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A Short Communication

ON BEST MULTIVARIATE TRIGONOMETRIC
APPROXIMATIONS!

DINH DUNG

1. A characterization of the smoothness properties of multivariate
periodic functions which govern a preassigned speed of the best approx-
imation by trigonometric polynomials with frequencies from so called
hyperbolic crosses was given in [3], [4]. The smoothness of functions
is characterized in terms of some “moduli of smoothness” which are
defined by the help of their convolutions with certain distributions on
the d-dimensional torus T9. In an earlier manuscript [1], its authors
gave such a characterization for the best approximation by trigonomet-
ric polynomials with frequencies from the regular hyperbolic cross by
introducing new moduli of smoothness of functions which are defined
by means of the convolutions of their higher—order mixed differences
with the symmetric multivariate B-splines.

The present note continues the investigation in [3], [4]. We will
give a different characterization of the smoothness properties of func-
tions for the best hyperbolic cross approximation considered in [3], (4].
This characterization will be defined in terms of higher—order mixed
differences of their higher-order mixed integrals.

2. For a finite subset A of R4 := {z € R?: z; > 0} and ¢t > 0, the
set :
r.(4):={kecZz*: H |kj|* <t, a€ A}
j€J(a)
is called a hyperbolic cross, where J(a) := {j : 1 < j < d, o > 0}.
We are interested in the best Lp(Td)-—approximation, 1< p< oo, of
functions by elements from P/ which is defined as L,(T?) - closure of
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the span of the harmonics e*(*"), k € T';(A). The most interesting and
important case is that when P consists of real trigonometric polyno-
mials, i.e. T';(A) is a finite set. The hyperbolic cross I';(A) is a finite
set for each t > 0 if and only if

ae’ € A, j=1,...,d,; for somea >0,
where ! = (1,0,...,0), €2 = (0, 1,0,...,0),...,¢% = (0,...,0,1)
are the basis vectors in R?. However, we would like to emphasize that

the results of the present note will be asserted for arbitrary finite subset
A of R?, without requirement on finiteness of I';(A).

For any t > 0 we let
A — _
E{(f)p = gg}{A If = gllz, @)

denote the best L, (T?) - approximation of f € L,(T?) by elements from
PA. We are interested in characterization of the smoothness properties
of f which guarantee a preassigned degree of Ef(f),. We let & denote
the set of all continuous functions ¢ on [0, 1] such that ¢(z) > 0 for = >
0, and ©(0) = 0 and ¢ is nondecreasing on [0, 7| with some 7 € [0, 1].
The degrees of E{(f),, which are treated in our note, are functions
©(1/t) for ¢ € ®. Thus, for example, the function t~! is the degree
of E£(f), on the class of functions f with L,(T%)-bounded mixed
derivatives in the Weil sense of order a for all a € A, while the function
t=1log“t with some nonnegative integer v < d is the degree of EZ(f),
on the class of all functions f such that

lAsfllp, ey < [ k1% (reZ2, r>a)
J€J(a)

for all & € A, where A}, is the mixed difference operator (see a definition
below), B is a certain finite subset of Z‘i, constructed from A (cf. e.g,

(2], [5])-
If p € ®and 0 < g < oo, we let £:¢ denote the space of all
functions f € L,(T%) such that the quasinorm

(£ (B8 loe})", <o

S {E&(Np/e2™}, g=00

‘fle;f,;*’ =

is finite.
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3. For h € R, the univariate difference operators A}, r =0, 1, are
defined by 5 )
AR =1 Af=f(+h/2) - f(-—h/2).
For positive integer r, the r—th difference operator A;; is defined induc-

tively by A} := ALlo A}l Ifr e Z% = {k € Z* : k; > 0}, then for
h € R%, the mixed difference operator A} is defined by

d
e o 4
anf=1la%s
=1
for functions f on T?, where the operator A;" is applied to the variable

Ire Zd and h € R® then the mixed integral operator I} can be
deﬁned for mtegrable functions f on T¢ in the same way, starting with
the univariate operators

f=1; U /f

For a triple v = (e, 1, B) € Ri X Z‘i X Z‘_f_ and t > 0, we define the
operator

dh;
D}f:= / ALIP f H
V(a,t) i

for integrable functions f on T¢, where

V(ayt) := {(h,-),-eJ(a) thi>0,t< [ AP < 25°t}
j€I (@)

with §o = 14+ )_ ¢ . For a finite subset G of R: x Z% x Z2, we
JEJ ()
define the modulus of smoothness

t)p = Z”D?f”p

yEG

for functions f € L,(T?). If p € ® and 0 < ¢ < oo, let BF;¥ denote
the space of all functions f € L,(T?) such that the qua,smorm

(£ 0002/ ve )", g<w

| s {0S(R2) /e, g=co

0<n<oo
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4. We say that the function p € ® satisfies Condition (BS) if
t

