Vietnam Journal of Mathematics
Volume 23, Number 1, 1995

THE AR-PROPERTY FOR KALTON SETS

TRAN VAN AN

Abstract. In [2] Kalton constructed compact convez sets which can not be
affinely embedded into the space Lo of all measurable functions. In this paper
we prove that a lot of compact comvez sets constructed by Kalton are AR.

1. PRELIMINARIES

Let X be a linear space over the field of complex numbers C. By
a quasi-norm on X we mean a real non-negative function z — ||z||.
such that

(i) ||z|l« > O for every non-zero point z € Xj;
(ii) |laz||« = || ||z||+ for every a € C and z € X;;
(iii) |z + yll« < k(llzll« + [lyll+) for every z,y € X,
where k is a constant independent of z, y.

The sets {z € X : ||z]|. < €} form a base of neighbourhoods of ¢
for a metrizable topology on X. If this topology is complete then X is
called a complex quasi-Banach space. We shall say that a quasi-norm
Il - ||« is a p-norm (0 < p < 1) if it satisfies

Iz +yll% < ll=llf + [lyll2

for every z,y € X. Then (X, || - ||+) is called a p-normed space.

A well-known theorem of Aoki and Rolewicz [7] asserts that every
quasi-norm is equivalent to a p-norm for a certain number p with 0 <
p<1

Therefore, from now on we shall suppose that a complex quasi-
Banach space X is p-normed for some 0 < p < 1 and denote ||z|| = ||z||}
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for every £ € X. Then the topology induced by the metric | - || is
equivalent to the original one.

Let A denote the open unit disc in the complex plane C and T
the unit circle. Let X be a complex quasi-Banach space. A function
f: A — X is called analytic iff for every z € A, f(z) can be represented

as the sum of a power series f(z) = Y a,2z", where the constant
n>0

coefficients a,, belong to X.

By Ao(X) we denote the space of functions f : A — X which are
continuous on A and analytic on A.

Let A be a subset of a complex quasi-Banach space X. By co
A we denote the convex hull of A in X and by Card A we denote the
cardinality of A. We also use the following notation:

At =co (AU {0});
tA = {ia:a € A};
A=co ((AT)u(-AT) U (ta*) U (-i4™));

and if z,y € X we write

|z — All = inf{]|z - y]| : y € A}.

Let Lo denote the space of all measurable functions from [0, 1]
into the real line R. Then Lg is a linear metric space with F-norm:

_ [ _1fe
171 = / O

for every f € Lo.

We say that a metric space X is AR iff for any metric space Z
containing X as a closed subset there exists a continuous mapr : Z — X
such that r(z) = z for every z € X.

Let X be a complex quasi-Banach space. Then we say that z € X
is an analytic needle point of X iff for any & > 0 there exists g € Ao(X)
such that:

(1) ¢(0) ==;
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(2) llg(2)||« < € for every z € T;

(3) If y € co g(A) then there exists an a € [0,1] such that
ly — az||. <e.

A complex quasi-Banach space X is called an analytic needle
point space iff every non-zero point of X is an analytic needle point.

For undefined notations, we refer to [1], [3] and [7].

1.1. Lemma [2]. Let = be an analytic needle point of X. Then given
any € > 0 there ts a finite set F = F(z,e) C X and a polynomial
P € Ao(X) such that:

(4) P(A)CecoF;

(5) P(0) = z;

(6) [PE)]. <e for cvery z € T;

(7) If y € co F then there exists o € [0,1] such that ||y—oz||. < €

(8) If y € F then ||y||. <e.

2. KALTON SETS

In this section we describe Kalton’s method of constructing com-
pact convex sets without any extreme points.

Let X be an analytic needle point space. Let {6,} be a sequence
of positive numbers such that )_ 67 < co. Let Go = {zo}, where zo is
any non-zero point of X. Assume that G,_; = {y1,...,yn} has been

selected. Let ¢, = N _%6,. and put
N

Gn = U F(ijen)s
=1

where F(y;,e,) is given by Lemma 1.1. Then we have
G!_, c G} for every n € N;

(9) ||lz—G;_,|| < NeB < 6P for every z € G.

Denote
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(10) Ko= UG:- and K=f{o

n=0
By Kalton’s method [2] we can prove that K is a compact convex
set without extreme points, see [6], and there is no affine embedding of
K into Lo.

Remark. Our construction of K in Formula (10) is slightly different
from that of Kalton {2]. As pointed out by Kalton in his recent letter
to author, there is no reason to say that the set K (in [2]) is convex
and our definition of K will replace Kalton’s compact set in [2].

We shall call the set K defined as above a Kalton set.

3. THE MAIN RESULT

3.1. Theorem. The set K corresponding to a sequence {6,} with

[ o]

Zm(n —1)6F < o0

n=1
1s an AR.

The proof of this theorem is based on the following facts.

3.2. Lemma [5].
oo
k=J6.
n=0

3.3. Lemma. Suppose m(n) = Card G.,.
(1) For every finite set A C G, we have

diam co A < (4m(n) + 1) diam A;

(i) There is a continuous retraction r : X — Gn such that

Ir(z) - 2 < 22m(n)||z — Gal
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Jor everyz € X.

