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SOME ASPECTS OF THE THEORY
OF STOCHASTIC INTEGRALS!

DANG HUNG THANG

Abstract. The aim of the paper i3 to give a brief survey on some dsrections of
research sn the theory of stochastic integration usth the emphasts on some topics
related to our work. Many smportant stochastic integrals, which are central in the
maodern theory of stochastic analyssis and crucsal for applications are presented.
The random operators between Banach spaces, a natural framework of stochastic
integrals, are also treated.

1. INTRODUCTION

The purpose of the paper is to give a brief survey of some aspects
of the theory of stochastic integration and to present some of our con-
tributions in this context. We does not attempt to present all aspects
as well as the comprehensive history of the development of the theory of
stochastic integration but rather just some directions of research which
are of our interest and related to our work.

Historically, the first stochastic integral in the probability theory
is the integral of a square integrable function with respect to (w.r.t.)
the Wiener proces. This integral was introduced by N. Wiener in 1923
[31] and called the Wiener stochastic integral. The Wiener stochastic
integral has been generalized in many directions. Genarally speaking,
the aim of these generalizations is to define stochastic integrals so that
the class of integrators as well as the class of integrands must be as
wide as possible and, at the-same time, the stochastic integral should
enjoy many good properties. Several stochastic integrals ( e.g. the Ito
integral, the Stratonovich integral) are central in the modern theory of
stochastic analysis and crucial for many other applications.

! Research is supported by the National Basis Research Program in Natural Sciences
and was written during the author’s stay at Department of Mathematics, University
of Amsterdam (Netherland) in September 1993
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Sections 2, 3, 4 and 5 treat some directions of research in the
theory of stochastic integrals and in the last section we introduce the
notion of random operators in Banach spaces as a natural framework
of stochastic integrals.

2. STOCHASTIC INTEGRAL OF NON-RANDOM FUNCTIONS
WITH RESPECT TO A RANDOM PROCESS
Let {W(t), 0 <t < 1} be the Wiener process (or the Brownian

motion) on the interval [0,1]. In many applications, there arises the
need of considering the integral of the form

[ reyawe, (1.1)

where f(t) is a function defined on [0,1]. Because all sample paths
of the Wiener process have unbounded variation, the Stieltjes integral

1
/ f(t) dW (t,w) can not be performed on every path. However, Wiener
0
was successful in finding a reasonable mathematical definition of the

integral (1.1). The construction of the Wiener integral is the following.
First, if f is a simple function

n

f(t) == Z ci]'[t.‘,t.'+1)’

=1

1
then / f(t)dW is defined by
0

l n
/f(t) W =3 el (tisn) - Wt}

By the independence of the differences we have the identity

E| / Feyaw| = / £ (0)]? de.
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1
This proves that the mapping f — / fdW is an isometry from the
0

linear space § of simple functions into Ly(f1). Next, because S is dense
in L2[0, 1] this map admids an extension to the whole space L[0,1].

1
For each f € L,[0,1], /f(t) dW is defined as the image of f under this
map. °
1
In other words, / J(t) dW can be defined as the limit in the mean
0

square of the integral sums of the form
S £ W (ti) = W(5)
1=0

when the gauge of the partition tends to zero.

By a similar construction, H. Crame developed a general theory
of stochastic integral w.r.t. a complex-valued process with orthogonal
increaments. Recall that by a process with orthogonal increaments we
mean a process X (t),t € R satisfying E|X(t)|? < oo and

E[X(t2) — X(t1)][X(ta) - X(ts)] =0,
whenever (t1,i3), (t3,t4) are disjoint intervals.

It is shown that / f(t) dX exists for complex-valued functions f
R

satisfying
/If(t)|2dG(t) =p,
R
where G is a non-decreasing function associated with X by the formula
E|X(t) - X(s)|* = G(t) - G(s)

and the following isometry holds

Bl [ 10ax]* = [ 101 a0,
R R
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This integral plays a pivotal role in the theory of stationary processes.
Namely, if X(t) is a stationary process then there exists a complex-
valued process with orthogonal increament S(t) such that

X(t) = / '™ dS(u).
R
This formula is called the spectral representation of the stationary pro-
cess X(1).
As a continuous analogue of weight sum of i.i.d random variables
of the form Za;& the stochastic integral w.r.t. a Levy process was
firstly studied by Levy and developed by Urbanik and Woczynski {34].

