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GAMES THAT INVOLVE SET THEORY OR TOPOLOGY

MARION SCHEEPERS

Game theory is the mathematical study of the intuitive notions of
competition, conflict and strategy. We shall call the parties involved in
the conflict players. Each exchange of hostilities during the conflict is
said to be an inning, and a particular player’s actions during an inning
is said to be that player’s move for that inning. The entire conflict is
said to be a play of the game. A game is described by explicit rules
which:

% prescribe the allowable actions of each player, and
+ declare the circumstances under which a player has won or lost.

We shall consider games in which there are only two players and
in which one inning per positive integer is played. These are called
infinite two-player games of length w. In all the games we consider, it
will be the case that the outcome of every play of the game is a win for
some player; we are not requiring that there is a favored player who wins
every play — it is completely ok that in one play one of the players wins,
while in another play, the other players win. What we are not allowing
is that a play ends up in a draw where neither player wins. The study
of the games we describe uses the methods of infinitary mathematics.

The two players will be named ONE and TWO; in every game
we describe player ONE will in each inning be the first to act, and
TWO will be the player who responds to ONE’s actions. We shall let
0,, denote ONE’s move in the n-th inning and we shall let T, denote
TWO’s move. Intuitively speaking a strategy for ONE is a plan which
ONE has committed to before the game began, and which instructs
ONE on what moves to make based on the history of the game so
far. Mathematically speaking a strategy for ONE is a function F with
domain the set of finite sequences of the form (Ty,---,Ty,), where the
T; are legal moves for TWO, and with range the set of possible moves
for ONE. For F a strategy of ONE, a sequence
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which satisfies the equations
0, = F(0) (1)
and for each positive integer n
Ont1 = F(Ty, - Ty) (2)

is said to be a play of the game according to F, or simply an F-play.
A strategy F for ONE is a winning strategy for ONE if every F-play
of the game is won by ONE. The notion of a strategy for TWO and
of a winning strategy for TWO is defined analogously. Observe that
the notion of a strategy as just described requires complete memory of
all the actions of the opponent during all the preceding innings; con-
sequently, these sorts of strategies are called perfect memory strategies.
A game is said to be determined if one of the players has a winning
perfect memory strategy in the game. If neither of the players has a
winning memory strategy, the game is said to be undetermined.

It is often of interest to know, for determined games, whether the
player who has the perfect memory strategy really needs all this memory
to secure a win - a nice illustration of the relevance of this sort of
consideration appears in [60]. Several sorts of strategies depending on
less memory have been considered in the literature. The main classes
of strategies of this sort are as follows:

1. Coding strategies: a coding strategy is a strategy which depends
on at most the two most recent moves made in the game: For
player TWO this means that a strategy F is a coding strategy if
it is of the form T; = F(Oy), and T,,;, = F(Op41,T,) for each
n. For player ONE F is a coding strategy if O; = F(0) and for
each n, Opyy = F(O,,T,).

2. n-tactics: an n-tactic is a strategy which depends on at most
the n most recent moves of the opponent: For player TWO
this means that a strategy F is an n—tactic if it is of the form
T; = F(O1,---, Oj)for j < n,and Ty, , = F(Okt1, -+, Okyn)
for each positive integer k. The definition for player ONE is anal-
ogous.

3. Markov n-tactics: a Markov n—tactic is a strategy which depends
on at most the n most recent moves of the opponent and the num-
ber of the inning in progress: For player TWO this means that a
strategy F is an n—tactic if it is of the form T; = F(O,,--- , 0,;7)
for j <n,and Ty = F(Ok41, -+ ,Oktn;k + n) for each pos-
itive integer k. The definition for player ONE is analogous.



Games that involve set theory or topology 171

Games of the sort we described can be classified according te several
general criteria:

e What is the number of players? We discuss two—player games.

e What is the length of the game? We discuss games of length w;
that is to say, the players play an inning per positive integer.

e On how many boards is the game played? We first discuss one
board games, and then we venture into the interesting area of
multiple boards games.

A finer classification which takes into account the kind of rules
defining the games in question is also possible. A quick glance at the
table of contents below will show a few classes that are identified by
this criterium.

By hindsight the serious study of infinitely long mathematical games
started in the 1920’s with three papers [156] by Sierpinski in 1924, [67]
by Hurewicz in 1925 and [6] by Banach and Kuratowski in 1929. Ac-
cording to Ulam, Mazur started formulating infinitely long games and
asking explicit questions about them around 1928. One such game ap-
pears as Problem 43 in The Scottish Book [104]. Since these early
days this discipline of mathematics has grown into a recognized subject
with mathematics subject classification number 90 D44 (1991 classifi-
cation); the title of this classification is Games that involve set theory
or topology.

The main purpose of this paper is to present the reader with a
concise introduction to this subdiscipline of mathematics via a list of
open problems. Though many theorems are stated here, none of them
are proven; for proofs the reader could consult the published litera-
ture cited in the bibliography, write to the mathematicians responsi-
ble for the unpublished cited results, or wait for the textbook [152]
on the subject. A second equally important purpose of this paper is
to save from extinction important developments from the 1970’s re-
garding multiboard game versions of the Gale— Stewart game and the
Banach — Mazur game.

For comfortable reading of this paper it would be best if the reader
has a working knowledge of cardinal numbers, general topology and
Boolean algebra. The text [74] would be a sufficient general reference
to look up definitions of technical terms regarding set theory (such
as cardinal numbers, ideals, forcing, large cardinals, consistency- and
independence-results) and Boolean algebra, while any unfamiliar term
regarding topology is almost sure to be found in [96].
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Telgdrsky’s survey article [166] on the subject of infinite games
contains an excellent bibliography; the bibliography we present at the
end of this article, though it has many items in common with that of
[166], is not a replacement but rather a supplement. For the benefit
of the reader I also included a few textbooks which may be useful in
pursuing some of the finer points not elaborated in the article. For
example, I did not give an explanation of the important notion of a
consistency result, or of an equiconsistency result: this notion lies at
the center of forcing theory and inner model theory, two subdisciplines
in set theory. Though [74] discusses these matters sufficiently, alternate
expositions may be helpful. My personal favorite texts regarding forcing
theory are [14], [23] and [132]. I also in passing mentioned that there
is a deep connection between the theory of games and the theory of
definable subsets of the real line, also known as descriptive set theory.
Here the forthcoming text [85] or the classical text [112] would be useful;
the introduction to the paper [103] contains an illuminating and concise
discussion on these matters. Also, [74] would serve the reader well on
these matters. The notions of measurable cardinals and supercompact
cardinals are also mentioned in the article. These are examples of so-
called large cardinals; again [74] is a good general purpose reference on
these matters. Alternates would be the text [36] and the forthcoming
text [82].
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1. THE ZIG-ZAG ARGUMENT

In upper division mathematics courses or early graduate level cours-
es we usually learn facts like: the union of countably many

* first category sets is a set of the first category,
* countable sets is a countable set,
* measure zero sets is a set of measure zero.

Examples of this phenomenon abound in mathematics. The proofs
are all in one way or another a variation of Cantor’s zig-zag argument
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which shows that the set of rational numbers is countable. Most math-
ematicians would consider this argument among one of the main tools
of the trade, and among the supreme examples of mathematical beauty.
The argument is well worth our attention. Bibliographic references for
this section include [7], [90] and [136] through [142].

To begin, we review one of the proofs that the union of countably
many first category sets is a first category set. At the outset we are given
a sequence Oy,03, -+ ,0y, -+ of first category subsets of a topological
space. Being of the first category, each can be written as an union of an
increasing sequence of nowhere dense sets. Let N iCN:C---CN }c -

... be such an increasing sequence of nowhere dense sets whose union
oo

is O;. Then we reassemble the union [J O; as an union of countably
i=1
many nowhere dense sets as follows: We define T; to be the union
U Ni. This is an union of finitely many nowhere dense sets, and so
Jk<e

o0 oo
is still nowhere dense. Moreover, |J T; = | O;.

= 7=1

When looking carefully at this proof, we see that the success of

the method does not really require knowing the entire sequence of O;-
s at the outset: When we define T;, we only used knowledge about
04, -+ ,0;. This suggests that we may even be given the terms of the
sequence of first category sets one-by—one, with no knowledge of which
ones we will be confronted with in the future, and yet our method
will work. We may think of this as an infinitely long game between
two players, ONE and TWO. In the n-th inning player ONE, who has
complete freedom of choice, selects a first category set O,, and then
player TWO responds with a nowhere dense set T,. In this manner the
players build a play

(Ollea"' )OnaTna"')-

(o o] (o ]
TWO is declared the winner of this play if |J O, C |J Thn.
n=1 n=1
The proof we have given above shows that TWO has a winning
strategy in this game, i.e., there is a function F' such that if TWO
plays F(O;) = Ti, - ,F(O1,---,0,) = Ty, then TWO wins the
resulting play: the function F in our argument above is given by
T, = F(Oy,---,0,)= U N;. This strategy for TWO uses as infor-
1,7<n
mation all preceding moves of the opponent, i.e., it is a perfect memory
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strategy. Does TWO really need all this memory to secure a win? It is
this question which will occupy us for this part of the article.

We shall call the above game, as well as the variations of it which we
introduce below “meager —nowhere dense games”. Though we are using
topological terminology to describe our games, these can equivalently
be described in terms of the combinatorial concept of a free ideal. The
collection J of nowhere dense subsets of a T, —space X with no isolated
points has the following properties:

1. AABeJ=>AUBeJ,

2. Ac Jand BC A= BelJ,

3. X ¢ Jand

4. UJ = X.

Any collection J of subsets of a set X is said to be a free ideal
on X if it has these four properties. Given such a free ideal, there
is a corresponding T;—-topology 7 on X such that J is the collection of
nowhere dense subsets of the space X. Put 7 = {X\Y : Y € J}u{@}. In
what follows we shall freely interchange the combinatorial terminology
of free ideals and the topological terminology of nowhere dense sets.
For the remainder of this section we shall assume that we have a free
ideal J on an infinite set X.

There are some matters of notation that will be important through-
out this section: The symbol (J) denotes the collection of sets which
can be represented as a union of countably many sets from J, and is
said to be the o—completion of J. For Y a subset of X, the symbol J[y
denotes the set {T'€ J : T C Y}. The symbol C denotes “...is a proper
subset of...”.

