THE AR-PROPERTY FOR KALTON SETS

TRAN VAN AN

Abstract

In [2] Kalton constructed compact convex sets which can not be affinely embedded into the space L_{0} of all measurable functions. In this paper we prove that a lot of compact comvex sets constructed by Kalton are AR.

1. PRELIMINARIES

Let X be a linear space over the field of complex numbers C. By a quasi-norm on X we mean a real non-negative function $x \rightarrow\|x\|_{*}$ such that
(i) $\|x\|_{*}>0$ for every non-zero point $x \in X$;
(ii) $\|\alpha x\|_{*}=|\alpha|\|x\|_{*}$ for every $\alpha \in \mathbf{C}$ and $x \in X$;
(iii) $\|x+y\|_{*} \leq k\left(\|x\|_{*}+\|y\|_{*}\right)$ for every $x, y \in X$,
where k is a constant independent of x, y.
The sets $\left\{x \in X:\|x\|_{*}<\varepsilon\right\}$ form a base of neighbourhoods of θ for a metrizable topology on X. If this topology is complete then X is called a complex quasi-Banach space. We shall say that a quasi-norm $\|\cdot\|_{*}$ is a p-norm $(0<p \leq 1)$ if it satisfies

$$
\|x+y\|_{*}^{p} \leq\|x\|_{*}^{p}+\|y\|_{*}^{p}
$$

for every $x, y \in X$. Then $\left(X,\|\cdot\|_{*}\right)$ is called a p-normed space.
A well-known theorem of Aoki and Rolewicz [7] asserts that every quasi-norm is equivalent to a p-norm for a certain number p with $0<$ $p \leq 1$.

Therefore, from now on we shall suppose that a complex quasiBanach space X is p-normed for some $0<p \leq 1$ and denote $\|x\|=\|x\|_{*}^{p}$
for every $x \in X$. Then the topology induced by the metric $\|\cdot\|$ is equivalent to the original one.

Let Δ denote the open unit disc in the complex plane \mathbf{C} and T the unit circle. Let X be a complex quasi-Banach space. A function $f: \Delta \rightarrow X$ is called analytic iff for every $z \in \Delta, f(z)$ can be represented as the sum of a power series $f(z)=\sum_{n \geq 0} a_{n} z^{n}$, where the constant coefficients a_{n} belong to X.

By $A_{0}(X)$ we denote the space of functions $f: \bar{\Delta} \rightarrow X$ which are continuous on $\bar{\Delta}$ and analytic on Δ.

Let A be a subset of a complex quasi-Banach space X. By co A we denote the convex hull of A in X and by Card A we denote the cardinality of A. We also use the following notation:

$$
\begin{aligned}
A^{+} & =\operatorname{co}(A \cup\{0\}) \\
i A & =\{i a: a \in A\} \\
\hat{A} & =\operatorname{co}\left(\left(A^{+}\right) \cup\left(-A^{+}\right) \cup\left(i A^{+}\right) \cup\left(-i A^{+}\right)\right)
\end{aligned}
$$

and if $x, y \in X$ we write

$$
\|x-A\|=\inf \{\|x-y\|: y \in A\}
$$

Let L_{0} denote the space of all measurable functions from $[0,1]$ into the real line \mathbf{R}. Then L_{0} is a linear metric space with F-norm:

$$
\|f\|=\int_{0}^{1} \frac{|f(t)|}{1+|f(t)|} d t
$$

for every $f \in L_{0}$.
We say that a metric space X is AR iff for any metric space Z containing X as a closed subset there exists a continuous map $r: Z \rightarrow X$ such that $r(x)=x$ for every $x \in X$.

Let X be a complex quasi-Banach space. Then we say that $x \in X$ is an analytic needle point of X iff for any $\varepsilon>0$ there exists $g \in A_{0}(X)$ such that:
(1) $g(0)=x$;
(2) $\|g(z)\|_{*}<\varepsilon$ for every $z \in T$;
(3) If $y \in \operatorname{co} g(\bar{\Delta})$ then there exists an $\alpha \in[0,1]$ such that $\|y-\alpha x\|_{*}<\varepsilon$.

A complex quasi-Banach space X is called an analytic needle point space iff every non-zero point of X is an analytic needle point.

For undefined notations, we refer to $[1],[3]$ and $[7]$.
1.1. Lemma [2]. Let x be an analytic needle point of X. Then given any $\varepsilon>0$ there is a finite set $F=F(x, \varepsilon) \subset X$ and a polynomial $P \in A_{0}(X)$ such that:
(4) $P(\bar{\Delta}) \subset$ co F;
(5) $P(0)=x$;
(6) $\|P(z)\|_{*}<\varepsilon$ for every $z \in T$;
(7) If $y \in$ co F then there exists $\alpha \in[0,1]$ such that $\|y-\alpha x\|_{*}<\varepsilon$
(8) If $y \in F$ then $\|y\|_{*}<\varepsilon$.