Recall that a process X(t) is said to be a Levy process if it has inde-
pendent increaments and the distribution of X (t) — X(s) depends only

n—1
ont —s. If f(t) is a simple function , f(t) = Zcilltivt-’+l) then the
. 3=0
stochastic integral / f(t) dX(¢) is defined by
0
1 n—1
[ rax) = ¥ elxten) - X,
A i=0

A function f is said to be X-integrable if there exists a sequence (fy)
of simple functions such that f,(t) converges to f(t) almost everywhere

1
and the sequence { / fndX } converges in probability. In this case we
0

put
/ £() dX(8) = P — lim / fult) dX(2).

It was shown that the limit, if it exists, is independent of the choice of
a particular approximating sequence (f,). The following theorem gives
a full analytic description of X-integrable functions.

Theorem (Urbanik,Woyczynski [34]). Let X(t) be a symmetric Levy
process and the characteristic function ¢(u) of the increament X(t) —
X(s) be given by
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1492
- dG(v)}

oo
o(u) = exp {[t — g /(cos uv — 1)
0
where the function G(v) 1s monotone non-decreasing bounded continu-
ous on the left with G(0) = 0 (G is called the Levy-Khinchin function
corresponding to X ). Then f is X-integrable if and only if f belongs to
the Orlicz space Lg[0,1], where

B(z) = ]o Gif;‘) du.
1/z

In the case X is a p-stable motion i.e. ¢(u) = exp{—|t — s||u|P} then
Lg[0,1] = Ly[o, 1]

Vakhania and Kandelski [32] gave a definition of a stochastic in-
tegral for operator-valued functions w.r.t. a Levy process taking values
in a Hilbert space H and satisfying E[|X(1)||?> < co. Let R denote.
the covariance operator associated with X. For any bounded linear
operator A € L(H, H) define

4]l = [Tx(ARA®)]Y? + [Tx(4* RA)] 2.

Then the set {A : ||A||, = 0} is a linear semi-group in the linear group
L(H, H). The function A — ||A||. is a norm in the corresponding factor
group. We shall not distinguish between a coset and the individual
operators in the coset. Let A denote the completion of L(H, H) in this
norm. Consider the space L, [[O, 1], A] of functions f : [0,1] — A such
that

1
[ 11012 a < oo
(0]

1
The standard extension procedure yields a stochastic integral / f(t) dX(t)
0

1
for each f € L,[[0,1],4]. It was shown that /f(t)dX(t) is a H-
0
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valued infinitely divisible random variable with the characteristic func-
tion given by

) = txp / K[f*(t)(h)]dt, heH,

where K (k) = InG(h) and G(h) is the characteristic function of X(1).

Rao [18] used this stochastic integral to obtain the characteri-

zation theorem for Wiener processes taking values in a Hilbert space
1

1
H throught indentical distributions of / J{(t) dX{(t) and / g(t) dX(t).
0 0
Namely, he proved that under a slight assumption, / f(t)dX and
. 0
/ g(t)dX are indentically distributed if and only if X is a H-valued

0
Wiener process and

[rerswa = [swre e,
0 0

where R is the covariance operator associated with X. Here the integral
is understood to be a Bochner integral under convergence in the space A.

3. RANDOM MEASURES AND STOCHASTIC INTEGRALS
WITH RESPECT TO THEM

Let (S, S) be a measurable space. A mapping M from § into
Lo(0) is called a random measure if for every sequence {A,} of disjoint
sets in §, the random variables M(A,) are independent-and we have

M(|JAn) =) M(4n)

where the series is assumed to converge in probability. In addition, if
M(A) is a symmetric random variable for every A € § then we call M
a symmetric random measure.
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By definition, a random measures on (S, §) can be viewed as a
real stochastic process indexed by the parameter set §. Two random
measures M and N are called a version of each other if for each A € §

P{uw: M(4)() = N(4) ()} =1

For each w fixed, the set function A — M(A)(w) is called a sample path
of M. We say that a random measure is regular if its all paths are mea-
sures of bounded variation. There are simple examples of random mea-
sures having no regular version. For instance, let W Wi(t),0<t<1

be the Wiener process. Define M { U (@, b } Z[W a;) — W(b;)]

if (a4,b;) are disjoint intervals, we get a random set functlon which by
the Prekopa theorem [12] can be extended to a random measure on
o-algebra B of Borel set of [0,1]. M has no regular version since almost
every path of the Wiener process is of unbounded variation. A point
process is a good example of a regular random measure. A study of
non-regular random measures requireds a different approach from ones
taken in the theory of point processes presented in [7].

Now we want to define the stochastic integral of the form

S/ f(t)dM

where f(t) is a non-random function defined on S.