Then the game we described above, called the random game on J,
is denoted RG(J), and is played as follows: In the n—th inning ONE
chooses a set O, from (J), and TWO responds with a set T,, € J.
TWO is the winner of a play

(C)lajH"" aC)n,Z;L"')

oo o 0]

if |J O, C |J Ta; otherwise, ONE is the winner.
n=1 n=1

Coding strategies

A strategy F of TWO of the form T} = F(O,;) and for all n
Tnt+1 = F(Tn,0pn+1) is said to be a coding strategy. There is a nice
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combinatorial characterization of those free ideals J for which TWO
has a winning coding strategy in the game RG(J). A subset A of (J)
is said to be cofinal if there is for each Y € (J) an A in A such that Y
is a subset of A. The cofinality of (J), denoted cof({J}), is defined to
be the minimum of the set of cardinalities of cofinal subsets of (J).

Theorem 1. The following statements are equivalent:
1. TWO has a winning coding strategy in the game RG(J).
2. The cofinality of (J) is no larger than the cardinality of J.

Suppose now that we introduce more rules: From now on ONE is
required to play so that for all n, O, C Op4;. This version of the game
is denoted WMG(J), and is called the weakly monotonic game on J.
Since the rules are stricter on ONE, it seems reasonable to expect that
is may now be easier for TWO to win with coding strategies. There
is a partial result in this direction. To state it, we need the following
familiar terminology. The Generalized Continuum Hypothesis is the
assertion that for every infinite cardinal number x, 2% = k*.

Theorem 2. Assume that the Generalized Continuum Hypothesis holds.
Then for every free ideal J, TWO has a winning coding strategy in the
game WMG(J).

It is not clear that the assumption about cardinal arithmetic is
necessary. Indeed, in all specific examples of free ideals considered so
far it was possible to prove outright that TWO has a winning coding
strategy. It has also been proven that if J is any free ideal on any set
of cardinality less than R, , then TWO has a winning coding strategy
in the game WMG(J). This evidence suggests:

Conjecture 1 (Coding Strategy Conjecture). For every free ideal
J, TWO has a winning coding strategy in the game WMG(J).

The simplest unresolved instance of this conjecture is:

Problem 1. Let X be a set of cardinality R, . Is it true that for any
free ideal J on X, TWO has a winning coding strategy in the game
WMG(J)?

Remainder strategies

Next we consider a different sort of strategy for TWO in the games
WMG(J). Does TWO have a winning strategy which depends on know-
ing only the set of points from ONE’s most recent choice, which have
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not yet been covered by TWO? A strategy of TWO which depends on
knowing only this is a so—called remainder strategy. Formally: A strat-
egy F for TWO is a remainder strategy if T} = F(O;) and for each n,

Toss = F(Onii\ (U 1))

One can prove that if TWO has a winning remainder strategy in the
game WMG(J), then TWO has a winning coding strategy in WMG(J);
the converse is not true. For let J be the free ideal consisting of the finite
subsets of the real line. Then TWO has a winning coding strategy in
the game WMG(J) (indeed, in the game RG(J)), but as a consequence
of a theorem of W. Just, TWO does not have a winning remainder
strategy in the game WMG(J). It is not yet clearly understood when
TWO has a winning remainder strategy in the game WMG(J). If J
is for example the ideal of nowhere dense subsets of the real line, then
TWO has a winning remainder strategy in WMG(J).

To give another concrete example, let « and A be infinite cardinal
numbers such that A is the union of countably many sets, each of car-
dinality less than A (we say that A has countable cofinality), and such
that < is not less than A. Let J, ) be the ideal of subsets of k which
are of cardinality less than A. Then (J, ) is the collection of subsets
of k which are of cardinality less than or equal to A. It is known that if
the cofinality of (J. ») is no larger than A<*, then TWO has a winning
remainder strategy in the game WMG(J, ). A theorem of F. Galvin
implies that if the cofinality of (Jx ) is larger than 2*, then TWO does
not have a winning remainder strategy in WMG(J,,»). This leaves the
following open problem:

Problem 2. Is it true that whenever the cofinality of (J. ) ts no

larger than 2%, then TWO has a winning remainder strategy in the
game WMG(J, »)?

k—tactics

The third type of limited memory strategy which we consider re-
quires further restrictions on player ONE. The game denoted MG(J)
and called the monotonic game on J is played like the game WMG(J),
except that ONE must now obey the rule that for each n O,, is a proper
subsets of O, ;.

Fix a positive integer k. A strategy of TWO which requires knowl-
edge of only the at most k£ most recent moves of ONE is said to be a k-
tactic for TWO. Formally, a strategy F for TWO is a k-tactic if: for j <
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IC, T]' == F(Ol,' Rig ,O]‘), while for all n, Tn+k = F(On+1, - e aOn+k)-
A 1-tactic will be called a tactic. We now ask ourselves if there is ever
a k such that TWO has a winning k-tactic in MG(J).

It is known for which J TWO has a winning tactic in MG(J):

Theorem 3. The following statements are equivalent:

1. TWO has a winning tactic in MG(J).
CR AR

Also, there is a nice combinatorial description for those free ideals
J such that TWO has a winning 2-tactic in MG(J).

Theorem 4. The follouing statements are equivalent:
1. TWO has a winning 2-tactic in MG(J).
2. There is a set S and a well-ordering < for S and for each A in
(J) there is a function fa from A into S such that for all A and
B in (J), if Aisa proper subset of B, then the set {x € A :
fa(z) X fB(z)} ts in J.

As before, let k and A be cardinal numbers such that « is at least
as large as A and such that A has countable cofinality. It is not yet well
understood under what circumstances TWO has a winning 2—tactic in
MG(J,,). The following theorems are known:

Theorem 5 (Koszmider)

1. If k is equal to R, for some finite n, then TWO has a winning
2-tactic in MG(J x, ).

2. It 1s consistent that for every k, TWO has a winning 2-tactic in
MG(Jy,x, )-

The game MG(J, x,) is also known as the countable-finite game
on k. Thus, the following conjecture is consistent — it is not known if
it is outright provable:

Conjecture 2 (Countable—finite conjecture). For every cardinal
number k TWO has a winning 2-tactic in the game MG(J, x, ).

The simplest open instance of the Countable—finite conjecture is:

Problem 3. Does TWO have a winning 2-tactic in the game
MG(JRW)NO)?

For A an uncountable cardinal number of countable confinality the
following things are known:
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Theorem 6. Let A be an uncountable cardinal number of countable
cofinality.
1. It 15 consistent that TWO has a winning 2-tactic in MG(Jx+,2)-
2. It s consistent that for all k TWO does not have a winning
k-tactic in MG(Jy+ »).
3. The following statements are equivalent:
(a) TWO has a winning k-tactic in MG(Jy+ »).
(b) For each finite n, TWO has a winning k-tactic in
MG(Jy+n 2).

Thus, for uncountable cardinal numbers A of countable cofinality,
it is independent of the usual axioms of mathematics whether TWO
ever has a winning k-tactic for some k in the game MG(J ). Another
point raised by Theorem 6 is whether k = 2 is exactly the breakpoint.
We know:

Theorem 7. Let A be any cardinal number of countable cofinality.
Then the following statements are equivalent.

1. TWO has a winning k-tactic tn the game MG(Jy »).
2. TWO has a winning 3-tactic in the game MG(J, ,).

This raises the following problem (which is open even for the count-
able—finite game):

Problem 4. Is it ever possible that TWO has a winning 3-tactic in
the game MG(Jy »), but does not have a winning 2-tactic?

The third item in Theorem 6 suggests the following conjecture:

Conjecture 3 (A, < A-Conjecture). Let A be a cardinal number
of countable cofinality. If TWO has a winning k-tactic in the game
MG(Jy+,3), then for all kK TWO has a winning k-tactic in the game
MG(Jg,»)-

Notice that the truth of this conjecture implies the truth of the
countable—finite conjecture.

Now the reader may start wondering if there ever are free ideals
J such that TWO does not have a winning 2-tactic in MG(J), but
does have a winning 3-tactic. This brings us to our next example. Let .
Jr denote the ideal of nowhere dense subsets of the real line. For this
example we know the following:
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Theorem 8
1. TWO does not have a winning 2-tactic in the game MG(Jg).
2. The following statements are equivalent:
(a) There is a k such that TWO has a winning k-tactic in
MG(Jg).
(b) TWO has a winning 3-tactic in MG(Jg).
3. It is consistent that TWO has a winning 3-tactic in MG(JR).
4. It is consistent that TWO does not have a winning $-tactic
in MG(Jg).

Thus it is independent of the usual axioms of mathematics whether
TWO has a winning k-tactic in MG(Jg).

No example is known for which TWO may have a winning 4-tactic,
but not a winning 3-tactic in MG(J). Evidence suggests the following
conjecture:

Conjecture 4 (Three Tactic Conjecture). For every free ideal J,
if TWO has a winning k-tactic in MG(J), then TWO has a winning
8-tactic in MG(J).

Not even the consistency of the three tactic conjectures is known.

Markov k—tactics

Fix a positive integer k. A function F' is a Markov k-tactic for TWO
in the game WMG(J) if for 1 < k Ty = F(Oy,---,04,1), and for all
m, Ttk = F(Om+1, - ,Om4k,m + k). Thus, in addition to knowing
the k most recent moves of ONE, TWO now also knows the number of
the inning in progress. The additional knowledge of the inning number
can be an advantage to TWO, as the next theorem illustrates.

Theorem 9. Let A be a cardinal number of countable cofinality.
1. If k is larger than A, then TWO does not have a winning Markov-
tactic in WMG(Jx »).
2. For all k less than or equal to AT¥, TWO has a winning Markov
2-tactic in WMG(J, 2).

It is not known if the information in this theorem is optimal. In-

deed:

Conjecture 5 (Markov 2-Tactic Conjecture). If X ts a cardinal
number of countable cofinality, then for every infinite cardinal number
k, TWO has a winning Markov 2-tactic in the game WMG(Jy »).
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It is also not clear what the situation concerning Markov k—tactics is
for the ideal Jg. It is known that TWO does not have a winning Markov
1-tactic in WMG(Jg). It is consistent that TWO has a winning Markov
2-tactic in WMG(JR). It is not known if this is simply a theorem:

Problem 5. Does TWO have a winning Markov 2-tactic in
WMG(JR)?

