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AN IMPROVEMENT FOR EXPLICIT PARALLEL

RUNGE_KUTTA METHODSI
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Abstract. In this pp,r, bg meoru ol rc,plocing the lost step-<talue predictors by

two-step prcdictors and wing inlormatbru from prcceding step we corutruct the
predictor--tnrrector (PC) methdg which atr- of more accvrote predictors. Morc-
over they rcduce the number of sequentid ight4md side evaluatioru and can fu

implemented on the same numhl ol pruessors os in case ol the parcllel iterated

Rurqe - Kutta (PIRK) methdg ol the same otder. Hadng high-oder prc'dictors

in adttrtion uith suficientlg larye stability reglioru lor norutifi problem.t, the new
PC meth& show the impmoed efi'ciency when they are comprcd to the PIRK
meth&.

1. INTRODUCTION

In this paper we study a class of (explicit) predictor-corrector (PC)
methods obtained by predictor-corrector iteration (or fixed point iter-
ation) of Runge - Kutta correctors for solving the initial-value problem
(IVP) for nonstif f ,  ordinary differential equations (ODEs)

ds(t) : I @ U ) ) ,  y ( t o )  : u o ,  t o < t S T . ( 1 . r )

The efficiency of this class of the PC methods which are based either on
Runge-Kutta correctors (for f irst-order ODEs), or on Runge-Kutta-
Nystr6m correctors (for special second-order ODEs) depends on the
accuracy on the predictions. In [a] by using a large number of proces-
sors, together with the approximation to the step point value, a whole
block of approximations to the exact solutions at the off-step point is
computed. This block of approximations can be used in the next step
for obtaining a high-order predictor formula. In this paper we use the
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stage values and the step point value computed at the previous step to
construct more accurate predict ion by extrapolat ion techniques. This
approarh  was used in  {5 ]  fo r  para l le l  d iagona l - imp l ic i t  i te ra t ion  o f  RK
methods. Here, we can not obtain high accurate predict ion as in [ : ]
because the stage ordcr of the corrector methods is lower than the
step point order and the block dimension is also smal ler.  f lowever no
addit ional processors are needed in the implementat ion. As an analogue
of  the  improved PIRKN ( IP IRKN)  methods  proposed in  [7 ]  to  improve
PIRKN methods ,  the  PC methods  cons idered in  th is  paper  w i l l  be
termed irnproued PIRK (IPIRK) methods.

In order to faci l i tate a comparison of the I I ' IRK methods presented
in  th is  paper  to  sequent ia l  exp l i c i t  RK and a l ready  ava i lab le  P IRK
methods, we l ist  below the main character ist ic for the eff ic iency of these
methods .

For an expl ic i t  RK method of order p, i t  is the number of stages (or
r igh t -hand s ide  eva lua t ions)  per  s tep  tha t  i s  the  main  charac ter is t i cs
for the eff ic iency o[ the method. In the case of PIRK methods, the
method eff ic iency is mainly character ized by the number of stages f t
per step in each processor.  The minimal numbers of stages k of var ious
p-order  sequent ia l  exp l i c i t  RK and PIRK methods  ac tua l l y  cons t ruc ted
are  l i s ted  in  Tab le  1 .1 .

Table 1.,1 .  Numbers of sequent ial  stages k for var ious p-order methods

For simpl ic i ty of notat ion, al l  formulas refer to IVPs for scalar
oquat ions  and we sha l l  ex tens ive ly  use  "componentw ise"  no ta t ion ,  tha t
is  fo i  any  g iven vec tor  o :  (u t ) ,  / (u )  denotes  the  vec tor  w i th  en t r ies

f  @i ) .

2.  IN4PROVED PIRK METHODS

The s ta r t ing  po in t  i s  a  fu l l y  imp l ic i t  s -s tage RK method.  We
sha l l  cons ider  on ly  the  IRK nre thods  o f  Gauss  -  Legendre  type  (Gauss  -

Legendre IRK methods) because the step point value which is di f ferent

E x p l i c i t

R K  m e t h o d s  
l k

P I R K  m e t h o d s  l k
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from stage values, gives a larger block dimension s + 1 for generat-

ing higher order predictor formula (the parameters of Gauss - Legendre

IRK methods of order up to 40 can be found in [t]). For a scalar
equation, this method assumes the form'

Yn: Anel  LA,IV")  ,

an*r : v^ + hf I(Y,) ,

(2 .1a)

(2.1b)

t , l

where A is a s x s matrix, bre are s-dimensional vectors, e :

(1, 1,.. . ,  1)", and Y' is the stage vector corresponding to the z-th
step.

Consider the following fixed point iteration scheme:

l'f) : anel- hAf Vf)) ,
(2.2b)

(z.zc)

y [ ! \  :  anc*  hAf \ l j - t ) ) ,  j  -  2 , . . . ,  rn ,

ani|r : a* + hf 7g[-)) .

In order to start the iteration (Z.Zb), we need a predictor method to

compute the initial approximation Y[0). In [5] an one-step predictor
based on last step-value was used. In this paper like for IPIKN and
PDIRK methods (see e.g. [5], [7]), bv using information from the pre-

ceding step, that is the values of y," and the stage vector If[-) .o-puted
in the last step, we constructed more accurate two-step predictors

Yf) : vYY),, *uao, (2.2a)

where tr/ is s x .s matrix, ro is s-dimensional vector, both being de-
termined by the order conditions. Notice that the values of the stage

vector YP), and step value yn are already provided at the previous

step. Moreover, the components of the vectors Y[0) tttd Yf') .an bu
computed in parallel, provided that only s processors are available.
Therefore, the computational time needed for one iteration of (2.2b) is
equivalent to the time required to evaluate on right-hand side function
on a sequential computer. The PC method (2.2) is of the same nature
as the IPIRKN methods considered in [7]. Hence, the method (2.2) is
called improued, PIRK (IPIRK) method,.

