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AN IMPROVEMENT FOR EXPLICIT PARALLEL
RUNGE-KUTTA METHODS!

NGUYEN HUU CONG and HOANG THI VI

Abstract. In this paper, by means of replacing the last step—value predictors by
two—step predictors and using informations from preceding step we construct the
predictor—corrector (PC) methods which are of more accurate predictors. More-
over they reduce the number of sequential right-hand side evaluations and can be
implemented on the same number of processors as in case of the parallel sterated
Runge - Kutta (PIRK) methods of the same order. Having high—order predictors
in addition with sufficiently large stability regions for nonstsff problems, the new
PC methods show the improved efficiency when they are compared to the PIRK
methods.

1. INTRODUCTION

In this paper we study a class of (explicit) predictor—corrector (PC)
methods obtained by predictor—corrector iteration (or fixed point iter-
ation) of Runge — Kutta correctors for solving the initial-value problem
(IVP) for nonstiff, ordinary differential equations (ODEs)

dy(t) _

dt

The efficiency of this class of the PC methods which are based either on
Runge - Kutta correctors (for first-order ODEs), or on Runge - Kutta -
Nystréom correctors (for special second-order ODEs) depends on the
accuracy on the predictions. In [3] by using a large number of proces-
sors, together with the approximation to the step point value, a whole
block of approximations to the exact solutions at the off-step point is
computed. This block of approximations can be used in the next step
for obtaining a high-order predictor formula. In this paper we use the

f(t), ulto) =wo, to <t <T. (1.1)

1This work is supported by the National Basis Research Program in Natural
Sciences and Research Program B93-05-71.



242 Nguyen Huu Cong and Hoang Thi Vi

stage values and the step point value computed at the previous step to
construct more accurate prediction by extrapolation techniques. This
approach was used in [5] for parallel diagonal-implicit iteration of RK
methods. Here, we can not obtain high accurate prediction as in [3]
because the stage order of the corrector methods is lower than the
step point order and the block dimension is also smaller. However no
additional processors are needed in the implementation. As an analogue
of the improved PIRKN (IPIRKN) methods proposed in [7] to improve
PIRKN methods, the PC methods considered in this paper will be
termed 1mproved PIRK (IPIRK) methods.

In order to facilitate a comparison of the IPIRK methods presented
in this paper to sequential explicit RK and already available PIRK
methods, we list below the main characteristic for the efficiency of these
methods.

For an explicit RK method of order p, it is the number of stages (or
right-hand side evaluations) per step that is the main characteristics
for the efficiency of the method. In the case of PIRK methods, the
method efficiency is mainly characterized by the number of stages k
per step in each processor. The minimal numbers of stages k of various
p-order sequential explicit RK and PIRK methods actually constructed
are listed in Table 1.1.

Table 1.1. Numbers of sequential stages k for various p-order methods
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PIRK methods [k —p | k=p | k=p k=p | k=p |k —p| k=p |
s B . B a2 [t 8 B 48 i B

For simplicity of notation, all formulas refer to IVPs for scalar
equations and we shall extensively use “componentwise” notation, that
is for any given vector v = (v,), f(v) denotes the vector with entries

f(vy).
2. IMPROVED PIRK METHODS
The starting point is a fully implicit s-stage RK method. We

shall consider only the IRK methods of Gauss - Legendre type (Gauss -
Legendre IRK methods) because the step point value which is different
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from stage values, gives a larger block dimension s + 1 for generat-
ing higher order predictor formula (the parameters of Gauss— Legendre
IRK methods of order up to 40 can be found in [1]). For a scalar
equation, this method assumes the form.

Y, =yne+ hAf(Y,), (2.1a)

Yn+1 = Yn + ROT (¥ ,), (2.1b)

where A is a s X s matrix, b, e are s—dimensional vectors, e =
(1,1,...,1)T, and Y, is the stage vector corresponding to the n-th
step.