2. THE DIAGONAL ARGUMENT

Mathematics students learn early on in their upper division classes
that

* the set of real numbers is uncountable,

* the set of all subsets of an infinite set (also called the powerset

of that infinite set) cannot be partitioned into sets, in number
equal to the number of elements of the underlying set, and each

containing fewer sets than the powerset of the given set,

* there are statements in Peano arithmetic which are true of the
set of natural numbers, but not provable from the Peano axioms
of arithmetic,

* the collection of Borel subsets of the real line forms a proper
hierarchy,

* the collection of projective subsets of the real line forms a proper
hierarchy. '

These theorems, as well as multitude of others not mentioned here,
employ in one way or another in their proofs Cantor’s famous diagonal
argument. Many mathematicians would consider the diagonal argument
as another of the main tools of the mathematical trade, and among the
prime examples of mathematical beauty.

We now consider one (of many) games which is directly related to
the diagonal argument. By hindsight, diagonal games have been stud-
ied for a long time. In Hurewicz’s study of Menger’s property and of
characterizations of the F,— and Gs-sets among the Borel sets ([67],
[68] and [69]) he proves theorems which, in our terminology, are theo-
rems asserting the existence or non—existence of winning strategies of
one or the other of two players in a very thinly disguised game. Grigori-
eff’s study [59] of certain ultrafilters on the set of positive integers also
proceeds in the spirit of the cited Hurewicz papers, with no mention
of games. Galvin, who independently formulated and studied games



Games that involve set theory or topology 181

concerning ultrafilters, later learned that some of his game-theoretic
theorems are exact analogues of Grigorieff’s theorems. Cantor’s diago-
nal argument which proves that the real line is uncountable, is similarly
a thinly disguised theorem about the existence of a winning strategy
for the appropriate player in a certain game.

The point intended here is again that the game-theoretic attitude
to the study of certain mathematical objects is a natural one, and has
been practised since the early days of set theory.

According to Hurewicz a topological space (X, 7) has the Hurewicz
property if there is for every sequence (U, : n =1, 2, 3,---) of open
covers of X a sequence (V, :n =1, 2, 3,---) such that for each n V,
is a finite subset of U, and such that each element of X is an element
of all but finitely many of the sets UV,. It is clear that if X is a union
of countably many of its compact subsets, then it has the Hurewicz
property.

We shall call the following game the Hurewicz game on the space
(X,7): In the n—th inning player ONE chooses an open cover O, of the
space; TWO responds by choosing a finite subset T, of O,. The players
play and inning for each positive integer. TWO is the winner of the

play OlaTla";aOnaTna"'

if each element is in all but finitely many of the sets UT,; otherwise,
ONE wins.

The Hurewicz game can be used to characterize those topological
spaces which have the Hurewicz property.

Theorem 10. For a topological space (X, 1), the following are equiva-
lent: ‘
1. (X, 7) has the Hurewicz property.

2. ONE does not have a winning strategy tn the Hurewicz game on
X.

Also the subsets of the real line for which TWO has a winning
strategy in the Hurewicz game can be characterized very nicely:

Theorem 11. For a subset X of the real line, the following are equiv-
alent:
1. X 15 an union of countably many compact subsets of the real line.

2. TWO has a winning strategy in the Hurewicz game on X.
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In light of these two theorems, an old conjecture of Hurewicz! ([68],
p. 200) can be reformulated as follows:

Conjecture 6 (Hurewicz). The Hurewicz game is determined for all
sets of real numbers.

It could happen that there are subsets of the real line which are
not representable as a union of countably many of its compact subsets,
and yet the set has the Hurewicz property. Such sets can be construct-
ed with the aid of the Continuum Hypothesis — see [45]. Thus, the
Continuum Hypothesis implies that Hurewicz’s conjecture is false. It is
still an open problem if one can disprove Hurewicz’s conjecture without
resorting to additional hypotheses such as the Continuum Hypothesis.

3. THE CUT-AND-CHOOSE GAMES

Many a parent has found that one way out of dividing candy fairly
between two children is to have the one divide the candy, and to have the
other choose. Cut and choose games are to some degree a mathematical
formulation of this idea.

The earliest traces of an infinite cut and choose game appears in
the 1929 paper [6] of Banach and Kuratowski. Galvin described many
cut and choose games in his unpublished manuscript [50]. Ulam also
considered some cut and choose games — see for example pp. 346 — 347
of his paper [169].

Some of these cut and choose games were studied in the context
of Boolean algebras by Jech [71, 72], Foreman [43], Kamburelis [81],
Veli¢kovié [171], Vojtas [174] and Zapletal [183].

Besides their intrinsic interest the importance of the cut—-and—choose
games we describe here lies in the fact that they proved to be useful in
giving some enlightening information regarding important open prob-
lems in connection with multiboard games discussed below.

The Bannach — Kuratowski game

The games described here are motivated by a theorem of Banach

1“Es enstehts nun die Vermutung dass durch die (warscheinlich schirfere)
Eigenschaft E** die halbkommpakten Mengen F, allgemein charakterisiert sind”.
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and Kuratowski, published in 1929. In honor of their pioneering work
we shall call these games Banach - Kuratowski games. The original
setting for these games is as follows. Let S be an infinite set and let p
be a cardinal number. Then define the game BK(S, u) as follows: In
the n—th inning ONE partitions S into countably many disjoint pieces
— let O,, denote the set of these pieces; TWO responds by choosing a
finite subset T, of O,. The players play an inning per positive integer.

TWO wins a play
ollea"' ,On’Tn,"'

if the cardinality of the intersection of the sets UT, is at least u. Let
N be the collection of subsets of the real line which have Lebesgue
measure zero. Then add(N) denotes the smallest cardinal number such
that there is a family of that many measure zero sets whose union is not
a measure zero set. Here is the motivation for Banach and Kuratowski’s
work on this game:

Theorem 12 (Banach — Kuratowski). If ONE has a winning strate-
gy in the game BK(R,add(N)), then there are subsets Sy, S2,--+ ,Sp, -
of the real line such that the Lebesgue measure cannot be extended to
an add(N) - complete measure on the o—field generated by

WALIES, et =N 2 - ke

Now we look at some of the modern developments regarding Ba-
nach - Kuratowski games. Let B be a Boolean algebra, and let « be an
infinite cardinal number.

Also, let a be a non-zero element of B. Then the game BK(B,a,x)
is played as follows: The players play one inning per positive integer;
in the n—th inning ONE chooses a partition O,, of a of cardinality at
most k£ and TWO responds by choosing a finite subset T,, of 0,. TWO
wins a play

ol’Tla"' aonaTna"'

if there is a nonzero element w of B such that for every n, w <\/ T,,.

This Boolean —algebraic version of the Banach- Kuratowski game
was formulated by Thomas Jech in his paper [71]. In this paper Jech
shows that if ONE does not have a winning strategy in this game, then
the Boolean algebra in question has certain distributivity properties.
Let B be the o-algebra of Borel subsets of the unit interval and let N
be the collection of Lebesgue measure zero subsets of the unit interval.
Then, let A be the factor Boolean algebra obtained by the construction
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B/N. For any non-zero element a of A and for every infinite cardinal
number k£, TWO has a winning strategy in the game BK(A,a,x). Here
is an unresolved conjecture regarding A:

Conjecture 7 (Gray’s Conjecture). Let B be a complete Boolean
algebra having the following properties:

1. Any partition of a nonzero element of B ts countable,
2. B is generated by countably many elements, and

8. TWO has a winning strategy in the game BK(B,a,k) for all in-
finite k.

Then B 1s 1somorphic to A.

A game of Galvin

Let S be an infinite set. Consider the following game where in the
n-th inning, ONE chooses a partition O, of S into two disjoint pieces.
Then TWO responds by selecting T, € O,,. The players play an inning
for each positive integer. TWO wins a play

OI)TI,'“ aon’Tn""

if for each n T}, has more than one element, and if the intersection of
all the T,’s is non—empty. Let the symbol Gal(S) denote this game. In
unpublished work Galvin proved the following theorem:

Theorem 13 (Galvin). Let S an infinite set.

1. ONE wins the game Gal(S) if, and only if, S is a countable set.

2. If S 15 an uncountable set of cardinality no larger than the cardi-
nality of the real line, then neither player has a winning strategy
in the game Gal(S).

The second item in this theorem was also later independently discovered
by S. Hechler.

Problem 6 (Galvin). Is it true that TWO has a winning strategy in
the game Gal(S) whenever S is a set of cardinality (280)*?

Jech initiated the study of the Boolean algebraic version of this
game. Let B be a complete Boolean algebra, and let a be a non—zero
element of B. Then the game Gal(B,a) is played as follows: In the
n-th inning ONE first partitions a into two disjoint pieces, i.e., ONE
selects elements Of and OF of B such that Of AO7 =0and O} v O}
= a; TWO responds by selecting an element T, from {OZ, O}}. For
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convenience, let the symbol O, denote the set {OF, OF}. TWO wins
the play
Ol,Tla"' ,On,Tny"'

(o ]
if A T, > 0; otherwise, ONE wins.

n=1

Jech showed that this game can be used to describe distributivity

properties of Boolean algebras. Let k and A be cardinal numbers. Then
a Boolean algebra is said to be (x, A)-distributive if for every doubly
indexed family (an g : @ < &, § < A) of elements of the Boolean
algebra, the equation

A (Vawe)= V (A aes@)

a<k LA Je~x a<k
holds.

Theorem 14 (Jech). For a complete Boolean algebra B, the following
statements are equivalent:

1. B is an (Ro,2) - distributive Boolean algebra.

2. For each a in B, ONE does not have a winning strategy in the
game Gal(B,a).

The Galvin—-Ulam game

Let S be an infinite set and let A > 2 be a cardinal number. Let
GU(S, ) denote the Galvin—Ulam game, which is played as follows:
Two players, ONE and TWO, play one inning per positive integer.
In the first inning ONE partitions S into at most A pairwise disjoint
nonempty pieces; TWO responds by selecting one of these pieces, call
it S1, and then TWO partitions S; into at most A pairwise disjoint
nonempty pieces. This concludes the first inning.

At the beginning of the second inning, ONE selects one of the pieces
of TWO’s partition of S, call it Sy, and partitions S, into at most A
pairwise disjoint nonempty pieces; TWO responds by selecting one of
these pieces, call it S3 and by partitioning it into at most A pairwise
disjoint pieces, and so on.

In this manner the two players construct a sequence *
S1 D822 893 iy S .. ..

o0
ONE is the winner of this play if () Sp # 0. Otherwise, TWO wins.

n=1
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Ulam’s original game was GU(S,2), and Ulam asked if TWO has a
winning strategy in the game GU(w;,2).

Theorem 15 (Galvin). Let S be an infinite set.