2. KALTON SETS

In this section we describe Kalton's method of constructing compact convex sets without any extreme points.

Let X be an analytic needle point space. Let $\left\{\delta_{n}\right\}$ be a sequence of positive numbers such that $\sum \delta_{n}^{p}<\infty$. Let $G_{0}=\left\{x_{0}\right\}$, where x_{0} is any non-zero point of X. Assume that $G_{n-1}=\left\{y_{1}, \ldots, y_{N}\right\}$ has been selected. Let $\varepsilon_{n}=N^{-\frac{1}{p}} \delta_{n}$ and put

$$
G_{n}=\bigcup_{j=1}^{N} F\left(y_{j}, \varepsilon_{n}\right)
$$

where $F\left(y_{j}, \varepsilon_{n}\right)$ is given by Lemma 1.1. Then we have
$G_{n-1}^{+} \subset G_{n}^{+}$for every $n \in \mathbf{N}$;
(9) $\left\|x-G_{n-1}^{+}\right\| \leq N \varepsilon_{n}^{p} \leq \delta_{n}^{p}$ for every $x \in G_{n}^{+}$.

Denote

(10) $K_{0}=\overline{\bigcup_{n=0}^{\infty}} G_{n}^{+}$and $K=\hat{K}_{0}$

By Kalton's method [2] we can prove that K is a compact convex set without extreme points, see [6], and there is no affine embedding of K into L_{0}.
Remark. Our construction of K in Formula (10) is slightly different from that of Kalton [2]. As pointed out by Kalton in his recent letter to author, there is no reason to say that the set K (in [2]) is convex and our definition of K will replace Kalton's compact set in [2].

We shall call the set K defined as above a Kalton set.

3. THE MAIN RESULT

3.1. Theorem. The set K corresponding to a sequence $\left\{\delta_{n}\right\}$ with

$$
\sum_{n=1}^{\infty} m(n-1) \delta_{n}^{p}<\infty
$$

is an $A R$.
The proof of this theorem is based on the following facts.

3.2. Lemma [5].

$$
K=\bigcup_{n=0}^{\infty} \hat{G}_{n}
$$

3.3. Lemma. Suppose $m(n)=\operatorname{Card} G_{n}$.
(i) For every finite set $A \subset \hat{G}_{n}$ we have

$$
\operatorname{diam} \text { co } A \leq(4 m(n)+1) \operatorname{diam} A
$$

(ii) There is a continuous retraction $r: X \rightarrow \hat{G}_{n}$ such that

$$
\|r(x)-x\| \leq 22 m(n)\left\|x-\hat{G}_{n}\right\|
$$

for every $x \in X$.
Proof. (i) Let A be a finite subset of \hat{G}_{n}. Since card $G_{n}=m(n)$, \hat{G}_{n} lies in a real linear space Y with $\operatorname{dim} Y=2 m(n)$. Then $\operatorname{co} A \subset$ $\hat{G}_{n} \subset Y$. By Caratheodory's theorem, every point $x \in \operatorname{co} A$ is a convex combination of at most $2 m(n)+1$ affinely independent extreme points of co A. Obviously, the set of extreme points of $\operatorname{co} A$ is a subset of A. Therefore, if $x, y \in \operatorname{co} A$ then

$$
x=\sum_{i=1}^{2 m(n)+1} \mu_{i} b_{i}, \quad y=\sum_{j=1}^{2 m(n)+1} \lambda_{j} a_{j}
$$

with $a_{j}, b_{i} \in A ; \lambda_{j} \geq 0, \mu_{i} \geq 0, i, j=1, \ldots, 2 m(n)+1$ and

$$
\sum_{j=1}^{2 m(n)+1} \lambda_{j}=\sum_{i=1}^{2 m(n)+1} \mu_{i}=1
$$

Hence for every $x, y \in \operatorname{co} A$ we have

$$
\begin{aligned}
\|x-y\| & =\left\|\sum_{i=1}^{2 m(n)+1} \mu_{i} b_{i}-\sum_{j=1}^{2 m(n)+1} \lambda_{j} a_{j}\right\| \\
& =\left\|\sum_{i=1}^{2 m(n)+1} \mu_{i} b_{i}-\sum_{i=1}^{2 m(n)+1} \mu_{i} a_{1}+\sum_{j=1}^{2 m(n)+1} \lambda_{j} a_{1}-\sum_{j=1}^{2 m(n)+1} \lambda_{j} a_{j}\right\| \\
& \leq \sum_{i=1}^{2 m(n)+1}\left\|\mu_{i}\left(b_{i}-a_{1}\right)\right\|+\sum_{j=2}^{2 m(n)+1}\left\|\lambda_{j}\left(a_{1}-a_{j}\right)\right\| \\
& \leq \sum_{i=1}^{2 m(n)+1}\left\|b_{i}-a_{1}\right\|+\sum_{j=2}^{2 m(n)+1}\left\|a_{1}-a_{j}\right\| \\
& \leq(4 m(n)+1) \operatorname{diam} A .
\end{aligned}
$$

