WM we obtain rp, — r > 0, rp > r. Since
260(1 = g@) ! <r, weget 26,(1 — AR

Thus in the closed ball Sh(:c(o), rn) there is a locally unique solution z, and
the iterative process is convergent.

6. STABILITY OF. THE DIFFERENCE SCHEME
AND THE CONVERGENCE OF THE ITERATIVE METHOD

Denote by X a class of all differentiable vector functions on [0, w], possessing
Lipschitz continuous derivatives. Define two bounded linear projections

R X — Xp, (th)k::c(tk) (kZO,N),
th: ¥ ==Y, (nyl=ult;) (=0N—-1).

It is clear that ||mx||=1 and ||m||=1.

Lemma 6.1. Difference scheme (1.4) approzimates BVP (1.8) at every z € Xo.

Proof. For z € X, by the mean value theorem we have

| Anmn(z) — mhhzlls = | max =~ max |&:(Ck) = Silte)],

where'ty < 8k < tiy1 " (F'=1,n).

Let the derivative £ of £ € Xy be Lipschitz continuous with a Lipschitz
coefficient K(z), then

||AnTn(z) — ThAZ||n = max |Z(€ki) — z(tx)| < K(z)h.

Similarly, using hypothesis (h1) we get

|| Fr(mhz)=Th F ()[R

Calliit) — zalle) 3
=, e o (tk,m(tk), : _ e Ei bt

= I — 1 = :
0 alEnllin) — nlte)] £ aK{zll
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Thus  |[Ap7h(z) — ThAz||p + ||Fa(7mhz) — T F(2)||n < (1 + @) K (z)h.
Lemma 6.2. Difference scheme (1.4) is stable, i.e., there exist ho >0 and € > 0

such that for any h < hg and z € Y, (||2]|n < €) the following statements hold:

t) The operator equation
Anz = Fr(z) +2 (||2]|n <¢) (6.1)
has a unique solution z'n the set O, = {z € Sp(zo,74) : |||Rr(z — zh )th € r2k

1l
where Rz := ]—V—Z E+hA) :ck,e1>

1) [[lzh — Znllln < Cs [l2]|n,
where z, and Ty are solutions of (6.1) and (1.6) respectively.

Proof.  Let Fy(z) = Fu(z) + 2, then (6.1) is of the form A,z = F,(z). Further,
F,(z) = Fj(z), so Fj, possesses the same properties as Fj, in 2 (cf. Theorem
59

We find the residual ~ 6(z) = Bypl| Anzn—PuFu(z)||a -+ 4 l|@n Fn (=) In
and the expression ¢(z) = 2a8v,p + lyr6x(2)/2.

As 6(z) — 6 (2 —0), q(z2) g <1 (2 — 0), then there
exists € > 0, such that for every ||z||[n < €, 2z € Y., we have ¢(2) < 1,
26(2)(1 — q(2)) ! < rp. By Theorem 4.1, there exists a unique solution z € Sj.

Observing that up — @p = A, '{Ph[Fa(zh) — Fn(Zh)] + Prz} and using the
facts that QnFi(zn) = Qrz, QnFi(Zx) = 0 we come to the estimate

llwn = @nllln < A{elllzn = Zallln + (1 + C1)ll2][n}- (6-2)

Letting
Thp = up + Oy € Ny,
Qnz = QnFh(zn) = QuFn(zn) — QnFr(2r) + QuFa(2n) — QuFu(Z4),

we have ||QnFih(zn) — QuFu(Zn)lln < ||QuFi(Zn) — QhFh(zh)Hh
i HthHh < Bl|lun - @al||n + Cil|2||n. On the other hand, since dim X} =
dim Y3" = 1, by the finite increments formula, we find
|QnFr(zr) — QnFn(2n)lln = [l[QnFh(Zn + E(va — B4))]xx (v — B4)||n
>y, llon = nllla:
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Consequently

[lvn = Bnll|n < Y0||Q@rFr(zr) — QnFr(Z4)||n
< YaBl|lun — @rllln +¥1C1ll2]|n-

From (6.2) and the last inequality it follows

lzn = Zrllla < lllua — @rllla + [llva — Oalll
< (1 +vB)||lun = Bnllln + ¥R C1ll2]|n
< plelllzn — zallln + (1 + C)ll2]|n} (1 + 70B) + ¥1Cill2][n
= a(1 + 1B)hll|zn — Znllln + [¥C1 + (1 +7B) (1 + C1)All[2llx-

Noting that 1 < S, and hence a(l +ynB)p < 2afvrp < g < ¢ < 1, we
get the following estimate

Civn+ (1 +B)(1 + C1)p
4 @
1— a(l +11B)p Hethn < Cslllia

|lzh — Zallln <

where

(h+e)Cit1+(v+)fl(1+Ci)p

Cs = s
5. Vol

Set S ={zeX: ||lt—=zol|| <7, [llv—woll| <r/2}. We are now ready to
-prove the main theorem.

Theorem 6.1. Suppose that the hypotheses (h1)-(h5) are satisfied. Then
i) Problems (1.1), (1.2) have a unique solution z* € S.

i7)  Difference scheme (1.4) is stable and has a unique solution T, € Sy for
h < ho.

i11) [Iterative process (4.1) converges to Zp.

iv) Suppose that z* € Xo, then there holds the estimation

|z™ = mpz*|||n < RG™ + Csh.