1. TWO has a winning strategy in GU(S,2) if, and only if, S 1s a
countable set.

2. If ONE has a winning strategy in the game GU(S,2), then the
cardinality of S 1s larger than that of the real line.

3. ONE has a winning strategy in GU(S,2) if, and only if, ONE
has a winning strategy in the game GU(S, Ro).

The second item in this theorem was also discovered independently

by S. Hechler.

The connection between Galvin’s game Gal(S), and the Galvin-
Ulam game GU(S,2) is as follows:

Theorem 16 (Galvin). For an infinite set S, the following are equiv-
alent:
1. TWO has a winning strategy in the game Gal(S).
2. Either ONE has a winning strategy in the game GU(S,2) or else
the cardinality of S s at least as large as the first uncountable
measurable cardinal number.

It is also known that the assertion that there is an infinite set S such
that ONE has a winning strategy in the game GU(S,2) far transcends
the traditional axioms of set theory in consistency strength. This is
.because of the following result of Solovay and Gray:

Theorem 17 (C. Gray and R. M. Solovay). If it is consistent
that there ts an infinite set such that ONE has a winning strategy in
the game GU(S,2), then it ts also consistent that there is a measurable
cardinal number.

M. Magidor then completed the “consistency picture” with the
result:

Theorem 18 (M. Magidor). If it is consistent that there is a mea-
surable cardinal number, then 1t 1s consistent that there is a set S such
that ONE has a winning strategy in the game GU(S,2).

One might wonder now if the assertion that the cardinality of S
is measurable implies that ONE has a winning strategy in the game
GU(S,2) or if the fact that ONE has a winning strategy in the game
GU(S,2) implies that the cardinality of S is measurable. Solovay showed
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that the first implication is not provable, and Magidor has shown that
the second one is not provable. R. Laver improved the results of Magi-
dor as follows:

Theorem 19 (R. Laver). If it is consistent that there is a measurable
cardinal, then it is consistent that ONE has a winning strategy in the
game GU(w3,2).

Laver moreover proved:

Theorem 20 (R. Laver). If it is consistent that there is a proper
class of supercompact cardinals, then it is consistent that for every un-
countable reqular cardinal number k, ONE has a winning strategy in the
game GU(x™, k).

It is known if such a strong large cardinal hypothesis is necessary
in Theorem 20

Problem 7 (Laver). If it is consistent that for every regular un-
countable cardinal number k ONE has a winning strategy in the game
GU(k™,k), is it then conststent that there is a proper class of super-
compact cardinal numbers?

4. THE DESCENDING CHAIN ARGUMENT

We now turn our attention to games which require that the players
construct a descending chain of elements of a partially ordered set.
There are much quoted and much used games of this sort.

One example was invented by Mazur in the late 1920’s. It appears
as Problem 43 of The Scottish Book [104]. The first important re-
sult about this game was proved by Banach. The game is now widely
known as the Banach — Mazur game. The game was later generalized to
its present form by Oxtoby. Several authors also studied various gener-
alizations of the Banach - Mazur game. The Banach - Mazur game has
also been generalized to the context of Boolean algebras.

Another important example, the Banach — Galvin game, also known
as the precipitous ideal game, was invented during the 1930’s by Banach
(Problem 67 of The Scottish Book) and generalized to its present form
in the 1970’s by Galvin. It is a much used game in connection with the
study of precipitous ideals.

A third example, the Sierpinski game, was invented by Sierpinski
in the 1920’s [156] and was later explicitly formulated by Telgarsky. A
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fourth example is now known as Michael’s game; it was invented by
Ernest Micheal during his study of completeness properties of metric
spaces. A fifth example is due to Choquet [18], and is a sort of Banach -
Mazur game with side conditions.

There are many other games of this sort in the literature, but the
five we look at here should give the reader some indication of the sorts
of concerns that are important in these games.

The Banach — Mazur game for topological spaces

Let (X,7) be a topological space. The Banach-Mazur game on
(X,7), denoted BM(X, ), is played as follows: In the n-th inning,
ONE selects a nonempty open subset O,, of X; TWO responds by
selecting a nonempty open subset T, of X. The players must further
obey the rule that for each n, O, 2 T,, O O,,;. Player ONE wins a

oo
play (O1,T1,...,0n,Ts,...) if [\ O, = 0; otherwise, TWO wins.
n=1

Mazur originally formulated this game for the case when X is a
subset of the real line and 7 is the topology which X inherits from the
real line. In the 1950’s Oxtoby extended the definition to its present
form [123]. The first interesting theorem regarding this game is due to
Banach, and was later extended to the more general setting by Oxtoby:

Theorem 21 (Banach — Oxtoby). For a topological space (X, 1), the
following are equivalent:

1. ONE has a winning strategy in the game BM(X, 7).

2. X has a nonempty open subset which is of the first category in
X.

It was later observed that it follows almost immediately from the
Banach — Oxtoby theorem that if ONE has a winning strategy in the
game BM(X, 7), then ONE has a winning 1-tactic in this game. In the
late 1970’s W. G. Fleissner and K. Kunen asked if it is also true that
if TWO has a winning strategy in the game BM(X,7), then TWO has
a winning 1-tactic [42]. In the early 1980’s G. Debs showed that the
answer was “no” [29, 30]. Debs gave three examples of spaces for which
TWO had a winning strategy in the Banach—Mazur game, but did not
have a winning 1-tactic. In all three examples it turned out that TWO
had a winning 2-tactic. Two examples were treated in the cited paper
of Debs, and the third one was treated in [7]. Shortly afterwards R.
Telgdrsky made the following conjecture [166]:
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Conjecture 8 (Telgirsky’s Conjecture). For every positive integer k
there exists a topological space such that TWO does not have a winning
k-tactic, but does have a winning k + 1-tactic in the Banach - Mazur
game on the space.

The truth of Telgarsky’s conjecture would imply that there exists
a topological space such that TWO has a winning strategy in the Ba-
nach — Mazur game on it, but there is no k such that TWO has a winning
k-tactic. Thus, as a first attack on this conjecture one might ask:

Problem 8. Is there a space such that TWO has a winning strategy
in the Banach - Mazur game on the space, but there is no k such that
TWO has a winning k-tactic in the Banach - Mazur game?

One may also ask if the situation is any better for TWO if instead
of asking for a winning k-tactic we ask for a winning Markov k-tactic.
It turns out that the answer is “no”: the case k = 1 of the following
theorem is due to Galvin and Telgarsky:

Theorem 22 (Bartoszynski—Just—Scheepers). Let (X,7) be a
topological space and let k be a positive integer. Then the following
statements are equivalent:

1. TWO has a winning k-tactic in BM(X, 7).
2. TWO has a winning Markov k-tactic in BM(X, 7).
The notion of a coding strategy for TWO also makes sense in the

context of Banach-Mazur games. Here the situation is completely
understood, due to the following theorem:

Theorem 23 (Galvin - Telgarsky). For a topological space (X,7),
the following are equivalent:

1. TWO has a winning strategy in BM(X 7).

2. TWO has a winning coding strategy in BM(X, 7).

The Banach—-Mazur game has been used to characterize certain
topological aspects of function spaces. We give two examples of this
phenomenon:

Let X be a completely regular space and let C*(X) denote the set
of bounded continuous real-valued functions on X. Endow C*(X) with
the supremum norm: ||f|| = sup{|f(z)| : z € X}. It is well known that
||| is a complete norm on C*(X). If X is compact then C*(X) = C(X),
and for every f € C*(X) we have

1f]l = max{|f(z)| : z € X} .
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For which spaces X is it true that “most” elements of C*(X) satisfy
this equation? The following beautiful theorem gives a description of
some of these spaces [87]:

Theorem 24 (Kenderov —Revalski). For completely regular spaces
(X,7) the following statements are equivalent:

1. {f € C*(X) : || fll = max{|f(z)| : € X}} is a dense Gg subset
of (C*(X), [l -1I)-
2. Player TWO has a winning strategy in BM(X, 7).

Again let X be a completely regular Hausdorff space. Let C(X)
be the set of all continuous real-valued functions on X. Now endow
C(X) with the compact-open topology, 7.,: This topology is generated
by the subbase whose elements are of the form {f € C(X) : f[K] C U},
where K ranges over the compact subsets of X while U ranges over the
open subsets of the real line. For which spaces X is it true that TWO
has a winning strategy in the game BM(C(X), r.,)? Also this question
has a very satisfying answer (98], relating the Banach - Mazur game to
another old and well-studied concept in metrization theory:

Theorem 25 (D. K. Ma). For completely regular Hausdorff spaces
(X,7), the following are equivalent:

1. TWO has a winning strategy in BM(C(X), 7.,).
2. (X, 1) ts paracompact.

The Banach - Mazur game for Boolean algebras

Let B be a complete Boolean algebra. Then the Banach - Mazur
game on B, denoted BM(B) was introduced by Jech [71], and is defined
as follows: TWO players, ONE and TWO, alternately choose non-zero
elements of B. In the n-th inning ONE selects an element O, of B,
and TWO responds with an element T, of B. The players must obey
the rule that for each n O,4; <T, <0O,. TWO wins a play

Q7T , #2508, Tyl

o0
A T, > 0; otherwise, ONE wins.

n=1

Jech showed that also this game is related to distributivity laws for
Boolean algebras. If the Boolean algebra is for each cardinal number
A(x, A)-distributive, then it is said to be (x, co)-distributive.

Theorem 26 (Jech). For a complete Boolean algebra B, the following
statements are equivalent:
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1. B s (Ng, co)-distributive.
2. ONE does not have a winning strategy in the game BM(B).

As in the case of the Banach — Mazur game for topological spaces,
also for Boolean algebras the conditions for the existence of a winning
strategy for TWO is less well understood. Jech found a natural con-
dition under which TWO has a winning strategy in the game BM(B).
A subset D of a Boolean algebra B is said to be dense in B if, for
every non-zero element b of B, there is a non-zero element d of D
such that d <b. A subset D is said to be R—closed if for every sequence
(d, : n =1,2,3,...) from D such that for each n 0 <d,;; <dg,
there is a non-zero d in D such that for each n d <d,,.

Theorem 27 (Jech). Let B be a complete Boolean algebra. If B has
a dense subset which is Rg-closed, then TWO has a winning strategy in
the game BM(B).

The question whether the converse of this theorem is true has been
open for a long time:

Problem 9 (Jech). Is it true that if B is a complete Boolean algebra
for which TWO.has a winning strategy in the game BM(B), then B has
a dense subset which is Ry closed?

