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A MEAN VALUE THEOREM
FOR SEMIDIFFERENTIABLE FUNCTIONS

NGUYEN DONG YEN

Abstract. We obtain a mean value theorem for semidifferentiable functions
where a simple topological property of the set of discontinuous points replaces the
usual assumption on (sems) continuity of the subdifferentials.

Consider a function f : R® — R and two (different) points a, b €
R™. We want to establish a mean value theorem for upper C -semidif-
ferentiable functions [3], which is analogous to the theorem of Lebourgh
[5] (see also |1, p.41]) for locally Lipschitz functions. There are various
mean value theorems for nonsmooth functions (see [1] [2] [4] [5] [6] [10]
[12] and references therein). Mean value theorems can be established
also for set—valued maps [9]. Basic aspects of the topic were outlined in
[6]. In the mean value theorem below, instead of a requirement on (se-
mi) continuity of the subdifferentials of f on (a, b), we will use a simple
condition on the set of discontinuous points of f on this interval. Our
result has a close relation to a theorem by Penot [6, Proposition 2.5].
A discussion will be given at the end of the paper.

The Euclidean norm and the inner product of R™ are denoted by |||
and (-,-), respectively. By C we denote the set of sublinear functionals
defined of R™. Let us recall the notion of upper C—semindifferentiable
functions [3] in the following.

Definition 1. A functional g € C is said to be the upper C—semideriva-
tive of f at T € R™ if g is the functional with maximal epigraph among
the set of all g € C satisfy the following condition:

: f(z) — f(2) —g(z - )
R PR

<0.

If such ¢ dose exist, f is said to be upper C—semidifferentiable at z.

It has been proved in {11, Theorem 2.2] that if g is the upper
C-semiderivative of f at T, then



222 Nguyen Dong Yen

§(v) = dfy f(Z;v) := limsup t(f(Z + tv) - f(Z)) WYwe R*. (1)

t|0, v/ —v

The value d},; f(Z;v) is known as the upper Dini— Hadamard di-
rectional derivative of f at T in direction v. The upper Dini directional
derivative of f at T is in direction v is the number

di f(E;v) = lir?lsoupt—l(f(f+ tv) — f(z)) .

Therefore, d};,; is a form of regularization of di. Symbols dpy f(Z;v)
and dj f(z;v) will denote, respectively, the lower Dini— Hadamard
and the lower Dini directional derivatives. Their definitions are quite
similar to the above, provided that lims sup are replaced with lim inf.
If d$H f(z;v) = dg f(Z;v) then we say that f is (upper) Dins regular
at 7 is direction v.

By using formula (1) we can show that if g is the upper C-semideriva-

tive of f at Z, then g is the lowest upper convex approximation of f at
Z in the sense of Pshenichnyi [7].

Our result can be stated as follows:

Theorem 1. (Mean value theorem). Let the following conditions be

satisfied:

(C1) f is upper C-semidifferentiable at every z € (a, b) = {a+t(b—a) :
te(0,1)};

(C2) f is (upper) Dini regular at every z € (a, b) in directions b — a
and a — b;

(C3) f s continuous at a and b;

(C4) [ is continuous on (a, b), or it is discontinuous on this interval
but there 1s at least one isolated discontinuous point T € (a, b).

Then there ezists ¢ € (a, b) and

£€df(c):={¢€R": (& v) <df,f(c;v) for every v € R™}

such that

f(b) — f(a) = (& b—a).
(We say that z € (a, b) is an isolated discontinuous point of f if f is dis-
continuous at T and there is an open subinterval U of (a, b) containing
z such that f is continuous at every point from U \ {z}).
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Before giving a proof we briefly discuss the assumptions (C;) - (C4).

1) By the classical mean value theorem we know that if f is Frechet
differentiable at every = € (a, b), then the conclusion (2) is valid
under (C3). Since (C1), (C2) and (C4) hold automatically in this
case, Theorem 1 implies the classical theorem.

2) Conditions (C,4) states something about the character of discon-
tinuity of f on (a, b). It holds obviously if the number of discontinuous
point of f on (a, b) is finite. The following example gives an upper
C-semidifferentiable function on a whole interval but discontinuous on
it.

Erample 1. Let n = 1, £ = 0, f(z) = sin(l/z) if z # 0, f(0) = 1.
It is easy to see that f is upper C-semidifferentiable on whole R, but
discontinuous at Z. (g() = 0 is the upper C—semiderivative of f at T).

