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SOME ASPECTS OF THE THEORY

OF STOCHASTIC INTEGRALS I

DANG HUNG THANG

Abetract. The aim ol the pper ia to gioc a biel suroey on Eome dhzctiow ol
rccearch intlu tluory ol etahutic intt4rud,ion utithtlu emphuic on aomn. topica
rc.Iddto our work, Many imprta nt stelwtic il&egdt, uhich arc cerrtml intlu
mdern theory ol stu,hafiic atulysis ard cnrcial lor apflicdioru arc prc,certed
Tlle rcndom operdarc bctwecn Barw,h sryes, a rwtumlfrcmcwo* of stu,hastic
intqrds, arc also trcd,ed.

1. INTRODUCTION

The purpose of the paper is to give a brief survey of some aspects
of the theory of stochastic integration and to present some of our con-
tributions in this context. We does not attempt to present all aspects
as well as the comprehensive history of the development of the theory of
stochastic integration but rather just some directions of research which
are of our interest and related to our work.

Historically, the first stochastic integral in the probability theory
is the integral of a square integrable function with respect to (w.r.t.)
the Wiener proces. This integral was introduced by N. Wiener in 1923

[Sf] and called the Wiener stochastic integral. The Wiener stochastic
integral has been generalized in many directions. Genarally speaking,
the aim of these generalizations is to define stochastic integrals so that
the class of integrators as well as the class of integrands must be as
wide as possible and, at the.same time, the stochastic integral should
enjoy many good properties. Several stochastic integrals ( e.g. the Ito
integral, the Stratonovich integral) are central in the modern theory of
stochastic analysis and crucial for many other applications.

1 Research is supported by the National Basis Research Program in Natural Sciences

and was written during the author's stay at Department of Mathematics, University

of Amsterdam (Netherland) in September 1993
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Sections 2, 3, 4 and 5 treat some directions of research in the

theory of stochastic integrals and in the last section we introduce the

notion of random operators in Banach spaces as a natural framework

of stochastic integrals.

2. STOCHASTIC INTEGRAL OF NON-RANDOM FUNCTIONS
WITH RESPECT TO A RANDOM PROCESS

Let {W(t), 0 S t < 1} be the Wiener process (or the Brownian

motion) on the interval [0,1]. In many applications, there arises the

need of considering the integral of the form

(1  .1 )

where /(t) is a function defined on [0, t]. Because all sample paths

of the Wiener process have unbounded variation, the Stieltjes integral
I
f
I t(t) dW (t,tr) can not be performed on every path. However, Wiener

J
o
wa.s successful in finding a reasonable mathematical definition of the

integral (1.1). The construction of the Wiener integral is the following'

First, if / is a simple function

IU) :f ';11',, ',*,; '
d : l

I
f

then / f (t)dw is defined bY
J
0

I
f "

I tttl dw :lc;{w(\+,) - w(t;)}'
J
o  d : l

By the independence of the differences we have the identity

I
f

l f ( t ) dw ( t ) ,
J
0

l 1
t f  P  f  ^

El  I  f@dwl  :  I l f ( t ) rd t .I J  I  J
0 0
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1

This proves that the mapping / --+ [ t O* is an isometry from the

t
linear space S of simple functions into Lz@). Next, because S is dense
in Z2[0,1] this map adrnids an extension to the whole space LzlC.,ll.

f
For each f e t r[O,tl, 

J 
t(t) dW is defined as the image of / under this

map. 
o

I

In other words, I f Ol dW canbe defined as the limit in the mean
t

square of the integral sunilr of the form

i r tr,l (w (t ;+,) - w (t ;))
r : o

when the gauge of the partition tends to zero.

By a similar construction, H. Crame developed a general theory
of stochastic integral w.r.t. a complex-valued process with orthogonal
increaments. Recall that by a process with orthogonal increaments we
mean aprocess X( t ) , r€R sat is fy ingElX( t )12 < m and

Elx(r2) -x(r ' ) l lx( tn) -x(rr) l  -s,

whenever (t t, t z), (rs, ta) are disjoint intervals.

It is shown that I f VldX exists for complex-valued functions /
J

satlsfying 
R

f ^

J l|(tlf dG\ ( oo,
R

where G is a non-decreasing function associated with X by the formula

Elx(t) - x(")l' : G(t) - c(")

and the following isometry holds

. f  n  fDl J taldxl" : J lf @i2 dcu).
R R
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This integral plays a pivotal role in the theory of stationary processes.
Namely, if X(t) is a stationary process then there exists a complex-
valued process with orthogonal increament S(t) zuch that

f
X(t)  :  l """ds(u).

{

This forrnula is called the spectral representation of the stationary pro-

cess X{t).

