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A Short Communication

ON BEST MULTTVARIATE TRIGONOMETRIC

APPROXIMATIONSl

DINH DUNG

l. A characterization of the smoothness properties of multivariate
periodic functions which govern a preassigned speed of the best approx-

imation by trigonometric polynomials with frequencies from so called

hyperbolic crosses was given in [e], [ ]. The smoothness of functions

is characterized in terms of some "moduli of smoothness' which are

defined by the help of their convolutions with certain distributions on

the d-dimensional torus t'. In an earlier manuscript [f], its authors
gave such a characterization for the best approximation by trigonomet-

ric polynomials with frequencies from the regular hyperbolic cross by

introducing new moduli of smoothness of functions which are defined
by means of the convolutions of their higher-order mixed differences
with the symmetric multivariate B-splines.

The present note continues the investigation in [3], [a]. We will
give a different characterization of the smoofhness properties of func-

tions for the best hyperbolic cross approximation considered in [3], [a].
This characterization will be defined in terms of higher-order mixed

differences of their higher-order mixed integrals.

2.  For  a f in i tesubset  Aof  R{ : :  {n€Rd:  c t  > 0}  and t  )  0 ,  the

r , (A )  , : { ke4 ;  I I  l k i l ' t  c t ,  ae  A}
r€J (c )

is called a hyperbolic cross, where J(o) :- {f t f S i S d, ai > 0}.

We are interested in the best.[o(d)-appro>rimation, | < p ( oo, of

functions by elements from Ps^ which is defined as t'o(f\-closure of
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the span of the harmonics ei(k,'), k et{A). The most interesting and
important case is that when P1A consists of real trigonometric polyno-
mials, i.e. I1(A) is a finite set. The hyperbolic cross f1(A) is a finite
set for each t > 0 if and only if

a e i  €  A ,  j  -  1 , .  . . ,  d ; f o r  s o m e  o  )  0 ,

w h e r e  e l  :  ( 1 ,  0 , .  .  . ,  o ) ,  e 2  :  ( 0 ,  1 ,  0 , . . . ,  0 ) ,  . . . ,  e d  :  ( 0 , . . . ,  0 ,  1 )
are the basis vectors in Ed. However, we would like to emphasize that
the results of the present note will be asserted for arbitrary finite subset
A of R!, without requirement on finiteness of 11(,4).

F o r a n y t > 0 w e l e t

Ef (f)o ': 
n?[,^l l/ 

- gllr,,r*l

denote the best Lo@) - approximation of f € Lr@) by elements from
P/. We are interested in characterization of the smoothness properties
of / which guarantee a preassigned degree of Ef (f)0. We let O denote
the set of all continuous functions tp on [0,1] such that rp(c) ) 0 for s )
0, and p(0) : 0 and tp is nondecreasing on [0, r] with some r € [0, 1].
The degrees of Ef (/)o, which are treated in our note, are functions
p\lt) for rp € O. Thus, for example, the function t-l is the degree
of Ef(fl, on the class of functions / with Lo(P)-bounded mixed
derivatives in the Weil sense of order a for all a € A, while the function
t-rlog"t with some nonnegative integer u < d is the degree of nf $),
on the class of all functions / such that

l lA [ / l l ; ,1aay  S I I  lh i ln  ( r  e  zd* ,  r  ]  a )
ie r (a)

for all a € A, where A[ is the mixed difference operator (see a definition
below), B is a certain finite subset o,t Z!, constructed from A (cf. e.g,

[2], [5J).
I f . 9  e  O  and0  <  g  (  oo ,we le t  € f ; , ; e  deno te thespaceo f  a l l

functions f e Lp@) such that the quasinorm

(p .  {E+- ( i l ,  Ipe- \ }o ) "0 ,  s<oo

sup {E+"( f )o le(2-"))  ,  { :  oo
O(n (oo

is finite.
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3. For heR, the univariate difference operators A[, r:0, 1, are
defined bv"  Ao^I  : :  f  i  Al /  : :  / ( .+ h lz)  -  f  ( . -  h lz) .

For positive integer r, the r-th difference operator A[ is defined induc-

tively bv A[ ': Al o A;-t. If r e Z+ ': {ft e Zd z ki > 0}, then for

h € Rd, the mixed difference operator A[, is defined by

L'1rf  : : f i ,O7r,
j : L

for functions / on P, where the operatot A',i. is applied to the variable

ri. If. r e Zda and h € .Rd then the mixed integral operator .I[ can be

defined for integrable functions / on P in the same way, starting with
the univariate operators

rl,! :: 7 ; (4/)(") ,:i 1"" f (t)dt.

For a triple,y: (a, ,,9) € -R1- * ZI ,Zd* and t ) 0, we define the
oPerator 

Drf :: I LLrgf n .#
V (a,t) iet1a1 

'"t

for integrable functions / on fl, where

v(a,t) ' : {{ni)i.r(o) : hi >0, t 3 II ni ' i=ze"t\
l € J ( c )

w i t h  { s : 1 *  t  d . j .  F o r a f i n i t e s u b s e t  G  o t R ! x Z + x Z ! , w e
r€J (o )

define the modulus of smoothness

o"(/, t)p i: f l loi rl l,
'v€G

forfunctions / e Lo(P). lf p € O and0< g ( oo, let Bf;, ie denote
the space of all functions f e t'oQd) such that the quasinorm

\ o l e ? - n 1 Y t ) t / a ,  s < o o

t - ^ ) p l e ( z - " \ ) ,  g : o o

is finite.
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4. We say that the function I e O satisfies Condition (BS) if
t
f  - d . r