3) If (C4) is violated then f behaves too badly: Every discontinuous
point of it on (a, b) is cluster point of sequence of discontinuous points.
Such semidifferentiable functions, if exist, can be seen very rarely. We
exclude them from our consideration for simplicity of the presentation.

4) We shall rely on (C3) in the proof below. But is seems to us
that the following properties may hold:
(i) If f is upper C-semidifferentiable on an open domain { C R",
then for every z € 1, v € R™, we have djS; f(z;v) = d}, f(z;v).
(ii) (C1) = (Ca).

Proof of Theorem 1. Consider the function ¢ : [0, 1] — R defined by
o(t) = fla+t(b—a))+t(f(a) - f(b)). We have ©(0) = (1) = f(a) and
¢ is continuous at 0 and 1 (see (C3)). By using (C;) we obtain formulas
for the Dini directional derivatives of ¢ at a given point 7 € (0, 1):

df(r;1) = limsupt '(p(7 +t) — (7))
£10

lirrtllsoupt_l(f(a +7(b—a) +t(b-a))

—fla+(r(b—a))) + (f(a) — f(b)
- dfyfla+7(b—a);b—a)+ (f(a) — £(b):

dj(r;—1) = lirrtlisoupt‘l(p(r —t) — p(r))

= Iirrtllsoupt‘l(f(a +7(b—a) — t(b—a))

~ fla+ (r(b—a))) - (F(a) - f(b))
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=dpgfla+7(b—a)a—b)~(f(a) - f(b)).

Lemma 1. Under assumptions (Cy)-(Cy) there exists 7 € (0, 1) such
that

dj;cp(r;l) >0 and dggo(r;—l) >0. (3)

Assuming that this lemma has been obtaine.d we continue our proof.
By (C.) for every z € (a, b) we have df,, f(z;) € C. Let 7 € (0, 1) be
the value provided by Lemma 1 and let ¢ := a +7(b — a). According to

(3),

dbyf(c;b—a) > f(b) — f(a) and df, f(e;a —b) > fa) — f(B).

Using the homogeneous property of d ., f(c;) we have
d g fle;t(b—a)) > t(f(b) ~ f(a)), VtER.
This means that
a(t(b—a)) :=t(f(b) — f(a)), VtER (4)

is a linear functional on the linear subspace generated by vector b — a,
who is majorized by the sublinear functional dsz(c; ) According to
the Hahn - Banach theorem (8] there is a linear functional ¢ defined on
R™ which is an extention of a and which satisfies dS, f(c;v) > (€, v)
for every v € R™. This implies £ € df(c). Using (4) we have (¢, b—a) =
a(b — a) = f(b) — f(a). Thus (2) is proved.

The following property of upper C-semidifferentiable functions can
be observed from the definition.

Lemma 2. If f 1s upper C-semidifferentiable at Z, then f is upper
semicontinuous at Z, that 1s

limsup f(z) < f(%).

zT—Z
As a consequence, it follows from (C,) that ¢ is upper semicontin-
uous at every ¢ € (0, 1).

To prove Lemma 1 we consider two cases:
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1. f is continuous on (a, b). Combining this with (C3) we see that ¢
is continuous on [0, 1].

a)
b)

c)

2. f

If p(t) = ©(0) = p(1) for all t € (0, 1), then (3) is trivial.
Assume that there exists t € (0, 1) such that p(t) > ©(0) =
©(1). By the continuity of v on [0, 1] there is 7 € [0, 1] such
that o(r) = max{p(t) : t € [0, 1]}. Since p(t) > p(0) = (1)
then 7 € (0, 1). As 7 is a local maximum of © then

d}p(r;1) <0 and dfp(r;-1) 0. (5)

Let ¢ := a+7(b—a). Since 0 = 3 (a—b)+ 3(b—a), the convexity
of d'EHf(c;j implies

1 1
0=d},f(c;0) < é-d'BHf(c;a—b) + Edaqf(c;b—a)

Py l[d$¢(r; ~1) + (f(a) = £(b))]

[diSso ;1) — (f(a) — F(b))] -

Invoking (5) one has dip(r;1) = dip(r; —1) = 0, which implies
(3).