Consider the following fixed point iteration scheme:
Y = yne+ RAF(YY),

YY) = ype+ hAf(¥EY), 5=2,...,m,

Ynt1 = Yn + AT F(¥(). (2-2¢)

In order to start the iteration (2.2b), we need a predictor method to
compute the initial approximation YO, In [6] an one-step predictor
based on last step—value was used. In this paper like for IPIKN and

PDIRK methods (see e.g. [5], [7]), by using information from the pre-

(2.2b)

ceding step, that is the values of y, and the stage vector Yslm) computed
in the last step, we constructed more accurate two-step predictors

YY) = VYE;T)l +wyn, (2.2a)

where V is s X s matrix, w is s—dimensional vector, both being de-
termined by the order conditions. Notice that the values of the stage

vector Yfl"_‘)l and step value y, are already provided at the previous

step. Moreover, the components of the vectors YSLO) and YSLJ.) can be
computed in parallel, provided that only s processors are available.
Therefore, the computational time needed for one iteration of (2.2b) is
equivalent to the time required to evaluate on right-hand side function

on a sequential computer. The PC method (2.2) is of the same nature
as the IPIRKN methods considered in [7]. Hence, the method (2.2) is
called improved PIRK (IPIRK) method.

Assume that the function f(y) is Lipschitz continuous and that

(2.2a) defines a g—order predictor formula (i.e., YO v, = O(hIt1).
Then we have the following order relations for the iteration errors as-
sociated with the stage vector and step point value
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Y, _YS:") - b(hm+q+1) :
Untt — Yni1 = BOT(F(¥n) — F¥I™)) = O(h™+e+2)

where u, ) denotes the corrector solution at the step point ¢,,41. The
local truncation error of the IPIRK method (2.2) can be written as
the sum of the truncation error of the p—order Gauss—Legendre IRK
corrector method and the iteration error of the IPIRK method:

(2.3)

Y(tnt1) — Yn+1 = (Y(tnt1) — un+1),+ (Ynt1 — Yn+1)
- O(hp'H) + O(hm+q+2) )

Thus we have following theorem analogous to Theorem 2.1 formulated
in [7].

Theorem 2.1. Let the generating corrector method (2.1) be of or-
der p. Then on s-processor computers, the IPIRK method defined
by (2.2) represents an ezplicit method of Runge - Kutta type of order
p* = min{p, m + q + 1} requiring m + 1 sequential right-hand side
evaluations per step.

Remark 2.1. From Theorem 2.1, by setting m = p — ¢ — 1, we obtain a
IPIRK method of maximum order p* = p (order of the corrector) with
only p — q sequential right-hand side evaluations per step.

2.1. Order conditions for the predictor methods

Since a s—stage Gauss— Legendre IRK corrector has the stage order
s, and the block of approximations in the predictor method defined by
(2.2a) has dimension s + 1, we can construct predictor method of order
s.

We now suppose that a fixed stepsize is used in the integration
process. The conditions that the predictor is of order s is derived by
replacing Yf:f)l, yn and YS.O) by the exact solution values y(t,—i€+
he), y(t,) and y(t.e+ he) (cf. [7], [8], [9]). Let us denote & = (T, 1)7,
e* = (7, 1)T. Then by requiring that the predictor method is of order
s in h, we are led to the conditions

y(tne+ he) — Vy(tn—1e+ he) — y(t,)w =
= y(tpe + he) — (V,w)y(tne* + h(a—e*)) = O(h*TY). |
(2.4a)
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Using the relation y(te+hz) = exp (h=z %)y(t), we can expand left-hand
side of (2.4a) in powers of h and obtain

[exp (h(c+c)%) _(V,w)exp (ha%)]y(tn) = O(h**Y).  (2.4b)

The relations (2.4) yield the conditions
(c+e) — (V,w)a =0, j=0,...,s. (2.5a)

Here, the powers of vectors mean componentwise powers. Now, let us
define the matrices

P=(e (c+e), (e+e)?,..., e+e)?), @= (e*,a,d’,...,a%),

where P and Q are s x (s+1) and (s+1) x (s+1) matrices, respectively.
Then the condition (2.5a) can be written in the form

P-—(V,w)Q=0. (2.5b)
Since the abscissas a; defined in this paper are distinct, we can derive
(V,w) = PQ7'. (2.5¢)

From Theorem 2.1 we deduce the following corollary:

Corollary 2.1. Let the matriz V and vector w be defined according
to (2.5), let p be the order of the corrector method (2.1). Then (2.2)
define an IPIRK method of order p* = min{p, m + s + 1}.

Remark 2.2. From Corollary 2.1, by setting m = p — s — 1, we obtain
an IPIRK method of maximum order p* = p (order of the corrector)
with only p—s sequential right-hand side evaluations per step.