If M is regular then it is natural to define the integral as the usual
integral of the function f(t) with respect to the measure dM(t,w), w
being fixed, if such an integral exists. Actually, this construction is
not possible for the general case. The reason is that many random
measures are not regular, and then dM (¢, w) does not define a measure.
The following definition of the stochastic integral was proposed first by
Urbanik and Woyczynski [34]

n
Definition. a) Let f = Zx;l A; be a real simple function on S, where

=1
A; € S are disjoint. Then, for every A € §, we define

/fdM = iz;M(AﬂA,‘)
A =1
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b) A measurable function f : § — R is said to be M-integrable if there
exists a sequence {f,} of simple functions as in (a) such that

i) fo — f M-almost every where ie. M{t: f,(t) # f(t)} =
0 as.

ii) For every A € §, the sequence { / fndM } converges in prob-
A

ability as n — oo.
If f is M-integrable, then we put

/fdM = P - lim /f,,dM
A A

We note that / f dM is well-defined i.e. it does not depend on
A

the approximating sequence {fy}.

The study of Wiener-type integral / f dM of non-random func-

tions with respect to a random measure M under various hypotheses
on the random measure M has a long history (e.g. Urbanik, Woczyns-
ki [34] Urbanik [33] Schilder {22] Rajput and Rama-Murthy [14]). The
most general results obtained by Rajput and Rosinski [15] were con-
cerned with a systemmatic study of the case where M is an arbitrary
infinitely divisible random measure i.e. for each A € § M(A) is a
infinitely divisible. The main results of [15] are the following:

a) To give a characterization of the space of M-integrable functions. It
-was proved that for every A € §, the characteristic function of M(A)
can be written in the Levy form

®4(t) = exp {ituo(A) - %tzul (A) + /(e"t’ — 1 —tr(z))F(A, da:)},
R

where vp : § — R is a signed-measure, vy : § — [0, 00) is a non-negative
measure, F(dt,dz) is an o-finite measure on S x B. The measues vy,
v; and F are called the deterministic characteristics of M. A necessary
and sufficient condition for a function to be M-integrable is given in
terms of these deterministic characteristics.
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b) The identification of the space of M-integrable functions as a certain
Musielak-Orlicz space.

c) This stochastic integral is used to obtain the spectral representation
for arbitrary discrete parameter infinitely divisible processes as well as
for continuous parameter infinitely divisible processes, which are sepa-
rable in probability. Namely, for any infinitely divisible process X one
can choose a random measure M and a family of non-random functions

{f:} such that X; ~ {/ft dM} i.e. X; and the process /ft dM have

the same finite-dimensional disiributions. This spectral representation,
when specialized to stable and semistable processes yields, in a unified
way, all known spectral representations for these processes.

Rosinski [16, 17| extended the above definition to the case in
which f takes values in a Banach space B. He obtained the characteri-
zation of M-integrable functions in the case M is generated by a single

.symmetric infinitely divisible i.e. for each A, the characterisric function

(ch.f.) of M(A) is of the form

& A)(t) = exp { — A(4) [t20'2 + /(1 — costz) dm(z)] } ]

R
where m is a Levy measure on R.

Theorem (Rosinski [16]). Let B be a Banach space. A function f :
S — B ts M-integrable if and only if

i) For each a € X'

/K[(f(t),a)]dA(t) < o0,

S

where K(t) = 0%t + /(1 — costz)dm(z);
R
#t) The function

¥(a) = exp { " / K]( f(t),a)]dA(t)}

s
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is the ch.f. of a Radon measure on B. In this case, ¥(a) is the ch.f. of

S/fdM.

Equivalently, f is M -integrable if and only if
i) The function

Q@ = [ 170, a2

ts a covartance Gaussian function;

t1) The measure p on B defined by
u(A) = (0 x m){(t,0) : £(t)v € A\0}

ts a Levy measure on B.

The Rosinski’s theorem includes the earlier results on stochas-
tic integrals of Banach space-valued functions w.r.t. p-stable random
measures obtained before by Hoffman-Jorgensent [4], Okazaki [11].

Vector random measures arise naturally as a Banach space gen-
eralization of random measures. Let X be a Banach space. A map-
ping F :—— L¥(Q) is called a X-valued random measure if for every
sequence {A,} of disjoint sets in S, the X -valued r.v’s F(A,) are
independent and we have

F({J4s) =)_F(4,),

where the series is assumed to converges a.s. in the norm topology of
X. F is said to be symmetric if F(A) is a symmetric random variable
for every A € S. A finite positive measure p on (S, ) is called a control
measure for F if F(A) =0 a.s. whenever u(A) = 0. Vector random
measures can be also regarded as a randomization of (non-random)
vector measure studied by many authors. From the latter point of
view, one question arises naturally: How to extend the basis theorems
of the theory of non-random vector measures to the random context.
The following theorems are random analogues of the Pettis theorem
and the Vitali-Hahn- Saeks theorem.
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Theorem (Thang [25]). Let F be a X-valued symmetric random mea-
sure on (S, S) and u be a control measure for F. Then F is p-contin-
uous, t.e.