Consequently,

$$
\operatorname{diam} \text { co } A \leq(4 m(n)+1) \operatorname{diam} A \text {. }
$$

(ii) Let $\left\{U_{s}, a_{s}\right\}_{s \in S}$ be a Dugundji system for $X \backslash \hat{G}_{n}$, (see [1]) and $\left\{b_{s}\right\}_{s \in S}$ be a locally finite partition of unity inscribed into $\left\{U_{s}\right\}_{s \in S}$. We define $r: X \longrightarrow \hat{G}_{n}$ by Dugundji formula

$$
r(x)=\left\{\begin{array}{cl}
x & \text { if } x \in \hat{G}_{n} \\
\sum_{s \in S} b_{s}(x) a_{s} & \text { if } x \in X \backslash \hat{G}_{n}
\end{array}\right.
$$

Then $r: X \longrightarrow \hat{G}_{n}$ is a continuous retraction (see [1]). Let us show that r satisfies the required condition.

Since $\left\{b_{s}\right\}_{s \in S}$ is a locally finite partition of unity of $X \backslash \hat{G}_{n}$, for each $x \in X \backslash \hat{G}_{n}$ there is a finite set $S(x) \subset S$ and an open neighbourhood $O(x)$ of x such that $b_{s}(x)=0$ for all $y \in O(x)$ iff $s \in S \backslash S(x)$. Thus,

$$
r(x)=\sum_{s \in S} b_{s}(x) a_{s}=\sum_{s \in S(x)} b_{s}(x) a_{s}
$$

Let $s_{0} \in S(x)$. Using the property of Dungundji system and (i) we get

$$
\begin{aligned}
\|r(x)-x\| & =\left\|\sum_{s \in S(x)} b_{s}(x) a_{s}-x\right\| \\
& =\left\|\sum_{s \in S(x)} b_{s}(x) a_{s}-a_{s_{0}}+a_{s_{0}}-x\right\| \\
& \leq\left\|\sum_{s \in S(x)} b_{s}(x) a_{s}-a_{s_{0}}\right\|+\left\|x-a_{s_{0}}\right\| \\
& \leq\left\|\sum_{s \in S(x)} b_{s}(x) a_{s}-a_{s_{0}}\right\|+2\left\|x-\hat{G}_{n}\right\| \\
& \leq \operatorname{diam} \operatorname{co}\left\{a_{s}: s \in S(x)\right\}+2\left\|x-\hat{G}_{n}\right\| \\
& \leq(4 m(n)+1) \operatorname{diam}\left\{a_{s}: s \in S(x)\right\}+2\left\|x-\hat{G}_{n}\right\| \\
& \leq(4 m(n)+1) 4\left\|x-\hat{G}_{n}\right\|+2\left\|x-\hat{G}_{n}\right\| \\
& =2(2(4 m(n)+1)+1)\left\|x-\hat{G}_{n}\right\| \leq 22 m(n)\left\|x-\hat{G}_{n}\right\| .
\end{aligned}
$$

Here we have used the obvious assumption $m(n)=\operatorname{Card} G_{n} \geq 1$. The lemma is proved.

We recall that a convex set M in a linear metric space is said to be admissible iff for every compact subset A of M and for every $\varepsilon>0$
there is a continuous map f from A into a finite dimensional subset of M such that $\|f(x)-x\|<\varepsilon$ for every $x \in A$.

The following result is due to Klee [4].
3.4. Proposition. Every admissible compact set is an AR.

Thus in order to prove Theorem 3.1, by the Proposition 3.4, it suffices to show

3.5. Claim. K is admissible.

Proof. Let us prove the following more general fact. For every $\varepsilon>0$ there exists a continuous map f from K into a finite dimensional subset of K such that $\|f(x)-x\|<\varepsilon$ for every $x \in K$.

In fact, for any $\varepsilon>0$ we take a number $n \in \mathbf{N}$ such that

$$
\begin{equation*}
110 \sum_{i=n+1}^{\infty} m(i-1) \delta_{i}^{p}<\varepsilon \tag{11}
\end{equation*}
$$

By Lemma 3.3 there exists a continuous retraction $f: X \longrightarrow \hat{G}_{n}$ such that
(12) $\|f(x)-x\| \leq 22 m(n)\left\|x-\hat{G}_{n}\right\|$ for every $x \in X$.