Proof (i) Let A be a finite subset of G,. Since cardG, = m(n),

n lies in a real linear space Y with dimY = 2m(n). Then co A C
G‘ C Y. By Caratheodory’s theorem, every point z € co A is a convex
combination of at most 2m(n) + 1 affinely independent extreme points
of co A. Obviously, the set of extreme points of co A is a subset of A.
Therefore, if z,y € co A then

2m(n)+1 2m(n)+1
z=" YUy, y= Y N
t=1 j=1

with a;, b; € A; A; >0, u; > 0,4, =1,...,2m(n) + 1 and

2m(n)+1 2m(n)+1

EA— }:u.—l

=1

Hence for every z,y € co A we have

2m(n)+1 2m(n)+1
le=sll =] X wbi— Y e
=1 J=1
2m(n)+1 2m(n)+1 2m(n)+1 2m(n)+1
= ” Z pibi — Z piay + Z Ajay — Z z\jaj”
=1 t=1 J=1 j=1 .
2m(n)+1 2m(n)+1
< Y lmi—eli+ D lAi(er —ay)
t=1 =2
2m(n)+1 2m(n)+1
< X I—all+ Y e —al
=1 =2

<  (4m(n) + 1)diam A.

Consequently,

diam co A < (4m(n) + 1) diam A.
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(i) Let {U,,a,}scs be a Dugundji system for X \ Ga, (see [1])
and {b,},cs be a locally finite partition of unity inscribed into {U, }.cs-
We define r : X — G, by Dugundji formula

T ifre é’n
") =\ Y b,(z)a, ifze X\ GCn
8ES

Then r : X — G, is a continuous retraction (see [1]). Let us
show that r satisfies the required condition.

Since {b,}scs is a locally finite partition of unity of X \ é’n, for
each z € X \ G,, there is a finite set S(z) C S and an open neighbour-
hood O(z) of z such that bs(z) = O for all y € O(z) iff s € S\ S(z).

Thus,
r(z) =) bi(z)a. = ) by(z)a..

8€ES €S (z)

Let sg € S(z). Using the property of Dungundji system and (i)
we get

Ir@) —zl =] 3 bu(e)a, -3

s€S(z)

= Z bs(z)as — as, + as, — :L'”
s€S(z)

< Z bs(z)as — asg || + ||z — as, |
s€S(z)

< Z bs(z)q, — Qg + 2|z - én”
8€S(z)

< diam co {a, : s € S(z)} + 2||z — G, ||

< (4m(n) + 1)diam {a, : s € S(z)} + 2|z — G|

< (4m(n) + 1)4fjz ~ Ga| + 2|z - Ga

= 2(2(4m(n) + 1) + 1)]jz — Gp|| < 22m(n)||z - Gal|-
Here we have used the obvious assumption m(n) = Card G, > 1. The
lemma is proved.

We recall that a convex set M in a linear metric space is said to
be admissible iff for every compact subset A of M and for every € > 0
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there is a continuous map f from A into a finite dimensional subset of
M such that || f(z) — z|| < € for every z € A.

The following result is due to Klee [4].

3.4. Proposition. FEvery admissible compact set is an AR.

Thus in order to prove Theorem 3.1, by the Proposition 3.4, it
suffices to show

3.5. Claim. K is admissible.

Proof. Let us prove the following more general fact. For every € > 0
there exists a continuous map f from K into a finite dimensional subset
of K such that || f(z) — z|| < € for every z € K.

In fact, for any € > 0 we take a number n € N such that

(11) 110 Y m(i-1)6? <e
t=n+1

By Lemma 3.3 there exists a continuous retraction f: X é,, such
that

(12) |If(z) — z|| < 22m(n)||z — G,|| for every z € X.

Let us show that ||f(z) — z|| < € for every z € C. Assume that
4

T E é,..,.l. Then there exist a; > 0, z; € G',';_,_l with Za; = 1 such
1=1
that £ = a1z, — agzy + taszs — tayzy.

Since z; € G:_H, there exist ,\; >0, 1=1,...,4;

m(n)
J=1,...,m(n) with Z )\; <landy} e co F(a},enq1)
i=1
m(n)
such that z; = Z Ajy; fori=1,...,4.
=1

By (7) for every i,5 with ¢ = 1,...,4; j = 1,...,m(n) there exists
p; € [0,1] such that ||y} — p}a?|l. < eny1.
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Putting
m(n)
&' = 2 /\;-u;-a;-‘, 1=1,...,4,
=1 -
we get z; € G} and
m(n)

=i — 2l < z ly} — uia}ll < m(n)eh ;.
=1

Let us put

Y= a12) — 0222 + tazz3 — 100424.

Then y € é,,,

4
lz—yll < Z |zi — 2| < 4m(n)el ;= 467

=1
and ||z — G,|| < 462, for every z € Gry1.

w ~
Let z be an arbitrary point of K. We take y € |J Gy such that

n=0

|z — yll« < 6nt+1. Assume that y € Gpn+k. Then we have

oo
lz=Call < [lz—yll+|ly—Cunll < 654 +488,  +---+462,, <5 > &F.
1=n+1

From (11) and (12) it follows that

17(2) — 2|l < 22m(n) ||z - Gnll < 110m(n) 3 &F
t=n+1

o0
<110 Y m(i-1)6f <e
t=n+1

The claim is proved. This completes the proof of Theorem 3.1.
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