As a continuous analogue of weight sum of i.i.d random variables

of the form fa;f; the stochastic integral w.r.t. a Levy process wa.s

firstly studied by Levy and developed by Urbanik and Woczynski [34].
Recall that a process X(t) is said to be a Levy process if it has inde
pendent increa,ments and the distribution of X(4_- X(s) depends only

on t - s. I f  t(t) is a simple function, /(r) - 
fc;11t;,r;+,) then the
i :O

I

stochastic integral I p1O*1t) is defined by
J
o

I
t
I  f  ( t )dx(t) :

J
0

n - 1

I ",[x(r,*,) 
- x(tr)].

d:O

A function / is said to be X-integrable if there exists a sequence (/,")
of simple functions such that /"(t) converges to /(t) almost everywhere

a^nd the sequence { [ ndX] .onverges in probability. In this case we- d '
put

l 1
I  - , . ,  ._ - , ^ ,  f  .  -
I t{t) dx(t\ - P - t{" / I"(t) dx(t).

J  N J
o o

It was shown that the'limit, if it exists, is independent of the choice of

a particular appro:cimating sequence (/"). The following theorem gives

a firll analytic description of X.integrable functions.

Theorem (Urbanik,Woyczynski I34l). Let X(t) be a symmetric Leay
process ond thc chardcteristie lunction 6(u) of the increoment X(t) -

X(s) 6e giuen by
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€

d(u) :"*p { l r  
-  

" l  / { "oruu 
-  r )  +ac(u)}  ,

\ .  J ,  a o

where the function G(a) is monotone non-decreasing bounded continu-
ous on the left with G(O\ : O (G is colled the Levy-Khinchin lvnction
correspnding to X). Then f is X-integroble if and only if f belongs to
the Orlicz spo,ce tro[0,11, where

o(c) :

In the case X is a p-stable motion i.e. Q(u) : exp{-lt - sllulr} then
tro[0,1] - trp[0, r]

Vakhania and Kandelski [32] gave a definition of a stochastic in-
tegral for operator-valued functions w.r.t. a Levy process taking values
in a Hilbert space.[t and satisfying Ellx(l) l l '< *. Let.B denote.
the corrariance operator associated with X. For any bounded linear
operator Ae L(H,II) define

ll,lll- : [t1,naa- )]'/' + [tr1,E-a,l)]t/' .

Then the set {e : 1;a;;. : 0} is a linear semi-group in the linear group
L(H,I/). The function,a --+ ll.all. is a norm in the correspondingfactor
group. We shall not distinguish between a coset and the individual
operators in the coset. Let A denote the completion of L(H,I/) in this
noim. Consider the space t rll1,l],1] of functions / t [0,1] - I such
that

I

The standard extension procedure yields a stochastic integral I f O dx(t)
J

r
r / t

I
f ^
I lff(t)ll!ctt < x.

J
o

o
I
f
I f(t\dx(t)

J
o

for each I e Lz[[o,t],I]. It was shown that is a .E[-
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valued infinitely divisible random variable with the characteristic func-
tion given by

where K(h): lnG(h) and G(h) is the characteristic function of X(1).

Rao [fS] used this stochastic integral to obtain the characteri-
zation theorem for Wiener processes taking values in a Hilbert space

.EI throught indentieal distributions A [ lplrdX(t) and I gQ) dx(t).
J J
o

Namely, he proved that under a slight assumption,

I
f
I gU\ d,X arc indentically distributed if and only if

J
o
Wiener process and

where .B is the covariance operator associated with X. Here the integral
is understood to be a Bochner integral under convergence in the space l.

3. RANDOM MEASURES AND STOCHASTIC INTEGRALS
WITH RESPECT TO THEM

Let (S, S) be a measurable space. A mapping M from S into

.Lo(O) is called a random measure if for every sequence {A"} of disjoint
sets in S, the random variables M(A") are independent'and we have

lrr(|/ an):1rro",

where the series is assumed to converge in probability. In addition, if
M(A) is asymmetric random variable for every .4 € S then we call M
a symmetric random measure.

I
f

F(h) : exp I Klf. (t)(h)l dt, h e H,
J
o

1 l
t f
I IQ)RI. Q) at : I s(t)Rs. (t) dt,

J J
o 0

I"'
X i s

/(t) dX and

a ff-valued
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By definition, a random measunes on (^9, S) can be viewed as a
real stochastic process indexed by the parameter set S. Two random
mea^sures M and N are called a version of each other if for each A € S

P{w :  M(A)( r )  :  N(A)( r ) }  :  1

For each o fixed, the set function A --+ M(A) (or) is called a sample path
of M. We say that a random measure is regular if its all paths are mea-
sures of bounded variation. There are simple examples of random mea-
sures having no regular version. For instance, let W :W(t), 0 <, < I

be the Wiener process. Define M{ U(o;,bi)} :  i t t(oi) - Iry(b;) l\ ; : r '  - )  
7 : t '

if (a;,6;) are disjoint intervals, we get a random set function which by
the Prekopa theorem [tZ] can be extended to a random measure on
o-algebra B of Borel set of [0,1]. M has no regular version since almost
every path of the Wiener process is of unbounded variation. A point
process is a good example of a regular random measure. A study of
non-regular random measures requireds a different approach from ones
taken in the theory of point processes presented in [7].

Now we want to define the stochastic integral of the form

where /(t) is a non-random function defined on ,S.