Considerable progress has been made on this problem. In particu-
lar, Foreman proved that if B is a Boolean algebra such that TWO has
a winning strategy in the game BM(B), and if B has a dense subset of
cardinality at most R, then B has a dense subset which is Ny-closed.
This was later improved by Velickovic to:

Theorem 28 (Velickovic). If B is a complete Boolean algebra which
has a dense subset of cardinality at most 2% and if TWO has a winning
strategy in the game BM(B). then B has a dense subset which 1s No-
closed.

Jech also describes a connection between the games Gal(B,a) and

the game BM(B):

Theorem 29 (Jech). Let B be a complete Boolean algebra. If player
TWO has a winning strategy in the game BM(B), then for every non-
zero a in B, TWO has a winning strategy in the game Gal(B,a).

This raises the obvious question whether the converse of the state-
ment in the theorem is also true.
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Problem 10 (Jech). Is it true of each complete Boolean algebra B
that if for every non-zero a in B TWO has a winning strategy in the
game Gal(B,a), then TWO has a winning strategy in the game BM(B)?

Zapletal made considerable progress on this problem. To state his
result concisely, we need to introduce another concept. A subset A of a
Boolean algebra B is said to be an antichain if it consists of more than
one element, none of its elements is the zero element, and for every two
elements a and b from 4, aAb = 0.

Theorem 30 (Zapletal). If B is a complete Boolean algebra such that
no antichasn of B is of cardinality larger than 28° and if for every non-
zero element a of B TWO has a winning strategy in the game Gal(B,a),
then TWO has a winning strategy in the game BM(B).

The Banach — Galvin game

In Problem 67 of The Scottish Book S. Banach proposed the
following infinite game: An uncountable set S is given. In the n-
th inning player ONE chooses a subset O, of S which has the same
cardinality as S, and TWO responds with a set T, which has the same
cardinality as S. The players must further obey the rule that for each
n we have O,y C T, C O,. Player ONE wins a play of the game

o0
if () T, is empty, and TWO wins if this intersection is nonempty.

n=

1
One can show that ONE has a winning strategy in this game - see for

example [52].

Galvin later generalized the game as follows: Again let S be an
uncountable set, and let J be a free ideal on S. Players ONE and
TWO now play so that for each n we have O,, and T, not elements of
J,and O,;; C T, C O,. As before, ONE wins a play of this game if

the intersection () T, is empty, and TWO wins otherwise. To indicate

=1
the involvementnof both Banach and Galvin in the formulation of this
game, we shall use the symbol BG(J) to denote the game, and we shall
call it the Banach - Galvin game.

To see that this game is a generalization of Banach’s game, observe
that the collection J of subsets of S of cardinality less than S is a free
ideal on S. The existence of a winning strategy for either player now
depends heavily on the properties of the ideal J.

Independently of these game—theoretic considerations, T. Jech and
K. Prikry introduced the notion of a preeipitous ideal [77]. This notion
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was motivated by measure theoretic concerns as well as concerns about
cardinal arithmetic.

The definition of a precipitous ideal was originally given in terms of
mathematical notions related to the theory of models for set theory. As
often happens with game-theoretic notions, it was later discovered (by
T. Jech) that an elegant combinatorial description of precipitous which
requires no knowledge of metamathematics can be given, namely: An
ideal J on an infinite set S is a prectpitous ideal if, and only if, player
ONE has no winning strategy in the game BG(J). We shall take this
(very often used) characterization of precipitous ideas as our definition.
Because of its direct connection with precipitous ideals, the Banach -
Galvin game is often called the precipstous ideal game.

The Banach- Galvin game was studied in the joint paper [52]. In
order to give a description of the results from this paper, we introduce
the following concepts: Let k be a regular cardinal number. A subset
C of k is closed if for every subset U of C which his an upper bound
in C, the supremum of U is in C; C is said to be an unbounded subset
of « if there is for each o in k and element 8 in C such that « is less
than 8. Then set Club, denotes the collection of closed, unbounded
subsets of k. The collection Stat. is the family of those subsets of
x which have nonempty intersection with each element of Club.. A
typical element of Stat, is the set of elements of k which have countable
cofinality. Elements of Stat, are said to be stationary subsets of . All
other subsets of « are said to be nonstationary. For convenience we set
NST. = {U C & : U is nonstationary}. A little bit of thought shows
that NST, is a free ideal on k. By a well-known theorem of Fodor, if
S is a stationary subset of x and f : S — & is a function such that for
each a in S f(a) < a, there is a subset T of S which is a stationary
subset of x and on which f is constant.

Set theorists call an ideal J on x normal if: For every set S not in
J and for every function f : S — k such that for each a € S we have
f(a) < a, there is a subset T of S such that T is not in J and f is
constant on T. An ideal J on « is also said to be k—complete if for every
subset S of J, if S has cardinality less than «, then US is an element of
J. A standard exercise which also uses Fodor’s theorem shows that the
ideal NST, is a k—complete normal ideal on k. It can be shown that
NST, is a subset of every k—complete normal ideal on «.

In [52] the authors prove among other things:
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Theorem 31 (Galvin, Jech, Magidor). Let S be an infinite set and
let J be a free \ideal on S.

1. If the cardinality of S is no larger than that of the real line, then

TWO does not have a winning strategy in the game BG(J).
2. If J 1s a k—complete normal ideal on the regular initial ordinal &,

and if {a € k : cof(a) = w} is not an element of J, then TWO
does not have a winning strategy in the game BG(J).

Thus, if J is a precipitous ideal on a regular initial ordinal « and
if TWO has a winning strategy in BG(J), then « is larger than 23; if
moreover J is normal and k-complete, then {a < k: cof(a) = w} is in

J.

It is ever possible to have a precipitous ideal? It turns out that it is
consistent that there is a precipitous ideal if, and only if, it is consistent
that there is a measurable cardinal number [75]. Going a little further
one many inquire if there could ever be a precipitous ideal for which
TWO has a winning strategy in the Banach- Galvin game. It turns
out that it is consistent that there is a precipitous ideal if, and only if,
it is consistent that there is a precipitous ideal for which TWO has a
winning strategy in the Banach- Galvin game. In [52] the authors give
an example, due to R. Laver, of precipitous ideals for which TWO has
a winning strategy in the Banach - Galvin game:

Theorem 32 (R. Laver). If it is consistent that there exists a mea-
surable cardinal number, then 1t is consistent that there is a precipi-

tous ideal J on wo such that TWO has a winning 1-tactic in the game
BG(J).

The properties of this example suggest the following generalization
of the Banach - Galvin game: Let besides the free ideal J also a family
I C J with the property that if X is in I and if Y is a subset of X
then Y is in I, be given. Then the game which is denoted by BG(J, I)
is defined so that a sequence.

-

01,T1,...,0n,Ty,...

is a p]ay if for each n we have OpnotinJ and O, C T, C O,. Such
a play is won by ONE if ﬂ T, € I; otherwise, TWO wins.
n=1
Indeed, the example given in Theorem 32 is such that TWO has
a winning 1-tactic in the game BG(J,J). It is not clear that this is
particular to the example - in particular:
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Problem 11. Is it true that if J is a precipitous ideal on an tnfinite
set of uncountable regular cardinality such that TWO has a winming
1-tactic in BG(J), then TWO has a winning strategy 1n BG(J, J)?

Consider a precipitous ideal J for which TWO has a winning strat-
egy-in the game BG(J); by a theorem of Galvin and Telgdrsky [55] it
follows that TWO has a winning coding strategy. It is not clear how
much memory of only ONE’s moves TWO would need to insure winning

BG(J).

Problem 12. If it is consistent that there is a precipitous ideal, s
it then consistent that there 1s a precipitous ideal J such that TWO
does not have a winning 1-tactic in the game BG(J), but does have a
winming 2-tactic?

Several examples of obtaining precipitous ideals from appropriately
large cardinal numbers are nowadays available in the literature; the
paper [76] is an early source for such examples.

J. E. Baumgartner noted a connection between the Banach — Galvin
game and the Galvin— Ulam game:

Theorem 33 (Baumgartner). If J is a free ideal on k such that TWO
has a winning strategy in the game BG(J), then ONE has a winning
strategy in the game GU(k, Ro).

This also connects the Banach—- Galvin game with the upcoming
discussion of multiboard games.

Making further modifications, Jech introduced two more games for
ideals; the ideals which have certain properties with respect to these
games are called pseudo-precipitous and weakly precipitous. These
games do not belong to the class of descending chain games, and so
will not be introduced right here.

Sierpinski’s game

The main problem in the early days of set theory was the status
of the Continuum Hypothesis: are there any uncountable sets of real
numbers of cardinality less than that of the set of real numbers? Cantor
proved early on that for closed sets of real numbers, the answer is “no”.
Then later Hausdorff and, independently, Alexandroff showed that for
all Borel sets the answer is also “no”. In 1924 Sierpinski [156] gave a
new proof of the Alexandroff - Hausdorff theorem. Sierpinski’s proof
is one of the early examples of a game - theoretic argument. Telgarsky
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formulated the game that implicitly occurred in Sierpinski’s proof. The
game is defined as follows:

Let (X,7) be an uncountable topological space and Y be an un-
countable subset of X. Then Sierp(X,Y) denotes the Sierpinski game,
which is played as follows: In the n-th inning ONE first selects an
uncountable subset O, of Y, and TWO then responds with an un-
countable subset T, of O,. Player ONE must further obey the rule
that for each n, 0,41 C T,. Player TWO wins a play

O vy, I 3O0sE bs aix

of Sierp(X,Y) if T, C Y; otherwise, ONE wins. Kubicki proved

that if Y is an anaqytlic subset of the real line, then TWO has a winning
strategy in the game Sierp(R,Y’). This implies the classical theorem of
Lusin that every uncountable analytic set has the same cardinality as
the real line. The following question was formulated by Kubicki, and
still unsolved:

Problem 13 (Kubicki). Is it true that if Y 1s in the o -algebra gener-
ated by the analytic subsets of the real line, then the game Sierp(X,Y)
ts determined?

Michael’s game

Let (X,7) be a topological space. In his study [109] of complete-
ly metrizable space E. Michael defines the following game, denoted
EMG(X,7): In the n-th inning ONE chooses a non-empty subset O,
of X, and TWO responds by choosing a non-empty subset T}, of O,,.
The players must further obey the rules that for each n,

1. On_+_1 g Tn, and
2. T, is open in the relative topology of S,,.

Player TWO wins a play
O N 5 s s Dl s . o

m —
if the set () Ty is nonempty; otherwise, ONE wins. Michael then shows
n=1
that a metric space (X,d) has a complete metrization if, and only if,
TWO has a winning strategy in the game EMG(X, d). Michael further
finds a characterization of those spaces for which TWO has a winning

strategy in this game. He also shows that for metric spaces TWO has
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a winning strategy if, and only if, TWO has a winning 1-tactic. The
following problem from Michael’s paper appears to be still unsolved:

Problem 14 (E. Michael). Is it true for any topological space (X,7)
that if TWO has a winning strategy tn the game EMG(X, 1) then TWO
has a winning 1-tactic?