/SO(:':)%;E < Coft)
0
and Condition (Zg), 6 > 0, if
1
/tp(:c) z~° d;z-: < Clp(t)t=*
t

and we say that the subset G of R% x Z4 x Z4 satisfies Condition (R),
if J(a) = J(r) = J(B) # o0 and 1 < B; < rj, j € J(a), for each
~ = (a, r, B) € G. If G satisfies Condition (R), we define

p(G) := min{p(r — B, @) : (a, r, B) € G},
v(G) := max{v(r — B,0a) : (a, 1, B) € G, p(r — B, ) = p(G)},

where p(z,y) := min{z;/y; : 7 € J(y)} for z,y € R%, and v(z,y)
denotes the number of j € J(y) such that z;/y; = p(z,y). We let
p* = min(p,2) for 1 < p < 0.

Theorem 1. Let 1 < p< 00,0< g < oo and let A be a finite subset of
R‘i. Then for any 6 > 0 and any natural number v < max{cardJ(a) :
a € A}, we can construct a finite subset G ofR‘i X ZZi X Zi, such
that
(i) A={a:(a,r,p) € G}
(i) G satisfies Condition (R)
(iii) p=p(G) >4

(iv) v(G)=v
Moreover, if G is such a set and f € L,(T?), then there hold the direct
tnequality o o\ 1/p°
EANp<c( X {a%(n2™),)") &)

m=n+1
Jor any nonnegative integer n, and the inverse inequality
: = “\1/p"
nG(f, 2—n)p S Cl( Z {Z—P(M—ﬂ-) (n bt m)V—-lEéﬂ" (f)p}p ) (2)

m=0

for any natural n, with C and C' depending only on p and G.



On best multivariate trigonometric approximations 365

Theorem 2. Under the assumptions of Theorem 1, let p € ® and
@ satisfy Conditions (BS) and (Zy). Then for any finite subset G of
RS x 22% x 74, satisfying Conditions (i) - (iii) in Theorem 1, we have

Ap _ pGyp
5p,q _Bp,q

and, moreover for functions f € 5,;‘3&", the following quasinorm equiva-
lence holds
|f|e;:;iv’ = |f|B,C,f;," .

If in Theorem 1 we take v = 1, then the inverse inequality (2)
becomes

R {Z_P("‘m)Efn(f)p}p*)l/p* g diiw (4

m=0

Some inequalities weaker than (1), (3) , were obtained in [1] for the
best hyperbolic cross approximations and moduli of smoothness consid-
ered by its authors. The inequalities (1), (3) with replacing Q%(f,t),
by the moduli of smoothness introduced in [3], (4] were formulated and
proved in these papers. Theorem 2 shows that if p, q, ¢, A given,
different sets G satisfying the conditions of Theorem 2, determine the
same space BJ#.

5. The proofs of Theorems 1 — 2 rest on the Littlewood -Paley
theorem, the Marcinkiewicz ‘multiplier theorem, a generalization of
the discrete Hardy inequalities and the following lemma. We let 1 =
(1, 1,...,1) € R and D(e,n) denote the L,(T?) - closure of the span
of the harmonics ¢*%), k € Z(a,n) for a € R‘_i,_ and n > 0 where

Z(e,n) :={UD3:SEZ‘1, 5; >0, j€J(a), n—1< (e, 8) <n}
O, = (ke z®: 257 < Jky] < 2%).

Lemma. Let 1 <p<oo,v=(a, 1, 0) E Ri X ZZ‘i X Zf_, and let {~}
satisfy Condition (R). Then for any €, n > 0 and any f € D(a,n), we
have

Wfll,(ray < CIDS-cfllL, ey » n=¢,
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2RI F20 soptshod g

i <
ID3-Alzye < C e e g
with C and C' depending only on ~, p, where p = p(r — B,a), v =
v(ir—pB,a) and p' =p(f —1,0), v  =v(f - 1,a).

6. The hyperbolic cross T's({a}), o € R, can be considered as the
simplest among I';(A) for finite sets A. However, it is not finite for any
a, and therefore, is not of great interest for trigonometric polynomial
approximation. One of the simplest finite hyperbolic crosses which
is the most important is I'y(A*) where A* = {a®}.cy for some o €
R? with positive coordinates, J = {1, 2,..., d}, af is the vector with
o = oy for j € e and o =0 for 7 € e. The hyperbolic crosses
T'¢({a}) and T':(A*) with a = 1 were treated in [1]. If for a triple
7= (a, r, B) € RY x 2Z% x Z%, {4} satisfies Conditions (i) - (iv) with
given 6 and v, for the case A = {a} of Theorems 1 - 2, then the set
G* = {(a®, r%, B%)}ecs will satisfy Conditions (i) - (iv) with the same
6 and v for the case A = A*. Moreover, we have p(G*) = p(r — 3, )
and v(G*) = v(r — 8, a) in Theorem 1.
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