If M is regular then it is natural to define the integral as the usual
integral of the function /(t) with respect to the measure dM(t,u\, w
being fixed, if such an integral exists. Actually, this construction is
not possible for the general case. The reason is that many random
measures are not regular, and then dM(t,tl) does not define a measure.
The following definition of the stochastic integral was proposed first by
Urbanik and Woyczynski [34]

Deffnition. a) Let f - 
f"rto, be a real simple function on ,5, where

Ai € S are disjoint. tfr"l]Lr every.4 € S, we define

f
I  T@dM

J
s

Ir 
or: 

i 
n;M(An a;).
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b) A measurable function I z S -. R is said to be M-integrable if there
exists a sequence {/"} of simple functions as in (a) such that

i) .f,, -- f M-almost every where i.e. M{t : I"(t) /- /(t)} :
0 a.s.

ii) For every A € S, the sequet." { [ f - or\ converges in prob-
,tn ,

ability as lz --+ 6.

If / is M-integrable, then we put

f
l I d , M - P -

J
A

f

lim I hau
n + 6  J

A

We note that I f O, is well-defined i.e. it does not depend on
t"

the approximating sequence {/"}.

The study of Wiener-type integral I t O, of non-random func-
J

tions with respect to a random measure M under various hypotheses
on the random measure M has a long history (e.g. Urbanik, Woczyns-
ki [34] Urbanik [ss] Schildet lzzl Rajput and Rama-Murthy [ra]). The
most general results obtained by Rajput and Rosinski [15] were con-
cerned with a systemmatic study of the case where M is an arbitrary
infinitely divisible random measure i.e. for each A € S M(A) is a
infinitely divisible. The main results of [15] are the following:

a) To give a characterization of the space of M-integrable functions. It
'rryas pro\red that for every A € S, the characteristic function of M(A)
can be written in the Levy form

oe(t) - exp {*voQ\ 
- t 

r' rr(r{) + 
{rr"'

-  1-  i t r (n))F(A,or) \ ,

where us : S -r R is a signed-measure, v1 i S * [0, oo) is a non-negative
measure, F(dtrdc) is an o-finite measure on S x 8. The rr€?sll€s t/s,
?1 and F are called the deterministic characteristics of M . A necessary
and sufficient condition for a function to be M-integrable is given in
terms of these deterministic characteristics.
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b) The identification of the space of M-integrable functions as a certain
Musielak-Orlicz space.

c) This stochastic integral is used to obtain the spectral representation
for arbitrary discrete parameter infinitely divisible processes as well as
for continuous parameter infinitely divisible processes, which are sepa-
rable in probability. Namely, for any infinitely divisible process X one
can choose a random measure M and a family of non-random functions

{fi} such that Xr = { [ nau] i.". Xt and the proces, I frd,M have

the same finite-dimerrl/on"t dir Jribrrtions. This spectral rJpresentation,
when specialized to stable and semistable processes yields, in a unified
way, all known spectral representations for these processes.

Rosinski [f0, fZ] extended the above definition to the case in
which / takes values in a Banach space B. He obtained the characteri-
zation of M-integrable functions in the case M is generated by a single

. symmetric infinitely divisible i.e. for each .A, the characterisric function
(ch.f.) ot M(A) is of the form

o1a)(t) - exp { 
- ^trl l t 'o' + 

| O -cosrc)d-(')] 
},

R

where ne is a Levy measure on R.

Theorem (Rosinski [16]). Let B be a Banach spocc. A function f :
,S --+ B is M-integroble if and only il

i) For u,ch a e X'

( @ ,

where K(t\

ii) The function

f

I  
*Lttt l ,o)Jdl(t)

s

f
: o2t2 + / (l - cos ta)d,rn(r);

J
n

:  exp {- I 
KIUL4,aylal1r1}

s

!r(o)
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is thc ch.f. ol o Rodon meosure on B. In this cose, {t(a) is the ch.f. of
f
I f  au .

J
s

EquiuolentlV, f is M-integroble il and only il

i) The function

is o coaorionce Goussion function;

ii)The me@sure p, on B defined by

p (A) :  ( )  x  na ) { ( t , a ) :  f  ( t ) a  €  A \o }

is o Leuy meosure on B.

The Rosinski's theorem includes the earlier results on stochas-
tic integrals of Banach space-nalued functions w.r.t. pstable random
measures obtained before by Hoffman-Jorgensent [4], Okazaki [f 1].

Vector random meanures arise naturally as a Banach space gen-

eralization of random measures. Let X be a Banach space. A map-
ping F :-+--+ ;,f (n) is called a X-valued random measure if for every
sequence {A"} of disjoint sets in S, the X -valued r.v's F(A,n) are

independent and we have

"(V A*) -- 
T.(r"),

where the series is assumed to converges a.s. in the norm topology of

x. F is said to be symmetric if F(A) is a symmetric random variable
for every A € S. A finite positive meafiure p on (^9, S) is called a control

mear;ure for F if F(A) : 0 a.s. whenever p(A) :0. Vector random
measures can be also regarded as a randomization of (non-random)

vector measure studied by many authors. From the latter point of

view, one question arises naturally: How to extend the basis theorems

of the theory of non-random vector mea.sures to the random context.
The following theorelns are random analogues of the Pettis theorem
and the Vitali-Hahn- Saeks theorem.

f
Q@) : /  lU(r) ,o) l2ar(t)

J
s
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Theorem (Thang l25l). Let F be a X-valued spmmctr;c random meo-
sure on (,S,S) and p be o control meoevrelor F. Then F is p,-contin-
uous, i.e.