Choquet’s game

Like the game of Christensen which is treated later, Choquet’s game
(introduced in [18]) is a descending chain game with side conditions.
This game, denoted Ch(X, ), is played as follows: In the n—th inning
ONE chooses a pair (On,zn) Where O, is a nonempty open subset of
the space (X,7), and TWO responds with a nonempty open subset
T, C O,. ONE must obey the rule that for each n, O, ; is a subset
of T,,, and TWO must obey the rule that for each n, z,, is an element
of T,,. TWO wins a play

(01,2:1),T1,. ..,(On,xn),Tn,. -

oo
if () T, is nonempty; otherwise, ONE wins.

n=1

One might think that the extra demand on TWO does not cause

a big difference in the outcome between the Banach-Mazuz game or
Choquet’s game. However, there are examples such that TWO has a
winning 1-tactic in the Banach — Mazuz game, while ONE has a winning
strategy in Choquet’s game. As was remarked above, if TWO has a
winning Markov strategy in the Banach -Mazuz game, then TWO has
a winning 1-tactic. It is not known if this is true for the Choquet game.
I don’t know the origin of this problem; I seem to recall hearing this
from Galvin - thus:

Problem 15 (Galvin). Let (X,7) be a topological space such that
TWO has a winning Markov - strategy in the game Ch(X,7). Does
TWO then have a winning 1-tactic?

5. DISJOINT OCCUPANCY GAMES
The types of games considered here can be described as follows:

Two player, ONE and TWO, play and infinitely long game which has
an inning per positive integer. In each inning they choose subsets of a
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prescribed sort from a given infinite set S. They must obey the rule
that when a player chooses a set, this set must be disjoint from all sets
chosen so far by either player. Player ONE usually wins when the set of
points chosen by ONE is large in some sense, and TWO wins otherwise.
This sort of game can be conceived of as that the two players complete
for territory.

These sorts of games have shown up in a variety of contexts, quite
independently of each other. I shall describe some of these here.

The Lutzer - McCoy game

The game of Lutzer and McCoy made its debut in the paper [97],
where the authors were studying topological properties of the space of
real-valued continuous functions, endowed with the point-wise topol-
ogy. In particular, let (X,7) be a Hausdorff space with the property
that for every pair of distinct points in the space there is a continuous
real-valued function taking distinct values at these two points. Such
spaces are said to be completely Hausdorff spaces. The set of all func-
tions from X to the real line, considered as the Cartesian product of X
copies of the real line, carries the Tychonoff product topology. The set
C(X) of continuous functions from X to the real line is a natural sub-
space of this product space. The topology it inherits from this product
is denoted 7, and is said to be the topology of pointwise convergence on
C(X). The question which motivated the disjoint occupancy game to
be described now, was: When is (C(X),7,) a Baire space?

The Lutzer - McCoy game, LM(X), is played as follows: First, a
finite subset Sy of X is given. Then ONE starts by choosing, in the
first inning, a finite set O; which is disjoint from So; TWO responds
by choosing a finite set T'; which is disjoint from SoUO;. In general, in
the n + 1-st inning ONE first chooses a finite set O,,,; which is disjoint
from SopUO,UT U --UO,UT,, and then TWO responds by choosing a
finite set T,, 1 which is disjoint from SoUO, UT 1 U--- U0, UT,UOp ;.
ONE wins the play

S0,01,T1,02,T2,...,0,,T,y,...

if the set US2, 0, has a limit point. Otherwise, TWO wins.

They prove the following interesting theorems regarding this game:
First, a bit of terminology. A topological space is pseudonormal if there
is for every pair of disjoint closed sets, one of which is countable, a pair
of disjoint open sets, each containing one of these two closed sets.
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Theorem 34 (Lutzer and McCoy). Let (X,7) be a pseudonormal
completely regular space. Then the following statements are equivalent:

1. TWO has a winning strategy in the game LM(X).
2. TWO has a winning strategy in the game BM(C(X), 7p).
3. Every countable subset of X s closed.

The situation for player ONE is less clear:

Theorem 35 (Lutzer and McCoy). Let (X, 7) be a completely Haus-
dorff space.

1. If (C(X),p) is a Baire space, then ONE does not have a winning
strategy in the game LM(X).
2. If X is the topological sum of Hausdorff spaces, each having at

most one nontsolated point, and if ONE has no winning strategy
in LM(X), then (C(X,7p) 1s a Baire space.
Now 2 of Theorem 35 is a weak converse of 1, and one may ask

if the full converse is in fact true. Indeed, Lutzer and McCoy ask on
p. 158 of [97].

Problem 16 (Lutzer and McCoy). Is it true for normal Hausdorff
spaces (X, 1) that (C(X),7p) is a Baire space if, and only if, ONE does
not have a winning strategy in the game LM(X)?

They also state a conjecture about this problem:

Conjecture 9 (Lutzer and McCoy’s Conjecture). There ezists a
normal Hausdorff space (X, 1) such that (C(X), ) is not a Baire space,
and yet ONE does not have a winning strategy in the game LM(X).

On page 151 of [97] the authors also ask the following (slightly
reformulated) interesting question:

Problem 17 (Lutzer and McCoy). Let (X,7) be a normal Hausdor ff
space. Is it true that if ONE does not have a winning strategy in the
game LM(X), then there is a countable subset Y of X such that ONE
has not winning strategy in the game LM(Y)?

An ultrafilter game of Galvin

F. Galvin, S. Hechler and R. McKenzie studied a variety of infinite
games related to ultrafilter on the set of positive integers. A set U of
subsets of the positive integers is a filter if: the empty set is not an
element of U, if A and B are elements of U, then AN B is an element of
U, and if A is an element of U and A C B, then B is an element of U.
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If a filter has the property that for every set of positive integers either
that set of or its complement is in the filter, then the filter is said to
be an ultrafilter. An ultrafilter is said to be free if the complement of
every finite set of positive integers is an element of it. Then ultrafilter
U is said to be a Q-point if for every partition of the set of positive
integers into pairwise disjoint nonempty finite sets, there is a set in U
which has at most one element in common with each of the finite sets
in the partition.

One can show that the Continuum Hypothesis implies that there
are @-points. K. Kunen has shown that to prove the existence of a
Q-point ultrafilter requires some hypothesis beyond the usual axioms
of set theory.

Let r and s be positive integers and let U be a free ultrafilter on
the set of positive integers. Then the game GHM™*(l) is played as
follows: In the n-th inning ONE first chooses a subset of N\ (O, U---U
Op-1UT U -UT,_;) which contains no more than r points, and then
TWO chooses a subset T, of N\(O,U---UO,UT;U---UT,_;) which
contains no more than s points. Player ONE wins a play

0., T1,...,0,,Ty,...
if U2 ,0,, is an element of U; otherwise, TWO wins.

Theorem 36 (Galvin, Hechler and McKenzie). Let r and s be
positive integers and let U be a free ultrafilter on the set of positive
integers.

1. ONE has a winning strategy in GHM™*(U) if, and only if, TWO
has a winning strategy in the game GHM®" (U).

2. Neither player has a winning strategy in the game GHM™"(U).

3. If ONE has a winning strategy in GHM™*(U), then U is not a
Q-point ultrafilter, and r > s.

4. There exists a free ultrafilter U such that for each r, ONE has a
winning strategy in the game GHM?2"7(U).

It is not known if the information in 4 of this theorem is optimal.
In particular, the following is an old unsolved problem of Galvin:

Problem 18 (Galvin). Is there a free ultrafilter U on the positive
integers such that ONE has a winning strategy in the game GHM?®2({)?
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6. PURSUIT - EVASION GAMES

We now consider an example of a pursuit and evasion. There are
several of these in the literature. Strictly speaking, the problem that
we state in connection with the example we discuss here belongs under
the topic of multiboard games.

Telgarsky’s pursuit—evasion game

A topological space (X, 7) is given. Every one-element subset of
the space is assumed to be a closed set. A collection K of closed subsets
of X is also given. Then Telgirsky’s game, denoted TG(K,(X, 7)), is
played as follows: In the n—th inning ONE first chooses a set O, from
K; TWO responds with a closed subset T,, of X. The players must
further obey the rules that for each n we have

On_+_1 U Tn+1 - T, and O, NT, = 0

oo

ONE wins a play O1,T1,...,0n,Ty,... if (] T, is empty; otherwise,
n=1

TWO wins.

Intuitively one may regard this game as that ONE is a pursuer
(predator) and TWO attempts to evade ONE (TWO is the prey). In
every inning ONE invades some of TWO’s hiding grounds, and TWO
then withdraws to a smaller region. ONE wins if eventually TWO
has no place to hide; TWO wins otherwise. This game has been a
quite successful tool in analysing a wide variety of topological concepts.
One of the reasons for the versatility of this game is the freedom one
has in choosing the class of spaces represented by the parameters K.
In particular, it has been used to prove quite interesting theorems in
dimension theory. We shall not attempt here to outdo the excellent
survey of this game given by Yajima in [182].

Instead, we illustrate some of the uses of this game for a particu-
lar choice of the parameter K. Consider the following old problem of
Tamano:

Problem 19 (Tamano). Give a characterization of the class of para-
compact spaces with the property that for any one of these spaces, its
product with every paracompact space ts paracompact.

A partial answer was given by Telgarsky: Let K denote the class
of Hausdorff topological spaces which have discrete closed covers by
compact sets.
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Theorem 37 (Telgarsky). If (X;r) ts a paracompact space and if ONE
has a winning strategy in the game TG(K,(X,7)), then the product of
(X,7) with any Hausdorff paracompact space is again a paracompact
space.

Yajima used the game to also prove analogous theorems for two oth-
er classes of spaces: the subparacompact spaces, and the metacompact
spaces:

Theorem 38 (Yajima). Let (X,7) be a regular Hausdorff space such
that ONE has a winning strategy in the game TG(K,(X,7)).