Since a s—stage Gauss - Legendre IRK method has the order of ac-
curacy p = 2s, Remark 2.2 implies that for any given even p, a p—order
IPIRK method requires only k = p/2 sequential right-hand side evalua-
tions per step. Comparing the number k of sequential stages of explicit
RK and PIRK methods listed in Table 1.1 with those of IPIRK meth-
ods, we conclude that computational costs per step of IPIRK methods
are much cheaper. On the other hand, the error constant of the ex-

(0)

trapolation error associated with Y,.,0 is possibly large and therefore,
in practical use, we may need a few more iterations which may com-
pensate the large error constants.



246 Nguyen Huu Cong and Hoang Thi Vi

2.2. Convergence boundaries

The convergence factors and convergence boundaries of the IPIRK
methods are identical with those of the (B)PIRK methods studied in [3]
and also in [8]. Hence we briefly mention the most important results.

The rate of convergence was determined by using the model test
equation y’ = Ay, where X runs through the eigenvalues of the Jacobian
matrix df/dy (cf. e.g., [3, 6, 7, 8]). For this equation, we obtain the
iteration error equation

YO - Y, =2A¥0 ™ —-VY,], 2:=2h, j=1,...,m

Hence, with respect to the model test equation, the rate of convergence
is determined by the spectral radius p(A) of the matrix A. We shall
call p(A) the convergence factor of IPIRK methods. Requiring that
p(zA) < 1 leads us to the convergence condition

1 1
|2l < —= or h< : (2.6)

p(A) p(A) p(3f/dy)

This convergence condition is of the same form as the stability condition
associated with a RK method. In analogy with the notion of the stability
boundary, we shall call 1/p(A) the convergence boundary. We refer to [3]
and [8] for specifications of the convergence boundaries and convergence
factors for the various (B)PIRK methods.

2.3. Stability boundaries

The linear stability of the IPIRK method (2.2) is investigated by
using the model test equation y’ = Ay, where A runs through the eigen-

values of df/dy.

Theorem 2.2. For the model test equation y' = Ay, the numerical
solution obtained by the IPIRK method (2.2) satisfies the recursion

(m) y(m)
( § ) = M, (2) < ""1) s 2= Ah, (2.7a)
Yn+1 Yn

where M,,(z) is the amplification matriz

L EATY A (- 2A) NI~ (zA)™)e
Yol iem (sz(zA)'"V 1+ 27 ((z4)™0 + (I - 24)7'(I - (zA)m)°)>
(2.7b)
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Proof. Applying the IPIRK method (2.2) to the model equation (cf.
[8]), we obtain

Y™ = ey, + za¥Y (™D
= (I+ 24+ (z4)2 + - + (24)™ Yey, + (24)"Y ")
= (zA)™VY ")+ (1 - 24) 7 (I = (24)™)e
+ (24)"w)yn , (2.8a)
Unt1 =Un + 20" Y
= 7 (zA)™VY'™ + (1 + 267 ((24)"w
+ (I —2A)"Y (I - (24)™)e))yn - (2.8b)

Combining the relations (2.7b), (2.8a), (2.8b), the one—step recursion
(2.7a) of Theorem 2.2 is easily obtained.

The (s + 1) x (s + 1) matrix M,,(2), which determines the sta-
bility of the IPIRK method, will be called the amplification matrix,
and its spectral radius p(M,,(2)) the stability function. The stabili-
ty region D,,, the real and imaginary stability intervals (—f3,.(m), 0),
(=Bim(m), Bim(m)) of the IPIRK method corresponding to a given m
are respectively defined by

Dy, :={z€ C:p(Mn(z) <1} Nn{z € C : Re(z) <0},
(—Bre(m), 0) :={z € C :Im(z) =0} N Dy,

(—Bim(m), Bim(m)) := {z € C :Re(z) =0} N D,,,

where B,.(m), Bim(m) are called the real and imaginary stability bound-
aries associated with m, respectively. From (2.8) we see that if z satisfies
(2.6), then (2A)™ tends to zero matrix as m — oo. As a consequence,
the spectral radius of M,,(z) converges to the absolute value of the
stability function of the corrector method as m — oo, i.e.,

p(M,(2)) — |R(2)] as m — oo,
where R(z) = 1+ 2T (I—2A)'e. Hence, the asymptotic stability region