P - 
,rljpo 

F(E) : 0.

Theorem (Thang l25l). Let {F"} be @ sequcnce of X-uolued symmetric
rond,om me@sures such that

P -limF"(E) : F(E)

ecists for each.E € S . Suppose that there exists a control tneaaure p for
eaerV Fn. Then the mopping E -+ .F (E) is olso a X-vdued symmetric
rondom measure with the control mar^sure p.

Two X-nalued random meafrures F and G are said to be a modi-
fication of each other if two X-valued stochastic processes p : {.F(,8)}
and g : {G(E)}, f € S have the same finite dimensional distribu-
tions. In this case we write F = G.

Theorem (Thang [25]). Let {F"} (" 2 O) be X-uolued symmetric
random marsures with the some control meosure p, such thot for eoch
E e S the distribution ol F"(E) conuerges weoHy to the distribution
of Fo@). Under a slight ossumption, u)e can find, X-uolued, rondorn
matsures {G"} such thot Go = Fn for uch n ) O ond

P - lim F"(E) : Fo(E) for eoch E'€ S.

It still remains an open problem'to examine the validity of a
random analogue of the Random-Nykodym theorem. Let M be a real-
valued random measure. If / : S -+ X is a M-integrable function in the
definition of Rosinski then it is not difficult to show that the mapping
.F' defined by 

r
F(E) :  I  f  dM

tt

is a X-valued random measure, which is dominated by M in the sense
that: tr (8") is a sequence in S such that P -limM(Eo) : 0 then

P-ltP F(E*): 0. Now question is: Given a x-vlrlea random measu$e
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F and a real-nalued random measune M such that F is dominated by
M. Suppose that the Banach space x has the R-N property. Is there
a M-integrable function I : s -+ x such that the x-valued random

measure G defined by 
r

G(E):  |  |au
tt

is a modification of F?

By a analogous manner as in the case of real-valued random mea-

sures, we can define the stochastic integral of real-valued functions w.r.t.

vector random meaaures.

Definition. Let F be a X-valued random measure with the control

measure p.
ft

a. Let | - It;tE, be a real simple function on ,S. Then for every

d : 1
A € S w e d e f i n e

b. A measurable function f is said to be F-integral if there exists a

sequence (/,n) 
"f 

simple functions such that In' f P - a.s. and for

every A , the sequence I I f"af I converges in probability.
,tn ,

In this case we put

By using the random version of the Vitali-Hahn-Saeks theorem we can

prove that the definition is well-defined i.e. I f O, does not depend on
J
A

the appro:<imating sequence {f^},

_ The following results give the condition for passing to the limit

under the stochastic integral sign and the characterization of F-inte-

grable functions.

I tor: 
I 

t;F(E;n A).

f f
l f a r - P - l i m l  I " d F .

J  N J

A A
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Theorem (Thang 126l\. Let F be a X-uolued eymmetric random meo-
sure with the control measure p,. Suppose that {f"} is o sequence of
reol-valued F-integrable functions such that lim/"(t) : f (t) Io, p-ol-
most surelg. Then the equality

holds if and only if

( n  f  t t  \

,r l j f losuPPtll/ /" drl l t ' l  : o'
E

In porticulor, we c@n posl to the limit under the stochastic integral cign
if the sequcnce (/") r'r dominated by a F-integrable function.

It should be noted that the dominated convergence theorem does
not hold for the stochastic integral of Banach space-valued function
w.r.t. a real random measure.

The following theorem provides a necessary and sufficient condi-

tion for the existen r" of [ 7 d,F interms of certain parameters of F.
J

Theorem (Thang [20]). Let F be a X-uolued random measure such
that the ch.f. of F(A) is giuen by

aa(o) - 
"*p {

where Q(A,a) is a positiue measure on S for each a € X, ond H(dt,d,n)
is ao-f inite measurc ono(S) x g(R) . Then o funetion I: S --+ R rs
F-integroble if ond only if

i) For eoch a e X'

f

I  { t -  cos(r / ( t ) ,  a))H(dt ,dr)  <
J
x

f f
P- l im  I  f " a r :  I  f  dF

J J
s s

- e(A,d + t {.,s(c,a) - L)H(A,od},
x

I valle@t,d * I
s s

s ( a ) :
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ii) The functionexp{-g(a)} is the ch.t. ol a probobilitr measure on X.

In this cose, exp{ -g(a)} is the ch.f. ol 
J 

t af .

s

The conditions in definition (b) can be restated in an following
equivalent form which is more useful in applications.

