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A MEAN VALUE THEOREM

FOR SEMIDIFFERENTIABLE FUNCTIONS

NGUYEN DONG YEN

Abstract. We obtain a lnaan value theorcm tor cemidifiercr*iable lunctioru
whcrc a cimple toplqical ptoprtg ol the aet ol diaanrtintiow points rcplacec tfu
usval usumption on (semi) corfiinuitg ol the afidifiaentials.

Consider a function f : Rn --+ .R and two (different) points @, b €
.R'. We want to establish a mean value theorem for upper C -semidif-

ferentiable functions [3], which is analogous to the theorem of Lebourgh

[5] (see also [1, p.41]) for locally Lipschitz functions. There are various
mean value theorems for nonsmooth functions (see [1] [2] [4] [5] [6] [10]
[fZ] and references therein). Mean value theorems can be established
also for set-valued maps [9]. Basic aspects of the topic were outlined in

[6]. In the mean value theorem below, instead of a requirement on (se-
mi) continuity of the subdifferentials of / on (o, b), we will use a simple
condition on the set of discontinuous points of / on this interval. Our
result has a close relation to a theorem by Penot [6, Proposition 2.5].
A discussion will be given at the end of the paper.

The Euclidean norm and the inner product of Rn are denotea Uv ll'll
and (.,.), respectively. BV C we denote the set of sublinear functionals
defined of R. Let us recall the notion of upper C-semindifferentiable
functions [3] in the following.

Definition l. A functional g e C is said to be the upper C-semideriva-
tive of f at E € Rn if 9 is the functional with maximal epigraph among
the set of all g € C satisfy the following condition:

i l  - t l

l n - r n
<  0 .f (") - f (n) - s(r -n)

l imsup
t + t

If such g dose exist, / is said to be upper

It has been proved in [11, Theorem
C-semiderivative of / at z, then

C-semidifferentiable at u.

2.21 rhat if g is the upper
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d(,) : dB* f @;u) :: Il';:1, 
rt U@ + tv) - f (r)) yu € g,n. (r)

The value d|nf @;u) is known as the upper Dini-Hadamard di-
rectional derivative of f at r in direction u. The upper Dini directional
derivative of / at r is in direction u is the number

d [ f  ( z ;u )  : :  l imsup l ' t ? { r  +  tu )  -  I@)  .

Therefore, d[* is a form of regularization of d,[. Symbols d,;*f (r;u)
and dof(-;u) will denote, respectively, the lower Dini-Hadamard
and the lower Dini directional derivatives. Their definitions are quite
similar to the above, provided that lims sup are replaced with lim inf.
I f  dtHI(E;u): d[f (n;u) then we say that / is (upper) Dini resutar
at D is direction u.

By using formula (1) we can show that if 9 is the upper c-semideriva-
tive of f ati, then g is the lowest upper convex approximation of / at
u in the sense of Pshenichnyi [7].

Our result can be stated as follows:

Theorem l. (Mean value theorem). Let the foltowing conditions be
satisfied:

(Cr) / is upper C -semidifferentiable at eaery r € (a,, b) :: {att(b-a) :
I  e  (0 ,  1 ) ) ;

(Cr) f is (upper) Dini regular at euery t e (a, b) in directions b - a
a n d a - b ;

(Cr) / is continuous at a and b;
(cn) | is continuous on (o,b), or it is discontinuous on this interual

but there is at least one isoloted, d,iscontinuous point i e (a, b).

Then there erists c € (a, b) and

( ,  e  A71c1, :  {€  €  R" :  ( { ,  u)  <  dE*f  k ;u)  lor  euerv a € R"}

such that

f ( b ) - f ( " ) : ( € , 6 - " ) .
(we say that r € (a, b) is an isolated discontinuous point of / if / is dis-
continuous at E and there is an open subinterval U of (", b) containing
E such that / is continuous at every point from U \ {t}).
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Before giving a proof we br ief ly discuss the assumptions (Cr)-  (Ca).

1) Bv the classical mean value theorem we know that if / is Frechet

di f ferent iable at every u € (o,b),  then the conclusion (2) is val id

under  (C3) .  S ince  (C1) ,  (C2)  and (Ca)  ho ld  au tomat ica l l v  in  th is

case, Theorem 1 impl ies the classical  theorem.