J e{ r ) ;  sce( t )
0

and Condilion (26), d > 0, if
I

I e@) r-' 4 s c',p(t)t-o
t :

and we say that the subset G of P* x Z! xZ{ satisfies Condition (R),
i f  J (o)  :  J( r )  :  J (P)  I  oo and,  a  F i  1r i ,  i  e  J(a) ,  for  each

T: (CI, ,,0) e G. If G satisfies Condition (R), we define

p(G) : :  min{p(r  -  F,o)  :  (a ,  r ,  P)  e  G),

v(G) : :  mar{ rz( r  -  0 ,o) :  (a ,  r ,  P)  e  G,  p( r  -  0 ,a)  :  p(G)} ,

where p(x,v) :: min{rr lyi , j e "l(y)} for n,V e I*+, and, v(n,y\
denotes the number of j e J(V) such that silVi : p(x,y). We let
p * : m i n ( p , 2 ) f o r l < p < @ .

T h e o r e m  l .  L e t l < p  (  o o , 0 <  g  1 a  a n d l e t A b e a f i . n i t e s u b s e t o f
R+. Then for any 0 ) O and, any noturol numbu z ( ma>c{cardJ(o) :
a € A\, ue cctn constrpct a finite subset G tl 4 " 

24+ x Z{, such
that

( i )  A :  { d :  ( a ,  r ,  p )  e  G }
(ii) G satisfi,es Condition (R)

( i i i )  p - p ( G ) > 0
( i " )  v ( G ) : ,

Moreouer, il G is such a set ond I e Lr(f), then there hold the
inequolity oo

E+.(ilos r( i {n"(t, z-^)o)o )' ' ' '
m = n * L

for any nonnegotive integer n, and the inueree inequolity

o"(.f, 2-")p < c'( i
m=O

{z-oln-n) (o - *),-t sN.U)}n')t/n' e)

(1 )

lor any natural n, with C ond C' depending only on p and, G.
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Theorem 2. Und,er the assumptions ol Theorem 7, Iet p € Q and'
p satisfy Cond,itions (BS) and (26). Then lor any finite subset G of
RI 

" 
zzt x Z!, satisfving Conditions (i)- (iii) in Theorem 7, we haue

€!,a" : Bf,'d
and,, moreouer for functions f e €{do, the following quasinorm equiua-
lence holds

Iflri;" = l/l Bf;r '

If in Theorem I we take u = l, then the inverse inequality (2)
becomes 

rL

o"(.f, 2-')p < c'(f {r-or"-'d Eh(/)o}o )' 'o- . (3)
llt:o

Some inequalities weaker than (1), (3) , were obtained in [1] for the
best hyperbolic cross approximations and moduli of smoothness consid-
ered by its authors. The inequalitier (1), (r) with replacing tlc(f ,t)p
by the moduli of smoothness introduced in [3], [4] were formulated and
proved in these papers. Theorem 2 shows that if p, 8, p, A given,
different sets G satisfying the conditions of Theorem 2, determine the
same space BF,o*.

5. The proofs of Theorems 1- 2 rest on the Littlewood-Paley
theorem, the Marcinkiewicz'multiplier theorem, a generalization of
the discrete Hardy inequalities and the following lemma. We let I :

( 1 ,  1 , . . . , 1 )  €Rd ,and  D(a ,4 )  deno te  rhe  Lo ( f ) - c losu re  o f  t he  span

of  the harmonics ed(k ' ' ) ,k€ Z(a,4)  for  
"€N+ 

and 4 )  0  where

Z ( o , q )  ' :  { ,  ! " : s  e Z I ,  s ,  )  o ,  i  € J ( o ) ,  r 7 - l  (  ( o , " )  <  t l }

lu  = {k  e Zd :  [2" i - t1  S l f t i l  <  2" i )  .

L e m m a .  L e t ! < p (  o o ,  ? =  ( a ,  r , g ) € E t  
"  

2 2 { x Z ! ,  a n d l e t { 1 }
satisfy Condition (R). Then for any €, 4 ) O ond, any I € D(a,e), ue
have

l l / l l r , "1 r ,y  Sc l ln ] - r f l l t ,1 ro1  ,  4 :  € ,
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n < €
,  r t ) €

with C @nd Ct depend,ing only on 1, p, where p : p(r - g,a), r.t :
v ( r  -  p , a )  a n d  p ' :  p ( 0  - l , a ) ,  u ' : u ( 0  - 1 , a ) .

6. The hyperbolic cross 11({a}), o € R{, can be considered as the
simplest among Ir(/) for finite sets .4. However, it is not finite for any
a, and therefore, is not of great interest for trigonometric polynomial
approximation. One of the simplest finite hyperbolic crosses which
is the most important is Ir(/-) where A* : {a"}"et for some a €
.Rd wi th  pos i t ive coord inates,  J :  { I ,2r . . . ,d} ,  ae is  the vector  wi th
o i :  a i f o r  j  e " a n d o j : 0 f o r  i  Q e . T h e h y p e r b o l i c c r o s s e s
fr({o}) and f 1(A*) with a : l were treated in [1]. If for a triple
1 : (o, r, B) €nt 

" 
zZ! x ZX, {t} satisfies Conditions (i)- (iv) with

given 0 and u, for the case l,: {a} of Theorems | - 2, then the set
G* : {(o", r", 0")}"c; wil l  satisfy Condit ions ( i)- ( iv) with the same
d and y for the case A : A* . Moreover, we have p(G.) : p(r - 0, o)
and z(G.) : u(r - 0,o) in Theorem 1.

l .
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