A function I z S ---+ R r's F-integroble if ond orily il

a. The function r
,h(d :  

J  l f  0 l2g(dt ,a)
s

ts o Gcussion couariance function.

b. The meosure p, on X given bY

p(B)  :a { t t , c )  e  s  x  x  :  f ( t ) "€  B  \o }

is o Leuy meosure on X.

4. ITO STOCHASTIC INTEGRAL AND THE
PREDICTABLE STOCHASTIC INTEGRAL

In 1g44, in order to provide a powerful method for the explicit

construction of the paths of diffusion processes, Ito [5] introduced a

very important generalization of the Wiener stochastic integral by ob-

miting the restriction that the integrand was a deterministic function.

Consider the class of random functions u : u(t) satisfying

I

i )  e{1" ' { t ,w)dt  <-}  :  r
o

ii) u is adapted w.r.t. the Wiener process i.e. for s ( l, u(s) is inde.

pendent of the increaments u(u) - u(t) for u > t.
I

Ito,s idea for constructing the stochastic integra t I uaw is the
t"

following..First, if u is adapted simple random function of the form

n - 1
f.a

)  . a ;L l t r , t i + r )  ,
r :o
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where a;is 71r - measurable randomvariable for every a:0,.. ,n. then
I
f
I uM is defined by

J
o

n - l

: D o;fw (t;a1) - ly(r;)1.
r :0

By the independence of a; and W (t;+r) - W (tr) we get

Denote by Lz the Hilbert space of adapted random functions z such that
1 .

f f

| | lul2dtdP < m. It is shown that the set of simple adapted random
J  J '
n o  

,

functions is dense in t,z. Because the mapping u --+ [ uaw is a linear
J

isometry from the dense subspace of Lz it can b" 
"xfended 

to a linear

isometry from .C2 into I2(O). Fo1 u € Lz, we define [ ,a* as the
J

image under this mapping. Finally, the extension to tf" ..r" where
I

u is an adapted random function such that I WOP at < oo a.s. is
J

achieved by using the so-called technique of lo?alization.

The Ito stochastic integral can be defined as the limit in proba-
bility of Riemann integral sums with the left end-points approximation
points i.e. the sums of the form

n - l

D ,,, [ lY(h+r) -w(t;) l
r :0

1 1
r f  1 2  f  fnlJuawl  :  J  J t " l ,a tae.
o n o
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under the condition that ma:r(t;11 - t;) tends to zero. If we choose the

mid-point approximation points i.e. the sums are of the form

n - l

D r", [w(t ;+t)  -w(t ;) l
d:0

-'-L^-^ ti+r * t; 
. we set the socalled Stratonovich stochasticWnefe Sd : 

z
integral (see [zr]).

The Ito stochastic integral is uselful in analysis because the pro-

cess
t

{ [ 
,,aW,O < t S t] is a martingale and various good estimates

\ J
0

are available. It does not, however, behave so nicely under a trans-

formation and is subject to a strange calculus. For example, if I is a

smooth function then we have the Ito formr-lla

f (wr)

often written instead in the differential form

d(f (wr)) : f' (wt)dwt + !1" {wr)at.

The Stratonovich stochastic integfal has the advantage of leading to

ordinary chain rule formulas under a transformation, i.e. there are no

second order terms in the Stratonovich analogue of the Ito formula.

This property makes the Stratonovich integral natural to be used in

connection with stochastic differential equations on manifolds (see Ikeda

and Watanabe [6]). However, the indefinite Stratonovich integral is not

martingale, so it does not give good estimates.

Equipped with the notion of the Ito stochastic integral one can

consider stochastic differential equations. For example, given smooth

functions A, B with bounded derivatives and a random starting point

ca find a process X1 satisfYing

t t
|  l f--f(wo)+ 

J f ',(w")dw"+iJ f"{w"\a",
0 0

dxt: A(XidWt + B(Xt)dt, Xo - trs-



Thary of ctochutic integrdz

This is a shorthand for the integral equation

It is shown that the solution Xr is a strong Markov process even a
diffusion. Hence, stochastic differential equations provide an effective
mean of constructing diffusions with given infinitesimal generators.

The Ito stochastic integral for the wiener process is insufficient
for applications as well as for mathematical questions. A more general
stochastic integral in which the integrator M is a semimartingale has
been developed. we provide here an outline of several stages in the

f
definition of the stochastic integral of the form 

;f 
x d,M only in the

case wher e M is a right continuous (cadlag) lo..l ^Dr-*artingale and
x is a process satisfying certain conditions about measurability and
integrability.

i) The definition of predictable sets and predictable processes: The
family of subsets of R+ x o containing all sets of the form {0} x F6
and (s,tl x F where Fo € 7o and F € 7" for s ( t is called the class of
predictable rectangles and we denote it by ,P. The o-field p of subsets
of R+ x o generated by .R is called the predictable o-field and sets in
P are called predictable sets. A process X considered as a function
on R+ x o is called predictable if it is P-measurable. It can be shown
that any predictable process is adapted and any left continuous adapted
process is predictable.

ii) Measure on the predictable sets: Let M - {M(t),t € R+} be a
cadlag tr2-martingale. Define a set function Z7a on R by

zu((",t1 x F) : n{rr l i t4(t) - u(s)1'?}.