2) Condit ions (Ca) states something about the character of discon-

t inu i ty  o f  /  on  (o ,  b ) . I t  ho lds  obv ious ly  i f  the  number  o f  d iscont inuous

point of  /  on (4, b) is f in i te.  The fol lowing example gives an upper

C-semidifferentiable function on a whole interval but discontinuous on

i t .

E r a m p l e  7 .  L e t  n :  l ,  i :  0 ,  , f ( z )  :  s i n ( l / r )  i f  r  1 0 ,  / ( 0 )  :  l .

I t  is easy to see that / . is upper c-semidi f ferent iable on whole I l ,  but

discont inuous at z (00 :0 is the upper C-semiderivat ive of /  at  r) '

3) I f  (C4) is violated then /  behaves too badly:  Euery discont inuous

point of  i t  on (o, b) is c luster point of  sequence of discont inuous points.

Such semidi f ferent iable funct ions, i f  exist ,  can be seen very rarely.  we

exclude them from our considerat ion for s impl ic i ty of the presentat ion.

a) We shal l  rely on (C2) in the proof below. But is seems to us

that the fol lowing propert ies may hold:

( i )  I f  /  is upper C-semidi f ferent iable on an open domain O C Rn,

t h e n  f o r  e v e r y  z  €  f , ) ,  u  e  R n , w e  h a v e  a [ u f  @ ; r ) :  d [ f  ( " ; r ) .

( i i )  (c  1 )  =+  (c2  ) .

Proof of Theorem 1. Consider the funct ion p :  [0,  f  1 
- ' '  R def ined by

p ( t ) :  f  ( " + t ( b -  a ) ) + t ( f  ( a )  - / ( b ) ) .  w e  h a v e . 1 r ( O )  = =  p ( 1 )  :  / ( a )  a n d

rp is cont inuous at 0 and 1 (see (Cr))  By using (C2) we obtain formulas

for the f) in i  direct ional der ivat ives of p at a given point r  e (0, l ) :

d [ ( r ; 1 )  :  I i m  s u p  l  
- '  ( p ( ,  +  r )  -  p ( r ) )

tJ t r

l i m  s u p  t - ' ( f  ( "  +  r ( b  -  a )  +  t ( b  -  o ) )
r I o

_  f ( " +
= d L r f @ +

d L ? ; - l ) :  l i m s u P f  I
r l o

:  l i m s u p t - l
r J o
-  f  ( " +

( , (b -  o ) ) )  +  ( / ( " )  -  / (a ) )
r ( b  -  a ) ; b  -  a )  +  ( / ( " )  -  / ( b ) )

( e ? - t ) - e ( , ) )

( l @  + , ( b  -  a )  -  t ( b  -  a ) )

( " (b  -  
" ) ) )  

-  ( / ( . )  -  / (a ) )
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:  d t rHf  @+ r (b  -  o ) ;o  -  6 )  -  ( / ( r )  -  / (b ) )  .

Lemma l. Under assumptionr (Cr)- (Cn) there erists r € (0, t) such
that

d [ e ( r ; l )  >  o  a n d  d . [ e ( r ; - t )  >  o .  ( 3 )

Assuming that this lemma has been obtained we continue our proof.
By (Ct)  for  euery x  € (a,6)  we have d[* f  @; j  €  C.  Let  r  e  (0,  t )  be
the value provided by Lemma I and let c ::  a + r(b - o). According to
( 3 ) ,

d [ H f k i b - " )  > / ( b )  - f ( " )  a n d  d [ r f ( " ; o - b )  >  f ( " ) -  / ( b )  .

Using the homogeneous property of df,r/(c; j  we have

a[* f  (c ; t (b  -  a) )  >  t ( / (b)  -  / ( " ) )  ,  v t  €  R.

This means that

a(t(b -  a))  : :  t ( f  (b)  -  f  ( " ) ) ,  vt  € R (4)

is a linear functional on the linear subspace generated by vector b - a,
who is majorized by the sublinear functional dLrf k;). According to
the Hahn - Banach theorem [a] there is a linear functional ( defined on
r?" which is an extention of a and which satisf ies d[rf (c;r) > (€, r)
for  every u € R.  This  impl ies {  €  A f  k) .  Using ( l )  we have ( ( ,  b-a)  :

" (b  
-  a) :  f  (b)  -  f  ( " ) .  Thus (2)  is  proved.