P— lim F(E)=0.
u(E)—0

Theorem (Thang [25]). Let {F,} be a sequence of X -valued symmetric
random measures such that

P — lim F, (E) = F(E)

ezists for each E € S. Suppose that there ezists a control measure u for
every F,,. Then the mapping E — F(E) 1s also a X-valued symmetric
random measure with the control measure p.

Two X-valued random measures F' and G are said to be a modi-
fication of each other if two X-valued stochastic processes F = {F(E)}
and G = {G(E)}, E € § have the same finite dimensional distribu-
tions. In this case we write F' ~ G.

Theorem (Thang [25]). Let {F,} (n > 0) be X-valued symmetric
random measures with the same control measure u such that for each
E € S the distribution of F,(E) converges weakly to the distribution
of Fo(E). Under a slight assumption, we can find X-valued random
measures {Gy,} such that G, ~ F,, for each n > 0 and

P —lim F,(E) = Fo(E) for each FE € S.

It still remains an open problem to examine the validity of a
random analogue of the Random-Nykodym theorem. Let M be a real-
valued random measure. If f : S — X is a M-integrable function in the
definition of Rosinski then it is not difficult to show that the mapping
F defined by

F(E) =E/fdM

is a X-valued random measure, which is dominated by M in the sense
that: If (E,) is a sequence in S such that P — lim M(E,) = 0 then

P—lim F(E,) = 0. Now question is: Given a X-valued random measure
n
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F and a real-valued random measure M such that F is dominated by
M. Suppose that the Banach space X has the R-N property. Is there
a M-integrable function f : S — X such that the X-valued random

measure G defined by
G(E) = / faM
E

is a modification of F?

By a analogous manner as in the case of real-valued random mea-
sures, we can define the stochastic integral of real-valued functions w.r.t.
vector random measures.

Definition. Let F be a X-valued random measure with the control
measure [.

n
a. Let [ = Zt;l g; be a real simple function on S. Then for every

=1

A € § we define <
/ fdF =) _t:F(E:n A).
A i=1

b. A measurable function f is said to be F-integral if there exists a
sequence (f,,) of simple functions such that f, — f u - as. and for

every A , the sequence { / fndF } converges in probability.
A

In this case we put

/de = Fr— li'{n/ fndF.
A A

By using the random version of the Vitali-Hahn-Saeks theorem we can

prove that the definition is well-defined i.e. / f dF does not depend on

A
the approximating sequence {f,}.
_ The following results give the condition for passing to the limit
under the stochastic integral sign and the characterization of F-inte-
grable functions.
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Theorem (Thang [26]). Let F be a X-valued symmetric random mea-

sure with the control measure . Suppose that {f,} is a sequence of

real-valued F-integrable functions such that lim f,(t) = f(t) for u-al-
n

most surely. Then the equality

P—lim!fnszfde

S

holds if and only if
(| mar]> ) <o

In particular, we can pass to the limst under the stochastic integral sign
tf the sequence (f,) s dominated by a F-integrable function.

It should be noted that the dominated convergence theorem does
not hold for the stochastic integral of Banach space-valued function
w.r.t. a real random measure.

The following theorem provides a necessary and sufficient condi-

tion for the existence of f dF in terms of certain parameters of F.

Theorem (Thang [26]). Let F be a X-valued random measure such
that the ch.f. of F(A) is given by

<I).A(a) = exp { - Q(A,a) + /(cos(:c, a) — l)H(A,da:)},

where Q(A, a) is a positive measure on S for each a € X' and H(dt,dz)
15 @ o-finite measure on o(S) x B(R). Then a function f : S — R 1s
F-integrable if and only if

1) For each a € X'

@) = [110PQUt0) + [ [{1- cos(er (@) )} H(at, da) < o0
S

s X
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i) The function exp{—g(a)} is the ch.f. of a probability measure on X.
In this case, exp{—g(a)} ts the ch.f. of /f dF.

S

The conditions in definition (b) can be restated in an following
equivalent form which is more useful in applications.
A function f : S — R 1s F-integrable if and only if

a. The function

wa) = [ 170)P Q0

ts a Gausstan covariance function.

b. The measure p on X given by
u(B) = H{(t,z) € S x X : f(t)z € B\ o0}

s a Levy measure on X.