D, as m — oo contains the intersection (on the left-half complex z-
plane C ™) of the stability region of the generating corrector and the
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region of convergence in the complex z-plane C defined by (2.6). For
IPIRK methods studied in this paper, where the corrector method is
A-stable, its asymptotic stability region is larger than the convergence
region in the left-half z-plane, and the real and imaginary asymptotic
stability boundaries §,.(c0), Bim(o0) are not less than the convergence
boundaries of the IPIRK methods, i.e.,

Doo D{z€C:|2] <1/p(A)} N C™, Bre(00) = Bim(o0) > 1/p(A).

Table 2.1 list the stability pairs (8,.(m), B;m(m)) for various IPIRK
method for a few values of m. The stability pairs corresponding to the
minimal value of m needed to reach the order of the correctors are indi-
cated in bold face. We observe that for small m, the stability of IPIRK
methods is rather poor, but for m > P/2, their stability is large enough
for nonstiff problems.

Table 2.1. Stability pairs (8,.(m), Bim(m))
for various IPIRK methods

porder m=1m=2|m=3 m=4|m=5|... |[m=o0o

methods

p=4 |[(0.25, | (0.90, |(1.60, [(2.74, |(2.10, | ... [(>3.46,
0.17) | 0.27) | 0.30) | 0.30) | 0.30) >3.46)

p=6 |(0.05 |(0.45, |(0.97, |(1.50, | 1.97, |... [(>4.65,
0.05) | 0.85) | 0.51) | 0.65) | 0.69) >4.65)

p=28 (0.01, | (0.22, |(0.64, |(1.12, |(1.62, | ... [(>6.08,
0.01) | 0.23) | 0.63) | 0.83) | 1.11) >6.06)

p=10 | (0.00, |(0.11, |(0.42, |(0.88, [(1.29, | ... |(>7.30,
0.00) | 0.11) | 0.43) | 0.83) | 1.21) >17.30)

2.4. Iteration error for the test equation

The steration error wpqq —ynt1 = O(h™2+2) could be established
by using (2.3) and s—order predictor constructed in Subsection 2.1 for
any right-hand side function f(y(t)). In this subsection we will obtain
an explicit expression for the local iteration error of IPIRK method
(2.2) with respect to the model test equation y' = Ay. By defining the
iteration error matrix

Ep(z) = (—sz(zA)'"V 267 (I~ 24) 7 (24) e~ (24)™w)) (2.9)
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we have the following theorem:

Theorem 2.3. For the model test equation y' = Ay, the local iteration
error is ezplicitly defined by the equality

Y(’") .
Unt1 = Ynt1 = Epm(2) < n—l) = O(h™+e+?).

Proof. By means of (2.7), (2.9) and the stability function R(z) of
Gauss— Legendre IRK corrector method, we have the following rep-
resentation

M, e ((zg)l';‘v (zA)™w + (I —;z(‘lz))‘l(I = (zA)’")e) b @:s(; )

where O;; is ¢ X j matrix, with zero entries. In view of the order
condition for the predictor methods (2.2a) and the recursion (2.7) in
Theorem 2.2, Theorem 2.3 easily follows.

3. NUMERICAL EXPERIMENTS

In this section we report the numerical results obtained by the
various PIRK and IPIRK methods. The absolute error obtained at the
end of integration interval is presented in the form 10~¢ (d may be
interpreted as the number of correct decimal digits (NCD)). In order to
see the efficiency of the various PIRK and IPIRK methods, we follows
a dynamical strategy for determining the number of iterations in the
successive steps (cf. [7], [8]). We have

(™ —y (™1, < Ch? and m >p/2 -1, (3.1)

where p denotes the order of the corrector methods, C is a problem- and
method—-dependent parameter. Furthermore, in the tables of results,
Nieq denotes the total number of sequential right hand side evaluations,
and Ngteps denotes the total number of integrations steps.