The following property of upper C-semidifferentiable functions can
be observed from the definition.

Lemma 2. Il I is upper C -sernidifferentiable at r, then f is upper
semicontinuous at i. that is

"T j : o f@)S I@) .
As a consequence, i t  fol lows from (C1) that rp is upper semicontin-

uous at every i  e (0, t).

To prove Lemma I we consider two cases:
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1. f is cont;nuous on (a, b). Combining this with (C3) we see that p

is continuous on [O' t].

a) If s2(t) : e2(0) : e2(r) for all , € (0, 1), then (e) is trivial'

b) Assume that there exists f € (0, 1) such that gr(t) t p-(O) :

rl!). By the continuity of p on [0, t] there !s r € [0, 1] such

thai tp(r) : ntu.r,{p(t) : t e [0, t]]. Since p(t) > rp(o) : tp(l)

then r € (0, 1). As r is a local ma><imum of <p then

d ' $ v ( r ; l )  S o  a n d ' l [ v ( r ; - l )  < o '  ( 5 )

Let c : :  atr(b-a).  Since o:  i  ( " -b)+ i (a-o),  the convexi tv

ot d[* !(c; ) implies

o:  dt rnf ( , ;o)  S |o | r r l : ,a-h)* f ,ot r f (c ;b-  
a)

l _:  
, la[e( ' ; -r)  + ( /(o) -  / (b)) ]
1 . , -  ,+ ,la[v(r;1) 

- (/(,) - /(o))] .

Invoking (5) one hx d'[v(r;1) : d'f ,v(r;- l)  :  0, which implies

(3 ) .

c) Assume that there is t € (0, 1) such that 'p(t) < v,(0) : 9'(1)'
By the continuity of rp we find a point r e (0, l) satisfying

p(r) :  min{'p(t) :  t  e [0, 1]] '  Then (3) is obvious'

2. f is discontinuous on (o, b), but there exists at least one isolated,

d.iscontinuous point E € (a, b). Let i € (a, b) be an isolated discon'

tinuous point of /. Then there exist an interval (", 0) C (0, 1) con-

taining the point t e (0, 1) defined by the inequality n : all(b-- a),

such that gr is discontinuous at t but continuous on a, 7) and (i, B).

a) Assume that p is not monotone on (t, p). Then there exists a lo-

cal minimum or local maximum r of tp on (t, p). The arguments

used in the first case show that (3) holds. If rp is not monotone

on (o, t) we argue similarlY.

b) Now let rp be monotone on (t, B) and on (a, i). In this case we'

set

tL - lif" rp(t) and .\ : liltt 9(t) .
t - i -o  + t* t *o



226 Ngiryen Dong Yen

By.tsy the upper semicontinuity of 9 at i we have p, < 9(i) and
I S e(i). Moreover, p + -@ and ) I -.cr.. Indeed, otherwise

upper semicontinuity of g at I we have p

we would have d,$eQ;-t) :  -oo or d[v(I; l)  :  -*, what
is impossible because of (C1) and (C2). If p, < rp(r) or ) <
,p(l) we can still have that d[e(l;-l) : -oo or, respectively,
dBe\; l) :  --.  Therefote, F - ) - rp(t). But, then tp is
continuolts atl, a contradiction to our assumption. we conclude
that tp cannot be monotone on both intervals (a, t-) and (1, p).
The Proof of Lemma I is complete.

Let us have a discussion about the relation of rheorem I to a result
in [0j, where also no condition on (semi) continuity of the subdifferen-
tials of / is required. As in [6] we set

Af @): {€ e f t"  '  (€, a) S donf(c;u) Vu e R"}
and denoteby co D the convex hull of a set D c Rn. Proposition 2.5
in [6] can..be stated as follows.

Theorem 2. Let f be lower semicontinuous on [a, b] ond let the fol-
lowing conditions be fulfilled:

(Ar) dis f  @;j € C for everv n € la, b);
(Az) douf @;o): d, i l (s;a) for euerv r e la, bl  ond a € Rn.
Then either there enists c € (a, b) and €, e a71c'1 such that

f ( b ) - f ( " ) : \ € , b - o ) , :'{6)

or there erist ( e co(Af @) n d/(a)) satisfyins (G).
(The just cited mean value theorem was obtained in [6] for functions
defined on an topological vector space).