4. ITO STOCHASTIC INTEGRAL AND THE
PREDICTABLE STOCHASTIC INTEGRAL

In 1944, in order to provide a powerful method for the explicit
construction of the paths of diffusion processes, Ito [5] introduced a
very important generalization of the Wiener stochastic integral by ob-
miting the restriction that the integrand was a deterministic function.
Consider the class of random functions u = u(t) satisfying

) P{/lu2(t,w)dt < oo} =1

ii) u is adapted w.r.t. the Wiener process i.e. for s < ¢, u(s) is inde-
pendent of the increaments u(v) — u(t) for v > ¢.
1

Ito’s idea for constructing the stochastic integral / udW is the

0
following. First, if u is adapted simple random function of the form

n—1
Z a‘.llti,twl) ’
—
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where a; is 7, - measurable random variable for every ¢ = 0,..,n then
1

/ udW is defined by

/udW _ "z_: i [W (1) — Wi(2:)].

By the independence of a; and W (t;;;) — W (t;) we get

E.judW'zz/ /llulzdth.
0 @2 o

Denote by L2 the Hilbert space of adapted random functions « such that
1 o

/ / |u|?dtdP < oo. It is shown that the set of simple adapted random
Q 0

1
functions is dense in £;. Because the mapping u — / udW is a linear

0
isometry from the dense subspace of £, it can be extended to a linear
1

isometry from L, into L3(1). For u € L, we define / udW as the
0
image under this mapping. Finally, the extension to the case where
1
u is an adapted random function such that / |u(t)|?dt < oo as. is

0
achieved by using the so-called technique of localization.

The Ito stochastic integral can be defined as the limit in proba-
bility of Riemann integral sums with the left end-points approximation
points i.e. the sums of the form

3 W (t512) - W)
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under the condition that max(¢;4+1 — t;) tends to zero. If we choose the
mid-point approximation points i.e. the sums are of the form

_i wo W (tis1) — W(t)]

t; t;
where s; = bipilike , we get the so-called Stratonovich stochastic

integral (see [21]).

The Ito stochastic integral is uselful in analysis because the pro-
cess

{ / udW, 0 <t < 1} is a martingale and various good estimates

0
are available. It does not, however, behave so nicely under a trans-
formation and is subject to a strange calculus. For example, if f is a
smooth function then we have the Ito formula

t ¢
W) = f(Wo) + / rwaaw, + / F(W.) ds,

0

often written instead in the differential form
1
d(f(Wy)) = f(W:)dW, + -2—f"(Wt)dt.

The Stratonovich stochastic integfal has the advantage of leading to
ordinary chain rule formulas under a transformation, i.e. there are no
second order terms in the Stratonovich analogue of the Ito formula.
This property makes the Stratonovich integral natural to be used in
connection with stochastic differential equations on manifolds (see Ikeda
and Watanabe [6]). However, the indefinite Stratonovich integral is not
martingale, so it does not give good estimates. '

Equipped with the notion of the Ito stochastic integral one can
consider stochastic differential equations. For example, given smooth
functions A, B with bounded derivatives and a random starting point
zo find a process X; satisfying

dXt = A(Xt)th + B(Xt)dt, Xo = Xo.
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This is a shorthand for the integral equation
t t

X, = 70 + / A(X,) dW, + / B(X.) ds.
0 0

It is shown that the solution X; is a strong Markov process even a
diffusion. Hence, stochastic differential equations provide an effective
mean of constructing diffusions with given infinitesimal generators.

The Ito stochastic integral for the Wiener process is insufficient
for applications as well as for mathematical questions. A more general
stochastic integral in which the integrator M is a semimartingale has
been developed. We provide here an outline of several stages in the

definition of the stochastic integral of the form / X dM only in the
' 0

case where M is a right continuous (cadlag) local L,-martingale and
X is a process satisfying certain conditions about measurability and
integrability.

i) The definition of predictable sets and predictable processes: The
family of subsets of R* x 01 containing all sets of the form {0} x Fo
and (s,t] X F where Fy € 7, and F € %, for s <t is called the class of
predictable rectangles and we denote it by R. The o-field P of subsets
of R* X (1 generated by R is called the predictable o-field and sets in
P are called predictable sets. A process X considered as a function
on R+t x 0 is called predictable if it is P-measurable. It can be shown
that any predictable process is adapted and any left continuous adapted
process is predictable.

if) Measure on the predictable sets: Let M = {M(t),t € R*} be a
cadlag Ly-martingale. Define a set function Zy; on R by

Zu((s:t] x F) = E{1p[M(t) — M(s)]*}.

Then by the assumption that M is a cadlag La-martingale, Zjs can be
extended to a measure on P which is denoted by up, and it is called
the Dolean measure of M.

iii) Let £ denote the class of all R-simple fuctions. If X € £ is of the
form

n
X = Z cil(s.- ,t.']XF.'

i=1
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then / X dM is defined by
Rt

/ XdM = zn:cilp.. [M(t,') - M(s.-)].
£ §i=]

It can be shown that the following isometry holds

E[R[ Xer:/ /|X|2duM.