Then by the assumption that M is a cadlag .t2-martingale, zy can be
extended to a measure on P which is denoted by p*r and it is called
the Dolean measure of M.

C denote the class of all ,P-simple fuctions. If X € € is of the

X :  
D c; l1e; ,h lxr , i
r : l

t 7

t t
f f

xt - ro* I A(x,)dw"* | a1x)as.
J J
o 0

iii) Let
form
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t

then I x aU is defined by
J

R+

I  xor: i  c;tp,lM(t;1 -u(sr)I.
J

R +  
d : l

It can be shown that the following isometry holds

Dang llung ?hang

, l lxdMl' :  I  l r"rdpv.
R + R + O

f

iv) This isometry is used to extend the definition of 
J 

x dM to any

I l+

random process X belonging the space Ez : Lz(B* x O, P , pu) since

the set of ,B-simple random functions is dense in Lz'

v) Finally, the e>rtension to the case when M is a cadlag local .Lz-

martingaie and X is "locally" in Iz is achieved by using a sequence of

optional time tending to infinitY.

Brooks and Dunculean [1] extended the stochastic integral for

processes with valued in Banach spaces. Let E, F and G be Banach

,p..o, X be a process with valued in E e L(F,G) and If be a process

with values in F. suppose that X is cadlag, adapted and Ellx(r)llo <

oo for every t. Define a set function .116 from .R into I$(O) by

Ix{(",t1 x r} :  lr [X(r) - X(t)].

The process X is called summable if 126 can be extended to a ler(n)-val-

ued measure with finite seminariation on P. In this case, the stochastic
f

integral I n aX is defined as the bilinear vector integral of -EI with re-
J

spect to [he vector measune with finite semivariation.Ix. fhg summable

pio.*ro play in this theory the role played by z2-martingales in the

llassical theory. It turns out that every Hilbert spacevalued .L2-martin-

gale is summable but for any infinitely dimensional Banach space .E

th"r" exists a .E-valued summable process which is not even a semi-

martingale.
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I
f

Thang [29] constructed the stochastic integrat 
luaZn 

in which

the integra tor zois a vector pstable random measure ,o",ttrr* values in a
'sufficiently smoothable Banach space X. The procedure for construct-
ing this type of stochastic integral is following: A random function
{, - u1,0 ( t < 1} is said to be simple adapted (w.r.t. Z) if there
exists a finite partition 0 : to
a; (r : 0,..., z) such that a; is fi,-measurable and

n- l
s\

" ,  
-  

hddl [ r ; , t ; , ,1) ,

where fi denotes the o-algebra generated by the x-valued random vari-
ables

{Zr(A), A € [0,t]]. The stochastic integral of such a simple adapt-
ed u is defined as

l  " - r
I ud,Zo: t a;Zo(t;,t i+r)).
f, ;=o

We associate to Zo a non-negative measure lQpl called the control mea-

1gr9 of Zo. A random function u is said to belong to the class 1) (Zo)
if there exists a sequence (u,.) of simple adapted random function suih
that u," e Lo(lQol x P) and un converges to u in Lr(lQrl x .P). Notice
that when lQrl ir continuous, 1)(Z) is precisely the class of adapt-
ed random functions in Lo(lQol x P). If lQpl is any measure with
lAo l{O} : O than the class 1) (Z) is still large enough to contain all the
predictable random functions in Lo(lQrl x P). under the assumption
that the Banachspace X is g-smoothable, where q> pif p < 2 and
p : 2 if g : 2, by using the Assouad-Pisier inequality for martingale
differences taking values in smoothable Banach spaces, it is shown that

the mapping u + [ud,zris a linear continuous operator from the set
t"

of simple adapted random functions into the space ,f;(n). Hence it ad-

mits an extension to the whole space | (Zr). For u e y (Z),

is defined as the image of u under this mapping.
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5. THE NON.ADAPTED STOCHASTIC INTEGRAI,S

The measurability conditions which prescribes that the integrand

should be independent of future increament of the Wiener process is a

very restrictive one. Whereas it is a natural condition in many situa-

tions, where the filtration represents the evolution of the available infor-

mation, it is in many cases a limitation both for developing the theory

as well as in application of stochastic calculus. Because in applications

the random function to be integrated is not always adapted (or non an-

ticipating) there arises the need to weaken the adaptedness requirement

for the integrand of Ito stochastic integrals. Different definitions of the

stochastic integral of a non-adapted with respect to the Wiener process

have been proposed by several authors. Below we briefly mention some

kinds of non-adapted stochastic integrals and the relationship between

them. For more details we refer the readers to [9].

