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A Short Communication

MULTIDIMENSIONAL QUANTIZATION AND
THE DEGENERATE PRINCIPAL
SERIES REPRESENTEATIONS *

DO NGOC DIEP

Let G be a connected Lie group, g its Lie algebra, gc the com-
plexification of g. For an element Z of gc we denote its conjugate by
Z. If a is a sub-set of g we pose

a:={Z;Z € a}.

Let g* be the dual space of Lie algebra g, O(G) the orbit space of
G, 0 € 0(G) a K-orbit, F € 1 a fixed point on {1, which is admissible
in the sense of Duflo [1], GF the stabilizator of the point F, 6xp an
irreducible unitary representation of G, the restriction of which on the
connected component (G)o is a multiple of x s, where

¢

xr(exp() := exp (+(F, )

and h := —i is the normalized Planck constant. Since the value of K

v
does not play any role in the results of this note we may normalize %
so that it has almost everywhere the value 1. The admissibility of F
guarantees the existence of such a representation oxr.

In 2] we have introduced the notion of polarization as follows.
We say that (p, p,00) is a (&, F) - polarization, iff:

(a) pis a complex Lie subalgebra of gc, containing (gr)c.
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(b) Thesubalgebra p is invariant with respect to the operators Adg z,
zeqG F-

() The vector space p+P is the complexification of a real subalgebra
m, that is m = (p + p) N g.

(d) All the groups My, Ho, M, H are closed in G, where My (resp.,
Hp) is the connected subgroup of G, of Lie algebra m (resp.,
h:=png)and M := Gr X Mo, H := G X Ho.

(e) oo is an irreducible representation of the group Hy in a Hilbert
space V, such that: (e;) the restriction 00| GraHo is a multiple of

the restriction to Gr N Hp of xr and (ez) the point oy is fixed
under the action of group G in the dual Hy of the group Hy

(f) p is a representation of the complex Lie algebra p in V, which
satisfies all the E. Nelson’s condition for Hy, and plh = doy.

This notion is equivalent (see [3]) to the notion tangent G-distri-
bution L, which is

(a’) integrable.

(b’) AdGp - invariant

(c’) complexly integrable, i.e. L + L is integrable,
(d’) closed.

(¢’) weakly Lagrangian.

(f’) complexly extended (see [3] for details).

Theorem 1. The polarization (p,p,00) with dimog = 1, or equiv-
alently, the corresponding to L tangent G distribution, is being La-
grangian, is mazimal if and only if

‘ g 1.,
0o = XF, codimgh = '2-dlm Op

and h is subordinate to the functional F, (F,[hh]) =0.
In other words, h ts a polarization in the sense of M. Duflo.

The idea to prove is to consider the quotient (GrNHg)\ Ho, which
is a group according to the condition (b). Therefore oo corresponds to
a projective representation of dimension 1 of (G N Hy) \ Ho, which is
trivial, in passing, if necessary, to the 2-fold covering. One has therefore
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oo = xr and (F, [h,h]) = 0. In the case of a Lagrangian G-distribution
(L, p,00), one has obviously (F,[h,h]) = 0 and x is a representation
of Hp, which is extended to 0. By the irreductibility of oy, one has

: 1. . -
0o = Xr. The argument that codimzh = Edlm {1 is classical one, see,
for example [4]

The construction of Duflo [1] proposes a reduction to the smallest
dimension and, in the last step, a particular definition,

TF,5XF = 7r<5F5’XF, %(F, )|h)

for the reductive connected groups. This representation is defined, ac-
cording to Duflo, by a construction of Harish-Chandra. We remark that
these representations can be also obtained by the procedure of multi-
dimensional quantization in considering the polarizations (p, p, 00)

Theorem 2. For the reductive groups, the representations of the prin-
cipal series of Harish - Chandra can be also obtained by the procedure
of multidimensional quantization.

In fact, for F € g* which is good polarized [1] and admidssible,
and for 7 € xg(F), the function §¥ over G% is a character and (6%, X)

(with X := %F|h, h = gr, H = GF) is a pseudo - character in the
sense of Vogan and
m(r6F, ) = Ind§ ), n (767 @ 7Mo),
where ol
7FM° & (MO)disc(mod cent(Mp))s
Gr=H, (Gr)o=GrNnHy,, H=FH,.

Following the method of Harish - Chandra, the representation
mMo is characterized as follows. Let

b = (hc-}— Z ga)ﬂg

aeAm,c

and K, be the corresponding analytic subgroup, then #*° is defined
by the restriction wMo [ Kag? which is a multiple of the representation
(3]
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of Ky, with the dominant weight A + 6%, with respect to the subset
Af, . of compact roots, i.e.

1rM°|Ho = mult(xp.6F)|H°.

We have the restriction 1'6F|GM‘Mo Ly T‘sF'Ho 22 mult(&F.xp-)IHo.
Then r6F @ #Mo is trivial on the kernel GFr N Mg = Hp of the projection

FHO X Mo = FHoMo,

and it induces a representation, denoted by the same symbol 76 F@nMo,
of FM,. Finally, ((r6F @ mMe) ® Idy) gives us a (7, F) - polarization
of the orbit N and

IndgMoxN(('r&F ® 7M°) @ Idy)

is obtained by the procedure of multidimensional quantification.

When the reductive groupe G is not connected, one considers the
extension of 7F° to a representation S(&)w®°(y) of G% x Eq. Also, one
considers then

w(zy) = 7'(Z) ® S(z)rPe (y),

where % is a preimage of z with respect to the two-fold covering, 7' is an
odd representation of the two-fold covering G%; and finally one induces
to have Ind§ (7 ® Idy). This is also the representation obtained from
the procedure of multidimensional quantification.

Corollary. The procedure of multidimensional quantization gives us
a complete geometric illustration of Duflo’s construction.

Duflo’s construction proposes an extension of the character xr of
(GF)o to an irreducible representation 7 of Gr X Ho or, if necessary to
its two-fold covering G% X Ho which is a multiple of xr on restricting
to (Gr)o and to Ho. Actually,

T € G%.

e g
‘rl(G;)o = mult x5,
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where
1 {l,e} » G% - Gp — 1,
7 corresponds bijectively to a projective representation ¢ € (G F')/o\\ Gr.
The group (Gr)o \ Gr is discrete and it was proved in [1], that
Tr,r is of type I if and only if dim 7 is finite, and the orbit QF is locally
closed.

The procedure of multidimensional quantization proposes not on-
ly an extension of xp|( Gr)o to a representation 7 of Gg, but also an

extension of x F‘I GrnH, 1O an irreducible representation oo of Hy, an
extension to a representation Sog of Gr X Hp and finally tensor product
T ® Sog. We have therefore a similar result:

Theorem 3. The representation Ind(G;p,p,00) obtained by the pro-
cedure of multidimensional quantization is of type I if and only if o 1s
of type I, dim7 < oo and the orbit Qp ts locally closed.
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