Rt

iv) This isometry is used to extend the definition of / X dM to any
Rt

random process X belonging the space L2 = L (RT x 0, P, un) since

the set of R-simple random functions is dense in L.

v) Finally, the extension to the case when M is a cadlag local Ls-
martingale and X is “locally” in L3 is achieved by using a sequence of
optional times tending to infinity.

Brooks and Dunculean [1] extended the stochastic integral for
processes with valued in Banach spaces. Let E, F and G be Banach
spaces, X be a process with valued in E € L(F,G) and H be a process
with values in F. Suppose that X is cadlag, adapted and E||X(t)(|P <
oo for every t. Define a set function Ix from R into L%(9) by

Ix{(s:t] x F} = 15X (t) - X(8)]

The process X is called summable if Ix can be extended to a L%(0)-val-
ued measure with finite semivariation on P. In this case, the stochastic

integral / H dX is defined as the bilinear vector integral of H with re-

spect to the vector measure with finite semivariation Ix. The summable
processes play in this theory the role played by Lo-martingales in the
classical theory. It turns out that every Hilbert space-valued Lo-martin-
gale is summable but for any infinitely dimensional Banach space E
there exists a E-valued summable process which is not even a semi-
martingale.
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1
Thang [29] constructed the stochastic integral / udZ, in which
0

the integrator Z,, is a vector p-stable random measure taking values in a
sufficiently smoothable Banach space X. The procedure for construct-
ing this type of stochastic integral is following: A random function
{u = u;,0 <t < 1} is said to be simple adapted (w.r.t. Zy) if there
exists a finite partition 0 = t3 < ... <t, = 1 and the random variables
a; (i = 0,...,n) such that o; is %,-measurable and

n—1
up = Z o1yt 200

=0

where #; denotes the o-algebra generated by the X-valued random vari-
ables

{Z,(A), A € [0,t]}. The stochastic integral of such a simple adapt-
ed u is defined as

L n—1
/u.de = Z 0; Zp([tsstit1)).
0 t=0

We associate to Z, a non-negative measure |Q,| called the control mea-
sure of Z,. A random function u is said to belong to the class V(Z,)
if there exists a sequence (u,,) of simple adapted random function such
that u, € L,(|Q,| x P) and u,, converges to u in L,(]Q,| x P). Notice
that when |Q,| is continuous, V(Z,) is precisely the class of adapt-
ed random functions in Ly(|Qp| X P). If |Q,| is any measure with
|@p|{0} = 0 than the class V(Z,) is still large enough to contain all the
predictable random functions in L,(|Qp| X P). Under the assumption
that the Banach space X is g-smoothable, where ¢ > p if p < 2 and
p = 2 if ¢ = 2, by using the Assouad-Pisier inequality for martingale
differences taking values in smoothable Banach spaces, it is shown that

1
the mapping u — / udZ, is a linear continuous operator from the set

0

of simple adapted random functions into the space L¥(2). Hence it ad-
1

mits an extension to the whole space V(Z,). For u € V(Z,), /u dz,

0
is defined as the image of u under this mapping.
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5. THE NON-ADAPTED STOCHASTIC INTEGRALS

The measurability conditions which prescribes that the integrand
should be independent of future increament of the Wiener process is a
very restrictive one. Whereas it is a natural condition in many situa-
tions, where the filtration represents the evolution of the available infor-
mation, it is in many cases a limitation both for developing the theory
as well as in application of stochastic calculus. Because in applications
the random function to be integrated is not always adapted (or non an-
ticipating) there arises the need to weaken the adaptedness requirement
for the integrand of Ito stochastic integrals. Different definitions of the
stochastic integral of a non-adapted with respect to the Wiener process
have been proposed by several authors. Below we briefly mention some
kinds of non-adapted stochastic integrals and the relationship between
them. For more details we refer the readers to [9].