3.1. Fehlberg problem

As a first numerical test, we apply the various PIRK and IPIRK
methods to the often—used Fehlberg problem (cf. |2, p.174]), for 0 <
t <5,
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with exact solution y;(t) = exp(sin(t?)), y2(t) =

Nguyen Huu Cong and Hoang Thi Vi

= 2ty (t) log(max{y2(t), 1072}), v1(0) =1,

= —2ty;(t) log(max{y: (t), 107%}), y2(0) = e,

(3.2)

exp(c;s(tz)). The

results listed in Table 3.1 clearly show that the IPIRK methods are
much more efficient than PIRK methods of the same order and of the
same number of processors. To obtain the same accuracy (NCD), the
number of sequential right-hand side evaluations (Nseq) required by
IPIRK methods is in about 60% of that required by PIRK methods of
the same order.

Table 3.1. Values of NCD / Ngeq for problem (3.2) obtained by

the various p—order PIRK and IPIRK methods

PC | P | Nsteps Nsteps Nsteps Nsteps Nsteps

methods = 100 = 200 = 400 = 800 = 1600

PIRK 2.7/392 | 4.0/842 |5.2/1756 | 6.5/3650 | 7.7/7409 |10°
IPIRK 2.6 /259 | 4.0/532 | 5.2/1125 | 6.5/2320 | 7.7/4794 |10°
PIRK 5.2/601 | 7.0/1245 | 8.9/2542 (10.7/5199 |12.5/10488 |10%
IPIRK 5.2/405 | 7.1/818 |8.9/1634 |10.7/3304 | 12.5/6694 |10°
PIRK 8 | 7.8/774 |10.2/1603 |12.6/3297 |15.1/6674 |17.5/13468 | 10°
IPIRK |8 |7.8/525 [10.2/1070 |12.6/2153 |15.1/4276 | 17.5/8515 |10°
PIRK |10 |9.9/942 |12.9/1947 |15.9/3973 |18.9/8134 |22.0/16407 | 10°
IPIRK |10 |9.9/636 [12.9/1272 |15.9/2537 |18.9/5002 |22.0/10176 | 10°

3.2. Euler’s equation

Next, we solve Euler’s equation of motion for the rigid body without
external forces (problem JACB in [2, p.236]) by various PIRK and
IPIRK methods
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t
10 _ @), w0 =0,
dya(t
d2lt) _ (), w©)=1, 0<t<2, (33
dys(t
y;t( R v1(t) v2(t), w3(0)=1, k*=051.

The exact solution of the problem (3.3) is given by the Jacobian elliptic
functions y; (t) = sn(t; k), y2(t) = cn(t; k), ys(t) = dn(t; k). Follow-
ing the same testing procedure as described above, we obtain the results
as given in Table 3.2 which once again show the described advantage
of IPIRK methods over PIRK methods.

Table 3.2. Values of NCD / Ngeq for problem (3.3) obtained by
the various p-order PIRK and IPIRK methods

PC p Nsteps Nsteps Nsteps Nsteps Nsteps C
method = 100 = 200 = 400 = 800 = 1600
PIRK 2.3/300 5.1/800 6.3/1600 7.5/3200 8.9/657f 10!
TPIRK 3.2/201 4.5/402 5.7/802 8.5/2002 9.5/4292 10!
PIRK 5.1/486 7.8/1126 11.2/2345 12.5/4775 14.3/9600 10°
IPIRK 5.9/307 8.1/639 10.0/1419 12.9/3202 14.8/6402 10°
PIRK 8.2/678 11.1/1470 14.0/3028 | 16.7/6195 19.1/12540 10!
1IPIRK | 8 8.7/408 11.3/896 14.2/1840 17.2/3737 20.7/7600 10!
IPRK |10 10.1/765 13.4/1655 16.8/3479 19.6/7095 | 23.2/14968 10!
IPIRK |10 |10.0/447 13.5/959 16.9/1956 | 20.3 /4040 23.1/8393 10!

4. CONCLUSIONS

This paper proposes a class of IPIRK methods which are obtained
from the class of PIRK methods considered in [4] by means of replacing
last step value predictors by high-order extrapolation predictors. The
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higher precision in the predictor formulas has the effect to deduce con-
siderably the number of sequential stages. The stability investigations
have shown that the IPIRK methods have sufficiently large stability
regions for nonstiff problems. The numerical experiments also have
confirmed a better performance of the IPIRK methods in the compar-
ison with the PIRK methods of the same order and the same number
of processors.

These conclusions encourage us to pursue the investigations of
IPIRK methods. In the forthcoming paper (cf.[10]) we will consider
a stepsize strategy for IPIRK methods.
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