Let ul be a Borel measurable random function such that

( oo a.s.

and let r : {o : to I ... 1 tn: 1} denote a partition of the interval

[0, r].
1) The smoothed Stratonovich integral (see I S,fO]):

The random function u,: nt is said to be smoothed stratonovich

integrable if the integral sum of the form

n-L

S":  D u i (W(t ;+r )  - IY( t r ) ) ,
d:O

where

I

I u?at
J
0

converges in probability as the
zero and moreover if the limit

gauge ltl : ma<(t;..1 - t;) tends to
does'trot depend on the choice of the
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sequence of partitions whqse gauge tends to zero. When u is smoothed

stratonovich integrable we denote by I updw the above limit.
tt

2) The Ogawa intugral (see [10]):
A random function rr, : .ttrt is said to be ogawa integral if for any

orthonormal system (e;) in Lzl},f] the series

o o l l

t( 1u,",(,)4 Ie;Q)dw1r : r  6 o

converges in probability and if the limit does not depends on the choice
of the particular basis (e;). when u is ogawa integrable we denote by

I
f
I u, * dW the sum of the above series.

J
o

It was shown [Zj that if for some p > Z,

i  (ol ' ' lo) ' /o '* '
i= l

I
f

where ur: I e{t)a1& and (q) is any continuous, uniformly bounded
J
o

orthonormal base then,lut is ogawa integrable. Moreover, Nualart and
Zakai [tO] proved that t*e.,existence of the Ogawa integral implies that
the smoothed Stratouovicfr integral exists a^nd these two integrals are.
equal.

3) The Pardoux-Frotter two-sided integral [13]:
Let 7t denote the s.algebra generated by {W",O ( s ( t} and

7t denote the o-algebra generated by {W, - W"',t < r ? f }. fn tl"
filtering theory, there arises the need to evaluate integrals with respect
to a Wiener process of random functions of the form

ut : ll(t, Xt,Yt),

where xt is a .{-adapted random function and yt is a /t-adapted
random function. The stochastic integral of a random function of th"
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above form is defined as the limit in probability of the integral sum of

the form 
n-L

s,r. :  t  O(t; ,  Xr,,Yt;+') [ [Y(t i+t) -  w (t ;) ]
d:0

as the gauge of the partition |tl : *"*(t;+r -t;) tends to zero and the

limit does not depend on the choice of the sequence of partitions whose
gauge tends to zero.

 ) The Skorokhod integral [19]:

The most general non-adapted stochastic integral is the Sko-

rokhod integral. Let (?, s, p) be a measurable space with a finite mea-

sure p and M be a Gaussian symmetric random measure on with the

control measure p. Suppose that u:T x O --+ R be a random function

having finite second moment E [rlu(t,r)l'dp ( oo. For each fixed

t e T the random variable us c?,D be represented as a sum of multiple

Ito integral

For each k > 0 the non-random function gp belongs to L2(Tk+t,lrk+t)

and is symmetric with respect to the last lc arguments. We denote by

f1 the symmetrization of gr with respect to all lc + I arguments. Then

the Skorokhod integral of u with respect to M is defined by the equality

o o f

6(u) : D I Ar{t: ' , . . . , tn+t)M(dt)...u(dt*+'),
k:o1J+r

provided that the series on the right-hand side converges in rz(n).

We note that if u is adapted then the Ito integral and the Skorokhod

integral coincide; If us : O(t, Xr, Yt) is Skorokhod integrable then it

is also integrable in the sense of Pardoux-Protter and both integrals

coincide. Under a slight assumption, the existence of the Skorokhod

integral implies that the Ogawa integral exists. In addition if u is

Skorokhod integrable then it is also Stratonovich integrable. However,

two integrals are different in general. For example' if X1 is a continuous

adapted semimartigale and f e C'(R) then q: f (X) is Skorokhod

ut : so* i  I  oop,t1,.., tp)M (dt)...ut (dt1,).
r:Llr
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1
f
I  u rodW :6(z )  +

J
o

Aa :i ",r,
r ' : l

i f  , :  ( rn)  e lz(H).

1
1 l'; 

I l',6id(x,wlt.
z J

0

6. RANDOM OPERATORS :
A NATURAL FRAMEWORK OF STOCHASTIC INTEGRALS

Let X and Y be two Frdchet spaces. By a random mapping from
X into Y we mean a mapping from X into ^[{(O). We may think of the
mapping from X into Y as an action which transforms each input n € X
into an output Ac € Y. It might happen that Ar is not completely
known but subject to some random noise so that we can only hope to
be able to say about the probability distribution of the output. In other
words, instead of considering Ax as an element of Y we have to think
of it as an Y-valued random variable.

A random linear mapping from X into Y is called a random
linear operator. Mathematicallg by a random operator (we omit the
word "linear" since we only consider random linear operators from now
on) we mean a linear continuous mapping from X into .[[(O). Random
series and stochastic integrals are most important examples of random
operators.

Example. 1. Let (f;) be a sequence of real-valued i.i.d. Gaussian
random variables and If be a Hilbert space. It was known that if (c")

is a sequence in .EI such that i ll",ll' ( oo then the series i ",n€,r t : l  n : l
converges a.s. in the norm topology of H. Define a mapping ftom l2(H)
into Ifl(o) by

we get a random operator ftom L2(H) into I/.