Let u; be a Borel measurable random function such that

1
/ufdt <00 a.s.
0

and let 7 = {0 =ty < ... < t, = 1} denote a partition of the interval
[0,1].
1) The smoothed Stratonovich integral (see [ 9,10]):

The random function u = u; is said to be smoothed Stratonovich
integrable if the integral sum of the form

Se= Y T W (ti) - W)

where
tiga
ugds
— &
Uy = ————
tiv1 — &
converges in probability as the gauge |7| = max(t;4, — t;) tends to

zero and moreover if the limit does hot depend on the choice of the
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sequence of partitions whose gauge tends to zero. When u is smoothed
1

Stratonovich integrable we denote by / u:0odW the above limit.
0
2) The Ogawa integral (see [10]):

A random function u = u, is said to be Ogawa integral if for any
orthonormal system (e;} in L,[0, 1] the series

1

( /1 ures(t) dt) / e:(t) AW

=1 o

converges in probability and if the limit does not depends on the choice

of the particular basis (e;). When u is Ogawa integrable we denote by
1

/ ut * dW the sum of the above series.
0
It was shown (2] that if for some p > 2,

3 (Blul?) ' < oo,

1=1

1
where uy = / ek(t)u: dt and (e;) is any continuous, uniformly bounded

0 .
orthonormal base then w; is Ogawa integrable. Moreover, Nualart and
Zakai [10] proved that the existence of the Ogawa integral implies that
the smoothed Stratonovich integral exists and these two integrals are
equal.

3) The Pardoux-Protter two-sided integral [13]:

Let 7 denote the g-algebra generated by {W,,0 < s < t} and
F*t denote the o-algebra generated by {W1 —W,,t <s <1}. In the
filtering theory, there arises the need to evaluate integrals with respect
to a Wiener process of random functions of the form

U = Q(t, Xi, Yt),

where X; is a #-adapted random function and Y* is a 7 t.adapted
random function. The stochastic integral of a random function of the
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above form is defined as the limit in probability of the integral sum of

the form
n—1

Sp= Z Q(tivxti’yti+l)[w(ti+1) - W(ti)]
t=0

as the gauge of the partition |r| = max(¢;4, —t;) tends to zero and the
limit does not depend on the choice of the sequence of partitions whose
gauge tends to zero.

4) The Skorokhod integral [19]:

The most general non-adapted stochastic integral is the Sko-
rokhod integral. Let (T, S, ) be a measurable space with a finite mea-
sure 4 and M be a Gaussian symmetric random measure on with the
control measure p. Suppose that u : T X ! — R be a random function
having finite second moment E [ |u(t,w)|?dp < oco. For each fixed
t € T the random variable u; can be represented as a sum of multiple
Ito integral

u; = go + Z / gk(t,tl, ..,tk)M(dtl)...M(dtk).
k=1Tk

For each k > 0 the non-random function gj belongs to Ly(T*+1, u*+1)
and is symmetric with respect to the last k arguments. We denote by
i the symmetrization of gx with respect to all k£ + 1 arguments. Then
the Skorokhod integral of u with respect to M is defined by the equality

§u) =) / b1y - thp1) M (d1)... M (dtry1),
k=0Tk+1

provided that the series on the right-hand side converges in Lz(f).
We note that if v is adapted then the Ito integral and the Skorokhod
integral coincide; If u; = ®(t,X;,Y?) is Skorokhod integrable then it
is also integrable in the sense of Pardoux-Protter and both integrals
coincide. Under a slight assumption, the existence of the Skorokhod
integral implies that the Ogawa integral exists. In addition if u is
Skorokhod integrable then it is also Stratonovich integrable. However,
two integrals are different in general. For example, if X; is a continuous
adapted semimartigale and f € C'(R) then u; = f(X3) is Skorokhod
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integrable and

/ wodW = 6(u) + 7 / F(X0)d(X, W),
0 0

6. RANDOM OPERATORS :
A NATURAL FRAMEWORK OF STOCHASTIC INTEGRALS

Let X and Y be two Fréchet spaces. By a random mapping from
X into Y we mean a mapping from X into LY (). We may think of the
mapping from X into Y as an action which transforms each input z € X
into an output Az € Y. It might happen that Az is not completely
known but subject to some random noise so that we can only hope to
be able to say about the probability distribution of the output. In other
words, instead of considering Az as an element of Y we have to think
of it as an Y-valued random variable.

A random linear mapping from X into Y is called a random
linear operator. Mathematically, by a random operator (we omit the
word “linear” since we only consider random linear operators from now
on) we mean a linear continuous mapping from X into L¥ (22). Random
series and stochastic integrals are most important examples of random
operators.

Example. 1. Let (&) be a sequence of real-valued i.i.d. Gaussian

random variables and H be a Hilbert space. It was known that if (z,)
o0 [0 ]

is a sequence in H such that ) ||z.||? < co then the series Y z,¢&,

n=1 n=1
converges a.s. in the norm topology of H. Define a mapping from £,(H)

into L¥(0) by
Az =) z:& if z=(za) € L(H).
i=1
we get a random operator from £,(H) into H.

2. Let M be a infinitely divisible random measure. It was shown [15]

that the mapping f — / fdM is linear continuous from the space
s



24 Dang Hung Thang

L(M), which is a certain Musielak-Orlicz space, into Lo(02). Conse-
quently the stochastic integral mapping is a random operator.