Proof. Statements (i)-(iii) have been proved in Lemmas 6.1, 6.2. To prove iv) we
set zp := Ap(mpz*) — Fp(mhz™), then

zrllh < [[An(rrz*) = mr(Az7) ||k + | Fr(mrz™) — i F(z7)||n < (1 + @) K7R.
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Therefore ||z|| < € for all h < h;. By Lemma 6.2, the operator equation A,z =
Fy(z) + 2, has a unique solution z;, € Sj.

To prove mpz* = x4, it suffices to show that m,z* € S),. Note first that

Nmnz* — 2| = |||7a(z* = zO)|ln
< lmal =" = 2O < fllz* = O] <7 < ra .

Further, we should verify the inequality |||Rp(mhz* — z4)|||n < 71/2. First, we
show that Vz € X, |||Rn(mr2)||[n — |||Rz]|||, where

It is clear that

1 fPe= (w—s)t y
=5 [ 3 |5 e
n—1 N
w (w—kh)
= {Him¥ )Y " Ziv1(tk)
=300 '
wN oy N4l 0
n—1 N
1 k°h*
-t B ey
1=0 k=0
n=£l =N ;
: A
1=0.k=n
We represent
1 N
I1Bamnzlls = 55— > ((E+hA)*z(tn_k),e1)| |llellln
k=0

(E+hA)* z(ty_i),e1)

Il
2|
ol
Btk

=
Il
o
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as |A£Ll) L A;LZ) 4 Af’)\ , where

n—1 k
A(l)————ZZCkh ziv1(tN—k),
k=01=0
N n—digry

(2)_ kh
Ay N+1an;ZO ——Ziv1(tN-k)

— K } T oLl

- an
A2 iy e [

Clearly, as already mentioned, Aﬁl) —» 0.and [A;2)| — |||Rz||| as N — oo.

S

Estimating the third term, we have

s s £ (-3 0-1) -

k=n 1=1
N n-—-1 ¢ 1 . o |
w* [ k tecd
- — | = BTN
'N+lk_zm,:1 1! <N> { ( k ) }”'I”'
o o B N n-1 i—1
oS e A
5N+1k§{; = IH_ N+1) Z::Z [E
Ci(n —2)* " Ci(n—2)%*(n—1)
=< N — =1 < -
< Q=2 - ) = Wlell £ 2 el — o
as N — oo. Thus we have proved the relation ||| Rr(mrz)|||n — |||Rz]|]] (N —
oo) for any fixed z € X .
since o5~ o{”ll = 1Bxma(s” — =)l — [I1R(=" = 2Ol < /2,
it follows that for sufficiently small h,|||v; — v}, )th <rf2E v/l
Finally,
llaf™ = maz*llla = [llzk™ = 3l

< l1e$™ = zallln + [112a — oallls < ragl + Csh < RG™ + Csh.

The proof of Theorem 6.1 is complete.
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7. NUMERICAL EXAMPLES

We shall illustrate the described above method by considering a nonlinear
PBVP for the Duffing’s equation

{ y"(t) = r(y(t) + ¥*() +¥'(t) — u(t)), te(0,27) (7.1)
y(0) —y(27) = y'(0) - y'(27) =0, (7.2)
where & > 0 is a small parameter and u € C[0, 2] is given.
By putting z(t) = (y(t),y'(t))”, problem (7.1), (7.2) is written in the vector
form
T=Az+ f(t,z,%)k i (7.3)
{ 2(0) = z(w), (7.4)

where [ = (0,z; + 73 — z, —u(t))T,and 4 = (g (1)>

If k is small enough (e.g. less than 10~2) then all of conditions of the
Theorem 6.1 will be satisfied. However, in many cases for much greater s, the
sequence of approximate solutions constructed by the Seidel - Newton method is
still convergent.

Let us consider an uniform mesh of [0,27]: {0 =ty < ... <ty = 27}, where
ti=th ({=0,N),h=21/N.

Consider problem (7.3)-(7.4) in three cases with z° = 0. The estimations
are given in the following tables.

1) Case 1: u(t) = 2. Problem (7.1)-(7.2) has an exact solution y*(t) =1, ie.

e 1 s
e T 2 e R I

N
K
100 200 500
0.01 mz“’ ~ 7illle 3072 ll2,” — 2 ]lls <102 |jay? 550
0.001  [[[z}?) <1078 [l = gl <1073 |12 < o))y <1072

2) Case 2: u(t) = (1 + 1/k)sint + sin®t + cos¢t. In this case, problem (7.1)-(7.2)

Sinha(T wss sintN>

has t soluti il e e e e
as an exact solution y*(t) = sin t, i.e. myz Easitiy. AlsMsiing
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N
K
100 200 500
01 |IIz® - syl <01 =) —zillla <005 llef? — =[x < 0.02
001 Iz’ —zillls <01 |zt — zhllls 005 |llz, — zill|n < 002
0001 [llz0 — zillln <01 [z —zhllla <005 [llay” — =illln < 002

3) Case 3: wu(t) = sint. The exact solution is not available. When N =
100, k = 0.1 the curve of the approximate solution z(4) is shown in figure 1

and |||z{Y — z{*)|||» < 107C.

i)

0 0 5 .2%55 60 65 70 75/94 90 95 00
e | L L L . L L =4 L = “)
></y

Fig. 1
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