Let us show that $\|f(x)-x\|<\varepsilon$ for every $x \in C$. Assume that $x \in \hat{G}_{n+1}$. Then there exist $\alpha_{i} \geq 0, x_{i} \in G_{n+1}^{+}$with $\sum_{i=1}^{4} \alpha_{i}=1$ such that $x=\alpha_{1} x_{1}-\alpha_{2} x_{2}+i \alpha_{3} x_{3}-i \alpha_{4} x_{4}$.
Since $x_{i} \in G_{n+1}^{+}$, there exist $\lambda_{j}^{i} \geq 0 ; i=1, \ldots, 4 ;$
$j=1, \ldots, m(n)$ with $\sum_{j=1}^{m(n)} \lambda_{j}^{i} \leq 1$ and $y_{j}^{i} \in \operatorname{co} F\left(a_{j}^{n}, \varepsilon_{n+1}\right)$
such that $x_{i}=\sum_{j=1}^{m(n)} \lambda_{j}^{i} y_{j}^{i}$ for $i=1, \ldots, 4$.
By (7) for every i, j with $i=1, \ldots, 4 ; j=1, \ldots, m(n)$ there exists $\mu_{j}^{i} \in[0,1]$ such that $\left\|y_{j}^{i}-\mu_{j}^{i} a_{j}^{n}\right\|_{*}<\varepsilon_{n+1}$.

Putting

$$
z_{i}=\sum_{j=1}^{m(n)} \lambda_{j}^{i} \mu_{j}^{i} a_{j}^{n}, \quad i=1, \ldots, 4,
$$

we get $z_{i} \in G_{n}^{+}$and

$$
\left\|x_{i}-z_{i}\right\| \leq \sum_{j=1}^{m(n)}\left\|y_{j}^{i}-\mu_{j}^{i} a_{j}^{n}\right\|<m(n) \varepsilon_{n+1}^{p} .
$$

Let us put

$$
y=\alpha_{1} z_{1}-\alpha_{2} z_{2}+i \alpha_{3} z_{3}-i \alpha_{4} z_{4} .
$$

Then $y \in \hat{G}_{n}$,

$$
\|x-y\| \leq \sum_{i=1}^{4}\left\|x_{i}-z_{i}\right\|<4 m(n) \varepsilon_{n+1}^{p}=4 \delta_{n+1}^{p}
$$

and $\left\|x-\hat{G}_{n}\right\|<4 \delta_{n+1}^{p}$ for every $x \in \hat{G}_{n+1}$.
Let x be an arbitrary point of K. We take $y \in \bigcup_{n=0}^{\infty} \hat{G}_{n}$ such that $\|x-y\|_{*}<\delta_{n+1}$. Assume that $y \in \hat{G}_{n+k}$. Then we have
$\left\|x-\hat{G}_{n}\right\|<\|x-y\|+\left\|y-\hat{G}_{n}\right\|<\delta_{n+1}^{p}+4 \delta_{n+1}^{p}+\cdots+4 \delta_{n+k}^{p}<5 \sum_{i=n+1}^{\infty} \delta_{i}^{p}$.
From (11) and (12) it follows that

$$
\begin{aligned}
\|f(x)-x\| & \leq 22 m(n)\left\|x-\hat{G}_{n}\right\|<110 m(n) \sum_{i=n+1}^{\infty} \delta_{i}^{p} \\
& <110 \sum_{i=n+1}^{\infty} m(i-1) \delta_{i}^{p}<\varepsilon
\end{aligned}
$$

The claim is proved. This completes the proof of Theorem 3.1.
Acknowledgements. The author would like to thank Nguyen Nhuy for his comments and N. Kalton for discusion about convexity of his compact set [2].

REFERENCES

1. C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Warszawa, 1975.
2. N. J. Kalton, Compact convex sets and complex convesity, Israel J. Math. 59 (1987), 29-40.
3. N. J. Kalton, N. T. Peck and J. W. Roberts, An F-space sampler, London Math. Soc. Lecture Note Series 89 (1984).
4. V. Klee, Sherinkable neighbourhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281-285.
5. Le Hoang Tri, Nguyen Nhuy and Tran Van An, Remarks on Kanton's paper "Compact convex sets and complex convexity", Acta Math. Vietnam 20 (1995), 55-66.
6. J. W. Roberts, A compact convex set with no extreme points, Studia Math. 60 (1977), 255-266.
7. S. Rolewicz, Metric linear spaces, Warszawa, 1972.

Departement of Mathematics
Received September 14, 1999 Pedagogical Institute of Vinh Vinh, Vietnam