1. If (X, 7) ts subparacompact, then its product with any subpara-
compact space 1s subparacompact.

2. If (X,7) is metacompact and a P-space, then its product with
any metacompact space 1s metacompact.

These sorts of results inspire the following natural question, which
is important for the development of a multiboard theory of this game
(see below):

Problem 20 (Telgarsky). Let (X,7) and (Y,0) be completely reg-
ular spaces. Is it true that if ONE has a winning strategy in each. of
the games TG(K(X,7)) and TG(K,(Y,0)), then ONE has a winning
strategy in the game TG(K,(X x Y,7 x 0))?

7. SIMULTANEOUS GAMES

What we have described so far can be viewed as follows: We have
a game of some sort which is played between players ONE and TWO,
and they play an inning per positive integer. This game is played on
a “board” of some sort; the board could for example be a topological
space, and moves by the players may be some topological objects. There
are three possibilities: Either ONE has a winning strategy, or else TWO
has a winning strategy, or else neither player has a winning strategy.

Suppose now that we place two boards, each representing the same
original game, before the two players, and we require that the game be
played as follows: In the first inning ONE first makes a move on each
of the two boards, after which TWO responds by making a move on
each of the boards, and so on. In the n-th inning ONE first makes a
legal move on each of the boards, and then TWO responds by making
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a move on each of the two boards. Finally, ONE will be declared the
winner if ONE won on at least one of the boards; TWO is declared the
winner if ONE didn’t win on any of the boards.

It is very important to note that the rules require that the players
do not play asynchronously — ONE is not allowed to make a move on
one of the boards, wait for TWO’s response there, and then make a
move on the second board — similar restrictions apply to TWO. This
may appear at first glance to be an innocent restriction which would
not affect the outcome if the game were played differently. It is a serious
restriction!

It is reasonably clear that if ONE had a winning strategy in the
one-board version of the game, then ONE would also have a winning
strategy in the multiple board version — simply play the winning strat-
egy on each board. The same remark applies to TWO. Thus, this
simultaneous version is of interest when neither player has a winning
strategy in the one — board version.

Games of this sort have been studied under a different guise for
many years by general topologists — these games are especially relevant
to such questions as whether a certain topological property is preserved
by products of spaces having the property.

The Gale - Stewart game

Let S be a nonempty set, and let X be a set of functions from the
set of positive integers to S, while NS is the set of all functions from the
set of positive integers to S. In the early 1950’s Gale and Stewart [46]
initiated the serious study of the following game, denoted GSg(X): In
the n—th inning ONE first chooses an element O, of S to which TWO
replies with an element T, of S. ONE is declared the winner of the

play
Ol,Tl,...,On,Tn,...

if the function f whose value for each positive integer n is such that
f(2n — 1) = O, and f(2n) = T, is an element of X; otherwise, TWO

wins.

We shall consider the set S as a topological space which has the
discrete topology, and NS is then taken as the Tychonoff product of
countably many copies of this space. One can for example show that
there is a subset of N2 such that neither player has a winning strategy
in the game GS,(X). Gale and Stewart showed that if X happens to be
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an open subset or a closed subset of this topological space, then one of
the players has a winning strategy in the game GSg(X). After several
generalizations of the Gale— Stewart theorem, D. A. Martin finally in
the 1970’s proved (100, 101]:

Theorem 39 (D. A. Martin). If X is a Borel subset of NS, then
one of the players has a winning strategy in the game GSs(X).

It was soon realized that the assertion that: for every analytic
subset X of the space NN, some player of the game GSn(X) has a
winning strategy transcended ordinary set theory in deductive strength.
One of the spectacular developments in set theory during the 1980’s
was that the exact requirements for having the truth of the assertion
that for every projective subset X of NN some player has a winning
strategy in the game GSn(X) have been determined in terms of the
more basic set theoretic notions of cardinals numbers. The three main
architects in the finalization of this pursuit were D. A. Martin, J. Steele
and W. H. Woodin. The interest in such a result is that the theory of
the projective subsets of the real line (and other spaces of interest to
analysts) is particularly elegant and satisfying when one has available
as a working tool the assertion that for every projective subset of NN
some player has a winning strategy in the corresponding Gale - Stewart
game.

In a different direction, F. Galvin in the early 1970’ started study-
ing the multiboard- (= simultaneous-) versions of this game. For a
nonzero cardinal number & and for a subset X of NS, we let GSs(X, k)
denote the following game: In the n~th inning ONE selects a function
On : k — S; TWO responds by selecting a function T}, : k — S.
Player ONE wins the game GSgs(X, k) if there is some a < k such
that (O1(a),Ti(a),...,0n(a),Ta(e),...) is an element of X; other-
wise, TWO wins. Thus, GSs(X, 1) is the original Gale - Stewart game.

Observe that for a particular X there are the following possibilities:

* Either some player has a winning strategy in GS s(X), in which
case that same player will for each x > 0 have a winning strategy
in the game GSg(X, k).

* Or else neither player has a winning strategy in the game GS s(X),
in which case there is no k such that TWO has a winning strat-
egy in GSs(X, ). For this case there are two possibilities:

— there is some ko such that for all £ < kg neither player has
a winning strategy in the game GSg(X, &), but for all & > &g
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ONE has a winning strategy in the game GSg (X, k), or

— or else for each k neither player has a winning strategy in the
game GSg(X, k).

Galvin investigated these possibilities for the case when S happens
to be 2 or N. Improving on early results of McKenzie, he found examples
of the following facts:

Theorem 40 (Galvin). Let 0 < A < w be a cardinal number.

1. There is a set X C NN such that for each nonzero cardinal k <
280 neither player has a winning strategy in the game GSn (X, &).

2. There is a set X5 C N2 such that for every nonzero n < X,
neither player has a winning strategy in the game GSy(X),n)
but ONE has a winning strategy in the game GS2 (X, A).

3. There is a set X C N2 such that neither player has a winning
strategy in the game GS3(X, k) wherever k 15 a cardinal number
such that either 2% < 280 or else the real line is not the union
of kK nowhere dense sets of Lebesgue measure zero.

The following questions of Galvin’s regarding these matters are still
unsolved:

Problem 21 (Galvin). Is there a set X C NN such that neither
player has a winning strategy in GSn (X, 2%0)?

The reason for this question is that this is the smallest value which
has not been taken care of by the examples in item 1 of Theorem 40.

Problem 22 (Galvin). Is it true that for every subset X of N9, some
player has a winning strategy in the game GSz(X, (2%0)*)?

The reason for this question is that (2R°)* is a cardinal number
not satisfying the requirements of item 3 of Theorem 40.

Problem 23 (Galvin). Is there a cardinal number k such that for

each subset X of N2, some player has a winning strategy in the game
GSq(X, k)?

It is further not known if from this point of view there really is a
distinction between N2 and NN:

Problem 24 (Galvin). Is it true that if K is cardinal number such
that for every subset X of N2 some player has a winning strategy in the
game GSy(X, k), then also for every subset Y of NN some player has
a winning strategy in the game GSn(Y, k)?
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Galvin conjectured the following about these multiboard versions
of the Gale - Stewart games:

Conjecture 10 (Galvin’s Conjecture 1). For every nonempty set S
there is a cardinal number A such that for every subset X of NS, some
player has a winning strategy in the game GSg(X, )).

Before we discuss what is known regarding this conjecture, we first
mention two special instances of it which are completely open.

Problem 25 (Galvin). Is it true (or consistent) that for every subset
X of N2, some player has a winning strategy in the game GS3(X,2R0)?

Problem 26 (Galvin). Is it true (or consistent) that for every subset
X of NN, some player has a winning strategy in the game GSn (X, 2%0)?

We now return to the Galvin-Ulam game. It is related as follows
to the multiboard version of the Gale—Stewart game:

Theorem 41 (Galvin). Let S be a nonempty set and let k be an
infinite cardinal number. If player ONE has a winning strategy in the
game GU(k,|S|), then for every subset X of NS, some player has a
winning strategy in the game GSs(X, k).

Moreover, the Galvin-Ulam game has the following monotonicity
property:
Lemma 42 (Galvin). Let k < &/, and X > X be cardinal numbers.

If ONE has a winning strategy in the game GU(k, \), then ONE has a
winning strategy in the game GU(x', ).

Thus, putting Laver’s consistency result Theorem 20, Galvin’s re-
sult relating the multiboard Gale - Stewart game and the Galvin - Ulam
game Theorem 41, and Lemma 42 together, one obtains

Theorem 43. If it is consistent that there is a proper class of su-
percompact cardinals, then it is conststent that Galvin’s Conjecture 1

holds.

If instead of Theorem 20 we use Theorem 19, then we get from the
consistency of the existence of a measured cardinal the consistency of
a positive answer to Problem 22.

At this stage there is no evidence to preclude the possibility that
Galvin’s Conjecture 1 is simply a theorem of ZFC. This appears to
be what is known regarding the multiboard theory for Gale- Stewart
games.
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Simultaneously played Banach — Mazur games

A topological space is said to be Baire space if for every countable
collection of dense open subsets of this space, the intersection of these
sets is a dense subset of the space. If (X, 7) is a topological space such
that TWO has a winning strategy in the game BM(X,7), then this
space is a Baire space in a very strong sense. It is known that there are
topological spaces (Y, o) such that (Y,0) is a Baire space, but ¥ x Y
with the product topology is not a Baire space [42]. We discuss this
phenomenon from the point of view of game theory.

Playing on two boards simultaneously

It follows from classical work of Oxtoby [124] and Cohen [21] that
there exist topological spaces (X,7) and (Y, o) such that neither player
has a winning strategy in the games BM(X,7) and BM(Y,0) and yet
ONE has a winning strategy in the game BM(X x Y,7 x o). Using
a method of Krom [91] one can show that these spaces can be taken
to be metrizable. Due to a result of Oxtoby [124] such that a metric
space cannot have a countable dense subset (equivalently, it cannot
have countable weight ~ the weight of a topological space is the minimal
cardinality for a basis of the topology of the space).

Along these lines, J. Van Mill and R. Pol showed [110]:

Theorem 44 (Van Mill and Pol). If (X,d) is any non-separable
completely metrizable topological vector space, then it has two vector
subspaces S and Sy such that neither player has a winning strategy in
either of the games BM(S1,d) and BM(S2,d), but ONE has a winning
strategy in the game BM(S; x S2,d x d).