Apart from differences in the formulation of rheorems 1 and 2, it is
worth noting that they are applicable for two different classes of func-
tions. Indeed, assume that / satisfies (cr)- (ca) and that one considers
- /  instead of / .  Since dirFf)(n; i :  -d\rf  @;i,  a;*(-/)(c;) is
a concaue functional for every n e (a, b). Then theorem 2 cannot be
applied. Converselg assuming that / satisfies (A1) and (A2) one has
fhar d[r(-I)@;j ir u concave functional for every n e [a,b]. Thus
Theorem 1 cannot be applied.

Loosely speaking, Theorem 1 is applicable when the upper Dini-
Hadamard directional derivatives d,fi*f (r;), r e (o, b), are sublinearl
while Theorem 2 works when the lower Dini-Hadamard directional
derivative" don f @;), r € la,6], are sublinear.

the
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The following example with a simple continuous function is to il-

lustrate the situation.

Erample 2.  Letn:L,  I ( " ) :  os in( l / r )  for  r t '  0 '  / (0)  :0 .  le t  [o ,  b ]

be any segment containing 0. Since donf@;u) : ditr(-/)(o;u) :

-lul for every a € R, Theorem 2 is not applicable for both / and -/.

For such function / and segment [o, b] Theorem 1 is applicable.

Professor S. Komlosi has shown to us that the following result can

be obtained by modifying slightly the proof of Prosposition 2.5 in [6]:

Theorem 3. suppose that f is finite, upper semicontinuous on la, b\

and suchthat  lor  eachr€ [a ,  b ] ,  d \ r I ( " ; i :a \ f@;)  ; t  o  funct ional

from C. Then either there exist c € (a,b) ond { e Af @) such that (6)

holds, or there erist ( e co(Of (a) u a/(b)) fulfi'll;ns (6).

Note that under the propertv (ca) in Theorem 1, the second case

in the conclusion of Theorem 3 can be excluded. Recall that (Ca) holds

automatically if ,f hat only a finite number of discontinuous points on

(o '  b) .

Acknourledgement. The author wish to thank Professors. F. Gian-

nessi and S. Komlos for several helpful remarks.

I .

2 .

3 .

4.

D .

6.

7 .

REFERENCES

F. H. Clarke, Optimizotbn ord nonsmooth atulyais, Wiley' New York, 1983.

V. F. Demyanov and A. M, Rubinov, Quuidifiererrtidcdcuhll,, optimization soft-

ware, New York, 1986.

F. Giannessi, Semidiffercrrtiable lunctiorx and necelnar1 optimality condilioru, J. Opt'

Theory Appl . ,  60 (1989) '  191-241.

J. B. Hiriart-Urruty, Mean value theorem in norumoth anfusis, Numer. Funct.

Anal .  Opt im. ,  2 (1980),  l -30.

G. Lebourg, ValeurmoyenePourungadientgenemlise, C. R. Acad. Sc. Paris,28l

(1e75 ) ,785 -797 .

J. P. Penot, OntfumeanoaluetJvorcm, Optimization, 19 (f988), 147-156.

B. N. Pschenichnyi, Conrter andgsis and edremol prcblem, Nauka, Moscow, 1980,

(in Russian).

W. Rudin, Functional andysis, McGraw-Hill, New York, 1983'
'P. 

H. Sach, Difierertiabilityolcet-ualuedmapsinBanu,hspoces, Math. Nachr., 139

(1988 ) ,  2 t5 -235 .

8 .

9 .



10.

t l .

L2,

228

Institute of Mathematics
P. O. Box 637, BoHo,
Hanoi, Vietnam.

Nguyen Dong Yen

M. Studniarski, Meanodwtlteontu atdwfteier*optinnlity corditiorulornotumath
fwwtiotu, J. Math. Anal. Appl., fff (1985), 313-326.

N. D. Yen, On G-aemidfietzntiable lwtctioru in Euclidean nqceE, J. Opt. Theory
Appl., tE (1995), 377 -392.

D. Zagrodny, Apprcdmde tnean aalue |heorcm lor uppt aufula;;uod;iaes, Non-linear
Analysis, 12 (1988), L4t3-1428.

Receiued Mag 12, 1999
Reviwed Mdg l, 1991