2. Let M be a infinitely divisible random measure. It was shown [tS]
that the mapping / + [ f O, is linear continuous from the space

J
s
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L(M), which is a certain Musielak-Orlicz space' into .Lq(O). Conse-

quently the stochastic integral mapping is a random operator.

3. Let K(t,s) be a function defined on the square [0, r]'' Defined a

mapping on C[0,1] bY

I
f

An( t )  :  I  K( t ,s )c (s )dW(s) .
J
0

It can be shown that this mapping is a random operator from C[0' 1]

into .L2[0,1] and it is called a random integral operator with the kernel

K ( t ,  s ) .

consequently, random operators can be considered as a natural

framework for stochastic integrals. In other words, stochastic integrals

are prototypes of random operators. Moreover, it is shown that every

symmetric pstable random operators has a representation of the form

of a stochastic integral or a random series.

Theorem (Thang lz+l). suppose thot A is a symmetric Gaussian ron-

dom operator lrom X into Y. Then there ccist o sequence ({n) ol

reol-uolued i.i.d. Gaussian random uoriables ond a sequence (8") of

non-random lineor operators lrom X intoY such that for each n € X

As: i ,*"^r,
n : l

where the series is conuergent a.s. in the norm topology of Y'

Theorem (Thang[27]). suppose thot A is o symmetric p-stable ran-

dom meosure (p < 2). Then there exist on p-stable rondom measure M

on some measurable space (,S,S, p) and a lineor continuous mapping

from X into the spoce tv(M) ol Y -uolued M-integroble functions such

that f
Ar - 

Jrca(t)d,M(t).

under the original definition, a random operator with the do-

main X can not be applied to X-valued random variable. Taking into

account many circumstances in which the inputs are also subject to
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the influence of a random enviroment, there arises the need to give a
reasonable meaning to the action of the random operator on some X-
valued random variables. Mathematically, given a random operator .A
with domain X, the problem is to extend the,domain of .4 to some class
I of x-valued random variables. of course, different procedures may
be proposed but the aim will be that the class ) must be as wide as
possible and at the same time the extension of A should enjoy many
good properties similar to those of A. This problem is also motivat-
ed by the following consideration. Let A be a random operator from
LztO,l] into R defined by the Wiener stochastic integral

if n e L2[o,tl.

For a measurable random function u : utwith sample paths in .L2[0,1],
as we have seen in Section 4, the different definitions of stochastic inte-

I
f

gral I uldw have been proposed. Now if u is a random variable with
J
o

values in ^[2[0,1] we can define the action of .4 on u as the stochastic
I
f

integral I uraw if it exists in some sense. The problem of defining
J
o

the stochastic integral of a random function with respect to a Wiener
process turns out to be equivalent to that of extending the domain of
the random operator generated by the wiener stochastic integral.

It should be noted that it is not always possible to define the
extension of A by direct substitution Au(w) : A("(r))(r). Indeed,
for each n € x, Ac is defined on some set D" of probability one, but
then Au(or) is defined (bV direct substitution) only on the set fl Du@),
which can be empty.

In [so] a reasonably large class ] of X-valued random variables
was introduced on which the extension of a random operator / with
domain x is defined in a natural way. In the case where A is the
random operator generated by the wiener integral, it is shown that
if u is skorokhod integrable then by choosing a suitable approximat-
ing sequence (uo) of X-valued r.v.'s in the class ) the sequence Aun
converges to the Skorokhod stochastic integral of u. Motivated by the
notion of ogawa integral, another procedure of extension was proposed

I
f

A r :  |  4 d W
J
0
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in [SO] for the case X : L"(L ( s ( o). NamelyL" X-valued ra.ndom

variable u is said to be A-applicable if the series \unAeo converges in
n : l

I'f (n), where (e,") is the standard basis in l, and u'! stands for the n-th

coordinate of u. It is not difficult to show that if the random operator

A viewed as a Y-valued random field indexed by the pa^rameter set X

admits a modification with sa,mPle paths in the space L(x,Y) of linear

continuous operators then each X-valued random variable is A-applica-

ble. (For various conditions ensuring the existence of a modification of

A whose sample paths belong to L(x,Y) we refer the readers to Thang

[ze]). One of the main results of [30] is the following

Theorem (Thang [30]). I. Let Y be o Hilbert spoce and thc rondom

aarioblcs (Ar*\ ore independent. Then uch X-uolued rondom uariable

u auch thot un is |o-r-mwuroble for everg n ) L ia A-opplicable. Here

7o is thc o-dgebro generetd hy Aevr.--rAe,.-

.2. Lct A bc a egmmetric p-stablc random operotor ondY bc a q-smooth'

ohle Banoch epace, uhcre e :2 il p:2 ond q > p il p < 2. Suppose

thot the random uoriables (A""\ are independent. Then e.och X'volued

rondom uorioblc u sueh thot un is |n-t-meuuroble lor each n ) | and'
@

f lr'lo < * o.s. r's A-oPPliceble'
n : I

Other topics of the theory of random operators in Hilbert spaces

can be found in [zO].
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