3. Let K(t,s) be a function defined on the square [0,1)2. Defined a
mapping on C[0,1] by

Az(t) =/K(t,s)z(s)dW(s).

It can be shown that this mapping is a random operator from C|0, 1]
into L3[0,1] and it is called a random integral operator with the kernel
K(t,s).

Consequently, random operators can be considered as a natural
framework for stochastic integrals. In other words, stochastic integrals
are prototypes of random operators. Moreover, it is shown that every
symmetric p-stable random operators has a representation of the form
of a stochastic integral or a random series.

Theorem (Thang [24]). Suppose that A is a symmetric Gaussian ran-
dom operator from X into Y. Then there ezist a sequence (€n) of
real-valued i.i.d. Gaussian random variables and a sequence (B,) of
non-random linear operators from X into Y such that for each z € X

e o]
Az =) €nBaz,
n=1

where the series is convergent a.s. in the norm topology of Y.

Theorem (Thang[27]). Suppose that A is a symmeiric p-stable ran-
dom measure (p < 2). Then there exist an p-stable random measure M
on some measurable space (S,S,u) and a linear continuous mapping
from X into the space Ly (M) of Y -valued M-integrable functions such
that

e / Gz (t)dM(t).

Under the original definition, a random operator with the do-
main X can not be applied to X-valued random variable. Taking into
account many circumstances in which the inputs are also subject to
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the influence of a random enviroment, there arises the need to give a
reasonable meaning to the action of the random operator on some X-
valued random variables. Mathematically, given a random operator A
with domain X, the problem is to extend the domain of A to some class
V of X-valued random variables. Of course, different procedures may
be proposed but the aim will be that the class ¥ must be as wide as
possible and at the same time the extension of A should enjoy many
good properties similar to those of A. This problem is also motivat-
ed by the following consideration. Let A be a random operator from
L;[0,1] into R defined by the Wiener stochastic integral

1
A:c:/:ctdW if .’BELg[O,l].
0

For a measurable random function u = u; with sample paths in L;[0, 1],
as we have seen in Section 4, the different definitions of stochastic inte-

1
gral / u¢dW have been proposed. Now if u is a random variable with
0
values in L3[0,1] we can define the action of A on u as the stochastic
1
integral / u;dW if it exists in some sense. The problem of defining

0
the stochastic integral of a random function with respect to a Wiener
process turns out to be equivalent to that of extending the domain of
the random operator generated by the Wiener stochastic integral.

It should be noted that it is not_always possible to define the
extension of A by direct substitution Au(w) = A(u(w))(w). Indeed,
for each z € X, Az is defined on some set D, of probability one, but
then Au(w) is defined (by direct substitution) only on the set B agielys
which can be empty.

In [30] a reasonably large class V of X-valued random variables
was introduced on which the extension of a random operator A with
domain X is defined in a natural way. In the case where A4 is the
random operator generated by the Wiener integral, it is shown that
if u is Skorokhod integrable then by choosing a suitable approximat-
ing sequence (u,) of X-valued r.v.’s in the class V the sequence Au,
converges to the Skorokhod stochastic integral of u. Motivated by the
notion of Ogawa integral, another procedure of extension was proposed
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in [30] for the case X = £,(1 < s < 00). Namely, an X-valued random
v [o o)

variable u is said to be A-applicable if the series Zu,,Aen converges in
n=1

LY (), where (ey) is the standard basis in [, and u, stands for the n-th
coordinate of u. It is not difficult to show that if the random operator
A viewed as a Y-valued random field indexed by the parameter set X
admits a modification with sample paths in the space L(X,Y’) of linear
continuous operators then each X-valued random variable is A-applica-
ble. (For various conditions ensuring the existence of a modification of
A whose sample paths belong to L(X,Y) we refer the readers to Thang
[28]). One of the main results of [30] is the following

Theorem (Thang [30]). 1. Let Y be a Hilbert space and the random
variables (Ae,) are independent. Then each X -valued random variable
u such that u,, ts F._1-measurable for everyn > 1 i3 A-applicable. Here
7, is the o-algebra generated by Ae;, ..., Aey,.

2. Let A be a symmetric p-stable random operator and Y be a g-smooth-
able Banach space, where g =2 if p=2 and ¢ > p if p <2. Suppose
that the random variables (Aey) are independent. Then each X-valued
random varsable u such that u, s ¥,_1-measurable for each n > 1 and

o0
Zh‘nlp < 00 a.s. is A-applicable.

n=1

Other topics of the theory of random operators in Hilbert spaces
can be found in [20].
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