Assume that there is t € (0, 1) such that p(t) < ©(0) = p(1).
By the continuity of ¢ we find a point 7 € (0, 1) satisfying
©(r) = min{p(t) : t € [0, 1]}. Then (3) is obvious.

is discontinuous on (a, b), but there exists at least one isolated

discontinuous point T € (a, b). Let T € (a, b) be an isolated discon-
_tinuous point of f. Then there exist an mterva.l (e, B) C (0, 1) con-
taining the point £ € (0, 1) defined by the inequality Z = a+t(b—a),
such that ¢ is discontinuous at ¢ but continuous on a, t) and (¢, B)-

a) Assume that p is not monotone on (t, B). Then there exists a lo-

cal minimum or local maximum 7 of ¢ on (¢, f). The arguments
used in the first case show that (3) holds. If ¢ is not monotone
on (e, t) we argue similarly.

b) Now let ¢ be monotone on (t, 3) and on (e, t). In this case we’

set

p= lim p(t) and A= lim p(t).
t—t—0 4 t—1+0
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By the upper semicontinuity of ¢ at ¢ we have u < p(f) and
A < p(t). Moreover, p # —oo and A # —oo. Indeed, otherwise
we would have dfp(t;—1) = —oo or d5p(t;1) = —oo, what
is impossible because of (C;) and (C3). If u < () or A <
©(t) we can still have that dfp(f; —1) = —co or, respectively,
dip(t;1) = —oo. Therefore, p = A = ©(t). But, then ¢ is
continuois at ¢, a contradiction to our assumption. We conclude
that ¢ cannot be monotone on both intervals (e, ) and (Z, 8).

The Proof of Lemma 1 is complete.

Let us have a discussion about the relation of Theorem 1 to a result
in [6], where also no condition on (semi) continuity of the subdifferen-
tials of f is required. As in [6] we set

of(z) ={€ € R": (& v) <dp,f(z;v) Yv € R™}

and denote by co D the convex hull of a set D C R™. Proposition 2.5
in [6] can-be stated as follows.

Theorem 2. Let f be lower semicontinuous on [a, b] and let the fol-
lowsing conditions be fulfilled:

(A1) dpyf(z;) € C for every z € |a, b];
(A2) dppf(z;v) = dpf(z;v) for every z € [a, b] and v € R™.
Then esther there exists ¢ € (a, b) and € € 8f(c) such that

f(b) - f(a’) = <£a b— a’) ’ 35{6)
or there exist £ € co(@f(a) N Af (D)) satisfying (6).
(The just cited mean value theorem was obtained in [6] for functions
defined on an topological vector space).

Apart from differences in the formulation of Theorems 1 and 2, it is
worth noting that they are applicable for two different classes of func-
tions. Indeed, assume that f satisfies (C;) - (C,4) and that one considers

—f instead of f. Since dpu(—f)(z;) = —d}, f(z;), dBH(—f)(z;j is
a concave functional for every z € (a, b). Then theorem 2 cannot be
applied. Conversely, assuming that f satisfies (A1) and (Az) one has
that df, (—f)(z;) is a concave functional for every = € [a, b]. Thus
Theorem 1 cannot be applied.

Loosely speaking, Theorem 1 is applicable when the upper Dini-
Hadamard directional derivatives df, f(z;), = € (a, b), are sublinear;
while Theorem 2 works when the lower Dini—Hadamard directional
derivatives d, 4 f(z;), = € [a, b], are sublinear.
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The following example with a simple continuous function is to il-
lustrate the situation.

Ezample 2. Let n =1, f(z) = zsin(1/z) for z # 0, f(0) = 0. let [a, b]
be any segment containing 0. Since dpp f(0;v) = dpgu(—f)(0;v) =
—|v| for every v € R, Theorem 2 is not applicable for both f and —f.
For such function f and segment [a, b] Theorem 1 is applicable.

Professor S. Komlosi has shown to us that the following result can
be obtained by modifying slightly the proof of Prosposition 2.5 in [6]:

Theorem 3. Suppose that f is finite, upper semicontinuous on [a, b
and such that for each z € [a, b], dfgf(z;) = d$f(z;j is a functional
from C. Then either there ezist ¢ € (a, b) and £ € f(c) such that (6)
holds, or there exist ¢ € co(df(a) U f(b)) fulfilling (6).

Note that under the property (C4) in Theorem 1, the second case
in the conclusion of Theorem 3 can be excluded. Recall that (C4) holds
automatically if f has only a finite number of discontinuous points on

(a, b).
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