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MULTIDIMENSIONAL QUANTIZATION AND

THE DEGENERATE PRINCIPAL

SER,IES REPRESENTEATIONS *

DO NGOC DIEP

Let G be a connected Lie group, g its Lie algebra, gs the com-
plexification of g. For an element Z of Bc we denote its conjugate by
Z . lf a is a sub-set of gc we pose

a z : { Z ; Z € a } .

Let g* be the dual space of Lie algebra g, 0 (G) the orbit space of
G, n € 0(G) a.I(-orbit, F e O a fixed point on f,l, which is admissible
in the sense of Duflo [f], C" the stabilizator of the point F, 6yy an
irreducible unitary representation of Gp, the restriction of which on the
connected component (Gr)o is a multiple of Xp, where

x"("*p(.)) :: €xp (f tn l)

and ft. ,: L is the normalized Planck constant. Since the value of h
2tr

does not play any role in the results of this note we may normalize h
so that it has almost everywhere the value 1. The admissibility of F
guarantees the existence of such a representation 62gp.

In [2] we have introduced the notion of polarization as follows.
We say that (p, p,oo) is a (6, F) - polarization, iff:

(r) p is a complex Lie subalgebra of gc, containing (gp)s.
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(b) The subalgebra p is invariant with respect to the operators Ad,".r,
x € G p .

(.) The vector space p+p is the complexification of a real subalgebra

m , t h a t i s m : ( p + F ' )  n g .

(d) All the groups Mo, Ho, M, H are closed in G, where Ms (resp.,

I/s) is the connected subgroup of G, of Lie algebra m (resp.,

h ::  Png) and M z= Gr x Mo, H :: GF x l lo.

(") os is an irreducible representation of the group lfo in a Hilbert
space V, such that: (e1) the restriction osl"r.,ro is a multiple of

the restriction to GpnHo of.6yp and, (e2) the point os is fixed

under the action of group Gp in the dual fts of the group I/6

(f) p is a representation of the complex Lie algebra p in I/, which

satisfies all the E. Nelson's condition for I/s, and pln - doo.

This notion is equivalent (see [S]) to the notion tangent G-distri-
bution.L, which is

(.') integrable.

(b') AdGF - invariant

(.') complexly integrable,i.e. L *.L is integrable,

(d') closed.

("') weakly Lagrangian.

(f') complexly extended (see [3] for details).

Theorem l. The polarizotion (p,p,oo) urr?h dimoo : L, or equiu-

olently, the corresponding to L tongent G distribution, is being La-
grangian, is mocimal if and onlg if

oo:  xFt  codimrh :  ld i *n.
o 2

and h is subordinate to the functional F, (tr', [h, h]) : O.

In other words, h r's a polorization in the sense of M. Duflo.

The idea to prove is to consider the quotient (CpnAo)\-Els, which

is a group according to the condition (b). Therefore o6 corresponds to

a projective representation of dimension I of (Gr n I/.) \.FIs, which is

trivial, in passing, if necessarS to the 2-fold covering. One has therefore
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oo : XF and (4 [h, h]) : 0. In the case of a Lagrangian G-distribution
(L,p,o6), one has obviously (F,[h,h]) :0 and Xr is a representation
of H6, which is extended to oe. By the irreductibility of de, one has

oo : XF. The argument that codim"h : 
|ai- 

Op is classical one, see,

for example [4]
The construction of Duflo [1] proposes a reduction to the smallest

dimension and, in the last step, a particular definition,

Tr,ar,

for the reductive connected groups. This representation is defined, ac-
cording to Duflo, by a construction of Harish-Chandra. We remark that
these representations can be also obtained by the procedure of multi-
dimensional quantization in considering the polarizations (p, p,oo)

Theorem 2. For the reductiue groups, the representations of the prin-
cipal series of Horish - Chandro can be also obtained, by the proeedure
of multidirn ensi anal quanti zation.

In fact, for F € g* which is good polarized [l] and admidssible,
and for r e yc(F), the function 6r over Gfi is a character and (rOF, f)

(with f : :  | f l r , ,  h : gF, H: Gr) is a pseudo - character in the'  
h  

r l l '

sense of Vogan and

r( r6P , ) )  :  IndF uox(r6n *  n*o) ,

where
rMo e (f i0)0,""1*od cent(Me))r

GF  :  H ,  (Gr )o  -  GF iHo ,  H  :  FHo .

Following the method of Harish - Chandra, the representation
rMo is characterized as follows. Let

:: r (6F 6xr, f tr, .) In)

t* :: (n. * I
c € A - ,

t ' )  n t

and K74o be the corresponding analytic subgroup, then nMn is defined
by the restriction nMolx.o, which is a multiple of the representation
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of KTao with the dominant weight )+ 6I, with respect to the subset

A*," of compact roots, i.e.

nMo I uo : mult(xr.6t) l r".

We have the restriction r6Flc"^,vo : r6Pl"o : mult(6F.x") 1""'
Then rdrserMo is trivial on the kernel GpAMo - Ho of the projection

F H o x M o + F H s M s ,

and it induces a representation, denoted by the same symbol r6F gtrMo ,
of FMo. Finally, (("6" @rMo) I /djv) gives us a (r,F) - polarization

of the orbit Op and

Indf;lyo *r (("6" I TrMo) I /div)

is obtained by the procedure of multidimensional quantification.

when the reductive groupe G is not connected, one considers the

extension of rEo to a representation S(ft\ra" (V) 
"f 

GF 
" 

.Es. Also, one

considers then
o(rv) :- rt( i)  o S(i)rE" (y),

where i is a preimage of c with respect to the twofold covering, r' is an

odd representation of the twe'fold covering Gfi; and finally one induces

to have Ind$(zr I fdry). This is also the representation obtained from

the procedure of multidimensional quantification.

Corollary. The procdure of multidimensional quontization gives us

o complete geometric illustrotion ol Duflo's construction.

Duflo's construction proposes an extension of the character 1p of

(Gr)o to an irreducible representation r of Gr X -EIs or, if necessary to

its two-fold covering Gsp x I/o which is a multiple of 1p on restricting

to (Gp)s and to .EI6. Actually,

, ea|.

" l("F)" 
-  mult lg$,
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xsFk) - -1,

where
1 -.+ {1, e} --+ GE, -+ Gp' --+ 1,

r corresponds bijectively to a projective representation a e (Ce,ifr C7,.

The group (Gr)o \ Gp is discrete and it was proved in [t], that
?r,, is of type .I if and only if dimr is finite, and the orbit Op is locally
closed.

The procedure of multidirnensional quantization proposes not on-
ly an extension of Xpl,""ro to a representation r of. Gp, but also an

extension of Xrl"".ro to an irreducible representation ae of I/e, an
extension to a representation 5o6 of G p x Hs and finally tensor product
r @ Soo. We have therefore a similar result:

Theorem 3. The representation Ind(G; p, p,oo) obtained by the pro-
cedure of multidimensional quantization is of type I if and, only if oo rs
of type f, dimr 1 a ond the orbit Or rs locally closed,.
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