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A Short Communication

ON THE REAL STABILITY RADIUS OF

POSITTVE LINEAR SYSTEMS *

NGUYEN KHOA SON

In this note we consider the problem of robust stability of linear
discrete-time systems whose trajectories are invariant with respect to a
closed convex cone in the state space. We are able to derive some esti-
mates for upper bounds and lower bounds of parameter perturbations
which preserve stability of the system. In the case the constraint cone
is the positive orthant Rf , the obtained bounds yield a simple formula
for real stability radius of the system. Our proofs are based on the
state space approach to robustness analysis of stability developed by
Hinrichsen and Pritchard, (see e.g. [2]) and spectral theory of positive
matrices founded by Perron and Frobenius [1]. It is worth noticing that
the problem of deriving a computable explicit formula of. reol stobiti-
tg radius, even for a simple autonomous linear system, was a difficult
problem. only recentlg a general formula for the real stability radius
has been found by Qiu et al. [7]. Its computation, however, requires
the solution of a complicated global optimization problem.

Consider a linear system described by the difference equation

E k + t :  A x p r k :  0 ,  1 , . . .  ,

subject to the state constraint

t k € I ( C R " ,

where A eBnx'n and. K is a nonempty closed convex cone in R,o. The
cone .trf is invariant with respect to System (l) if every solution nk(ro)
starting at an arbitrary point ns € K remains in K or, equivalently, if
and only if

A K c K . (3)
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In such a case, the system (f) is said to be positiue w.r.t- K. If K:

Ri , the positive orthant, then (1) is simply called positiue. Positive

systems arise frequently from the modeling of real processes in such

fields as economics, populdtion dynamics, ecology, etc. where the state

va,riables may represent quantities which do not have meaning unless

they are nonnegative.

we recall that the system (1) is said to be asymptotically stable

or Schur stoble if the spectrum o(Al of A lies in the open unit disk

Cr : {s € C t lsl < 1}, or equivalently, iff p(A) < 1 where p(A)

is the spectral radius of A : p(A) : ma:c{l}l : .\ € 
"(,4)}. 

The

basic problem under consideration that we address in this paper is

the following. Given a Schur stable linear discrete-time system (1)

satisfying (3) and given a set of perturbations D C Cnxn such that

(A + O)X C K for any D € D, determine the largest value "y ) 0 for

which the perturbed sYstem

r k + r : ( A + D ) r p , l l D l l  < r

remains Schur stable for each D e D. For this purpose we introduce
the D-rodius of stobility of A by defining

? D ( A \ = i n f { l l D l l  :  D e D ,  P ( A + D )  > 1 } .  ( 4 )

Here and in what follows the norms of matrices are defined as operator

nornu induced by some vector norlns on R'. If the norm of D in the

above definition need to be specified then we shall use the notation

ro(A;l l  .  l l )  instead of rD(A).

If. D : Cnxn(resp.,R*x") the above definition is reduced to the

one of complex (resp., real) unstructured stobilitg rodius rc(A) (resp..,

rR(A)) (see e.g. [2], [4]).

In this paper we shall restrict ourselves to the case of unstructured

nonnegatiae perturbotrons, i.e. when

D : D + = { D € R ' x o : D K c K } '

The corresponding D..-radius of stability of .4 will be shortly denoted

by r.,.(A). The case of structured perturbations of lineor output feedbacle
type is considered in [5]. It can be shown first that for an arbitrary

norm on Rt the following bounds for r." hold.
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Proposition 1. Let K c Rn be a pointed closed, conver cone with
int.I( *0 and A be a Schur stable positiue (w.r.t. K) matrix. Then

l l  (/  - /)- '  l l
< ra(/)  S sup l l ( /  -  / )-" l l

e E K n B l

, (o)

(where 81 is the closed unit ball inR" ).

The proof of the above assertion is based on the Krein Theorem on
extension of positive functionals, see e.g. [6].

For any matrix P € Rnxn let us define

M(P):  {e €  ̂ B1 :  l lP l l  :  l lP ' l l } ,

Then, the following result is an immediate consequence of Proposition l.

Proposition 2. Let K c R' be a pointed closed conuez cone with
intK f 0 and, A be a Schur stable positiue (w.r.t. K) matriu. If

K n M ( ( r - A ) - ' ) + 0 , (7)

then

r1(A)  :
l l ( /  -  / ) - ' l l

It is remarkable that in case .I(* : K (i.e. K is self-d,ual), where
-tr(* is the nonnegative polar cone of K, the condition (z) holds for
the operator norms of matricer ll . llp, p : 1,2,@, induced by the
corresponding vector norms.

Proposition 3. Let K c R' be a self-dual pointed closed convet cone
with intK + 0 and A be a schur stable positiae (w.r.t. K) matria.
Then

r+(A;  l l  .  l l r )  :  s ,n( ( /  -  A)- t ) ,

where so(.) denotes the minimol singular volue of a matris,.

It is obvious that R[ is a self-dual pointed closed convex cone
and the matrix A is positive w.r.t. Ri if and only if all the entries of
A are nonnegative. Therefore, we have
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Proposition 4. If A e Rtt" is a Schur stoble motrix, then

r+(A; l l  '  l l " )  : l l ( r  -  / ) - t l l ,  '

w h e r e a : 1 1 2 r @ .

Now we are going to study the relationship between stability radii.
Clearlg by definition, we always have

(8)

r c ( A ) < r R ( A ) < " + ( A ) . (e)

It is well known that if A is an arbitrary real matrix, then rs and rs
may be largely different. In fact, in [f] it has been shown that the ratio
rnlrc may be unbounded. Fortunately, this does not happen if .4 has

all  nonnegative entries, provided that l l  ' l l  :  l l  '11., with a: 1,2,o
in the definition of these stability radii. Moreover, the following result
shows that in this case all the stability measures in (O) coincide.

Proposition 5. Let A € Rlt" be o Schur stoble matris. Then

rc(A;  l l  . l l " ) :  rn( ,4 ;  [ l  ' l l " )  :  r+(A;  l l  ' l l " ) ,

provid,ed, that a: L,2,6.

We note that in [S] it has been shown that for any Schur stable
matrix A e Rox' and for arbitrary operator norm ll 'll '

,c(A; l l  '  l l) : rqax .l l  (eie I - A)-t l lgelo,zrl"

The above theorem shows that if matrix .A is nonnegative and ll ' ll :

ll . ll" with o : L,2,oo, then the above maximum is achieved at p - O
and, moreover, the real stability radius and the complex stability radius
coincide.
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