When (X, d) has weight N; or R;, one can moreover insure that X
is the direct sum of the vector spaces S; and S;. Using the General-
ized Continuum Hypothesis one can show that for every non-separable
Banach space there is a bounded linear transformation from it onto a
Banach space of weight N; or N,. It then follows that every non-sep-
arable Banach space is the direct sum of two vector subspaces, each a
space such that neither player has a winning strategy in the Banach -
Mazur game on that space, but ONE has a winning strategy in the
simultaneous game. But this conclusion relies on the hypothesis that
the Generalized Continuum Hypothesis holds. Thus:

Problem 27 (Van Mill and Pol). Let (B,|| - ||} be a non-separable
Banach space. Are there then vector subspaces Sy and S, of B such
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that B is the direct sum of S; and S, neither player has a winning
strategy tn either of the games BM(Sy, | - |[) or BM(Sq, || - ||), and yet
ONE has a winning strategy in the game BM(S; x S, || - || x || - ||)?

* Van Mill and Pol also show:

Theorem 45 (Van Mill and Pol). If (G,d, +) is a metrizable Abelian
topological group which as topological space is non-separable and topo-
logically complete, and if G has a dense path component, then G has two
subgroups G| and G such that neither player has a winning strategy in
either of the games BM(G1,d) or BM(Gy,d), but ONE has a winning

strategy in game BM(G, x G,,d X d). '

They moreover show that if (G, d, +) has weight R;, then G; and
G can be taken so that G; N G, is separable. In light of their results
on completely metrizable topological vector spaces, these results are
not nearly as sharp as one might expect. Their results for example do
not show that one may take G to be the direct sum of G, and G,.
Accordingly, one could ask:

Problem 28 (Van Mill and Pol). If (G,d,+) is a pathconnected
completely metrizable Abelian topological group of uncountable wetght,
are there then subgroups Gy and G, such that G is the direct sum of
the groups Gy and G, neither player has a winning strategy in either
of the games BM(G,d) or BM(G32,d), but ONE has a winning strategy
in the game BM(G; x G4,d x d)?

Even the weaker version of the problem where we only demand that
the weight of G is N;, and that each element of G is expressible as a
sum of an element of G; and an element of G5 is unsolved.

In [42] Fleissner and Kunen pose the following question which seems
to be still unsolved:

Problem 29 (Fleissner and Kunen). Let (X,d) be a metric space
such that neither player has a winning stratey in the game BM(X, 1) and
such that there is a space (Y,0), for which neither player has a winning
strategy in the game BM(Y, o), but ONE has a winning strategy in the
game BM(X xY,7 x 0). Must there then be a metric space (Y, p) which
has the same weight as (X, d), such that neither player has a winning
strategy in the game BM(Y,p), but ONE has a winning strategy in the
stmultaneous game BM(X x Y,d x p)?

Now let us look at what is known when we demand that the two
spaces involved in the simultaneous game are homeomorphic. As we
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observed earlier, there is a space (X, 7) such that neither player has a
winning strategy in the game BM(X,7) and yet ONE has a winning
strategy in the game BM(X x X,7 X 7); by Krom’s results we may
assume that the space is a metric space. Could one have examples of this
kind where the metric space has additional mathematical structure? In
particular:

Problem 30 (Van Mill and Pol). Is there a normed vector space
(X, || - |l) such that neither player has a winning strategy in the game
BM(X,|| - ||), but ONE has a winning strategy in the game BM(X x
X0 0-1D?

There have been claims towards a positive solution to this problem,
but the offered proofs had some shortcomings. Along the lines of this
problem Valdivia [170] also asked:

Problem 31 (Valdivia). Does every non-separable completely metriz-
able topological vector (V,d) space contain a dense vector subspace S
such that neither player has a winning strategy in the game BM(S,d),
but ONE has a winning strategy in BM(S x S,d x d)?

Playing on several boards simultaneously

Fleissner and Kunen also constructed in [41] for each cardinal num-
ber £ > 2 a family ((Xa,7a) : @ < &) of Baire spaces such that for each
~ < k the Tychonoff product of the family of spaces ((Xa,7q) : @ < &
and « # ) is a Baire space, but the product of all the spaces is not a
Baire space. In particular, their examples show that:

1. For every integer n > 1 there is a single topological space (X, 7,)
such that neither player has a winning strategy when the Ba-
nach —Mazur game is played simultaneously on fewer than n
copies of this space, but ONE has a winning strategy in the
Banach — Mazur game played simultaneously on n copies of the
space.

2. There is a topological space (X, 7) such that neither player has a
winning strategy if the game is played simultaneously on finitely
many copies of the space, but ONE has a winning strategy in the
Banach - Mazur game played simultaneously on countably many
copies of the space - i.e., in BM([[2, X, [[72, 7).

In connection with the second fact they raise the following open
problem:
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Problem 32 (Fleissner and Kunen). Let (X,d) be a metric space
such that nesther player has a winning strategy in the game BM(X d).
Assume that ONE has a winning strategy in the game BM(H = ey
1,2, d). Does there then ezists a metric space (Y,p) such that neither
player has a winning strategy in the game BM(Y,p) but ONE has a
winning strategy in the game BM(X x Y,d x p)?

An important aspect of the examples given in [42] is that the infini-
tary products of the spaces considered are Tychonoff- (also known as
Cartesian—) products; the product theory for Baire spaces seems dra-
matically different for bozr products. To illustrate, let ((X;,7;) : 7 € I) be
a family of topological spaces. Then the boz topology, denoted [, 7;
is defined to be the topology on Hiel X; generated by sets of the form
Hiel U;, where for each 1 U; is an open subset of X;. If I is a finite set,
then the box topology coincides with the ordinary product topology,
but if I is infinite then the box topology property contains the ordinary
Tychonoff product topology. The connection between the two topolo-
gies as far as the existence of winning strategies in the Banach - Mazur
game is as follows:

Theorem 46. Let ((X;,7;) : ¢ € I) be a family of topological spaces. If
for every countable subset J of I, ONE does not have a winning strategy
in the game BM(HJ-G_, X;,0ey7;), then ONE does not have a winning

strategy in BM(H,E, X [)icami):

In light of Fleissner and Kunen’s examples, one can find an un-
countable family of topological spaces such that in the Tychonoff prod-
uct topology ONE has no winning strategy in the Banach - Mazur game,
while there is a countable subcollection of these spaces such that ONE
has a winning strategy in the simultaneous version of the game on these
countably many spaces.

Further interesting examples regarding these matters are glven in
[170]; some of Valdivia’s results imply:

Theorem 47 (Valdivia). There is a countable family (S, : n =
1,2,3,...) of dense vector subspaces of co(w) such that:

1. For each n, ONE has no winning strategy in the game BM(]] -

=1
Sn, 032,4d),

2. For each n, ONE has no winning strategy in BM(Hm;en Sm,
D;"_’_ld) but

8. ONE has a winning strategy in BM([]o>, Sm, 052, d).
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The reader should consult [170] on further examples illustrating a
variety of interesting phenomena regarding the multiboard theory of
Banach - Mazur games.

If TWO has a winning strategy in BM(X, 7), then the product of
(X, 7) with any space in which ONE has no winning strategy is still a
space in which ONE has no winning strategy. This unfortunately does
not characterize those spaces for which TWO has a winning strategy;
there are spaces (X, 7) for which neither player has a winning strategy in
the game BM(X, 7) and for every space (Y, o) such that neither player
has a winning strategy in the game BM(Y,0) also neither player has a
winning strategy in the game BM(X x Y,7 x o).

There is another property which might give such a characterization.
Note that if TWO has a winning strategy in the game BM(X, ), all
powers of (X, 7) endowed even with the boz-product topology are still
spaces in which TWO has a winning strategy, and thus in which ONE
does not have a winning strategy, in the Banach-Mazur game. F.
Galvin conjectured a long time ago that the weaker looking conclusion
that there is no box—power of the space such that ONE has a winning
strategy for the Banach - Mazur game played on that power, is in fact
equivalent to the assertion that for all box powers, TWO has a winning
strategy. More precisely.

Conjecture 11 (Galvin’s Conjecture 2). For every space (X,7), if
every power of it, endowed with the bor-product topology, is a space for
which ONE has no winning strategy in the Banach - Mazur game, then
TWO has a winning strategy in the game BM(X, 7).

Galvin observed that Galvin’s Conjecture 1 implies Galvin’s Con-
jecture 2. Consequently, using the consistency results mentioned earlier
in connection with the Gale - Stewart game, one sees that (modulo the
consistency of the existence of large cardinal numbers) Galvin’s Con-
Jecture 2 is consistent. But there is at present no evidence to preclude
the possibility that this conjecture is simply a theorem which needs no
extraneous hypotheses.

A game of Christensen

Let Y be a compact Hausdorff space and let Z be a metric space.
A Hausdorff space X is said to be a Namioka space if there is for each
function f: X x Y — Z which has the properties that
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* for each £ € X the function f, : Y — Z defined so that for each
yeY f:(y) = f(z,y) is continuous and
* for each y € Y the function f¥ : X — Z defined so that for each
z € X f¥(z) = f(z,y) is continuous,
there is a dense subset A of X such that A is an intersection of countably
many open subsets of X, and f restricted to A X Y is continuous.

In [120] I. Namioka proved the important theorem that locally com-
pact Hausdorff spaces and complete metric spaces are Namioka spaces.
In an effort to present a technically easier proof of Namioka’s results
and to determine which spaces are Namioka spaces, J. P. R. Christensen
introduced two infinite games in [19]. We are interested in one of these
here:

Let (X,7) be a Hausdorff space. Then the game JPR is played as
follows: In the n-th inning ONE first selects a nonempty open subset O,,
of X; TWO responds by selecting a pair (T}, z,,) where T, is nonempty
open subset of O, and z, is an element of T,,. ONE must further obey
the rule that for each n, O, is a subset of T,, TWO wins a play,

Ola (Tl,xl)’OZa (T2az2)a v .,On, (Tnazn), v

if for every subsequence of (z, : n = 1,2,3,...), there is a point in
Ny T, which is an accumulation point for the sequence; otherwise,
ONE wins.

Christensen then proves that if TWO has a winning 1-tactic in the
game JPR(X,7) then (X,7) is a Namioka space. Saint Raymond later
observed in [135] that indeed, if ONE does not have a winning strategy
in the game JPR(X,7) then (X,7) is a Namioka space. One of the
important problems raised here ([19], p.456) is:

Problem 33 (Christensen). Is it true that if for Hausdorff spaces
(X,7) and (Y,0) TWO has a winning I1-tactic in each the games
JPR(X,7) and JPR(Y,0), then TWO has a winning 1-tactic in the
game JPR(X x Y,7 x 0)?

Saint Raymond reported some partial progress on this problem in
Theorem 8 of his paper [135]. This problem is an important first step
towards developing a multiboard theory for this game.
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