Assume that the function /(y) i. Lipschitz continuous and that

(z.za) defines a g-order predictor formula ( i .e., Y[0) -Yn: O(hc+L).
Then we have the following order relations for the iteration errors as-
sociated with the stage vector and step point value
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Yo -Yy) : o(h^+a+t1 ,
(2.3)

un*L - an+r : hf (f v; - /F[-) D : o(h^+o*') ,

where u,"al denotes the corrector solution at the step point to..1. The
local truncation error of the IPIRK method (2.2) can be written as
the sum of the truncation error of the p-order Gauss-Legendre IRK
corrector method and the iteration error of the IPIRK method:

y( t "+t )  -  an*L:  (y( t "+r)  -  un+L)  *  (uo+r  -  an+t)
:  O(hP+r)  *  O(hn+t+21 .

Thus we have following theorem analogous to Theorem 2.1 formulated
in [7].

Theorem 2.1. Let the generoting corrector methd (Z.t) be of or-
d,er p. Then on s-processor computers, the IPIHK method d,efined
by (e.e) represents an eaplicit method, of Runge-Kutta type of order
p* : min{p, m+qtL} requir ing mll sequential r ight-hand, side
eaaluations per step.

Remark 2.I. From Theorem 2.lrby setting m : p - q - 1, we obtain a
IPIRK method of marcimum order p* : p (order of the corrector) with
only p - g sequential right-hand side evaluations per step.

2.1. Order conditions for the predictor methods

Since a s-stage Gauss- Legendre IRK corrector has the stage order
s, and the block of approximations in the predictor method defined by
(2.2a) has dimension s * 1, we can construct predictor method of order
s .

We now suppose that a fixed stepsize is used in the integration
process. The conditions that the predictor is of order s is derived by

replacing YP)r, yn and r[o) uy the exact solution values y(to-p *
tn), y(t*) and y(tne+ ln) (cf. [7], [8], [9]). Let us denote s,: (cr, L\r,
e* : (eT,1)". Then by requiring that the predictor method is of order
s in h, we are led to the conditions

y( toc+ ln)  -Vy( t* - te+ l l r )  -  y( t ' . )o :
- y(tne+ h.) - (V,-)y(tnc* I h(n- r*)) :  o(n'+t1 .

(2.+a)
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Using the relatio ̂  Vftc+ lr;'! : exp (tw fr)U?l' we can exPand left-hand
side of (2.4a1in powers of ft and obtain

[*n (ot" .4*) - (v,r)exp (^*l\y(t,) :  o(h"*'). (2.4b)

The relations (Z.n) yield the conditions

( c * c ) t  -  ( V , r o ) d  : O ,  i  : 0 , . . . '  s . (z.sa)

Here, the powers of vectors mean componentwise powers. Now, let us

define the matrices

P  :  ( c ,  ( c + c ) ,  ( c + c ) 2 , . . . ,  ( " + € ) " )  ,  Q  :  ( e * , q G 2 , . . . ,  @ " )  ,

where P and Q arcsx (s*1) and (s+1) x (s*1) matrices, respectively.

Then the condition (2.5a) can be written in the form

P - ( v , o ) Q - o .

Since the abscissas ay defined in this paper are distinct, we can derive

( V , v ) :  P Q - ' (z.sc)

From Theorem 2.1 we deduce the following corollary:

corollary 2.1. Let the matriu v and aector u be defi,ned occord,ing

to (e.S), let p be the order ol the corrector method (2.1): Then (2.2)

define on IPIRK method of order p* : min{P, rn * s * 1}.

Remark 2.2. Ftom Corollary 2.1, by setting rr7: P - s - 1, we obtain

an IPIRK method of morimum order p* : p (order of the corrector)

with only Fs sequential right-hand side evaluations per step.

Since a e-stage Gauss - Legendre IRK method has the order of ac-

curacy p:2s, Remark 2.2 implies that for any given even p, a Sorder
IPIRK method requires only lc : p12 sequential right-hand side evalua-

tions per step. Comparing the number lc of sequential stages of explicit

RK and PIRK methods listed in Table 1.1 with those of IPIRK meth-

ods, we conclude that computational costs per step of IPIRK methods

are much cheaper. on the other h?qd, the error constant of the ex-

trapolation error associated with f[o) is possibly large and therefore,

in practical use, we may need a few more iterations which may com-

pensate the large error constants.

(2.5b)
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2.2. Convergence boundaries

The convergence factors and convergence boundaries of the IPIRK
methods are identical with those of the (B)PIRK methods studied in [3]
and also in [a]. Hence we briefly mention the most important results.

The rate of convergence was determined by using the model test
equation U' : \A, where l runs through the eigenvalues of the Jacobian
matr ix  At lAy (c f .  e .g. ,  [3 ,6,7,8] ) .  For  th is  equat ion,  we obta in the
iteration error equation

Y l i )  -Yn  :  z '+ [ v { ! - r )  - y * )  t  z  i :  ^h ,  i  -  1 , .  . . ,  f f i .

Hence, with respect to the model test equation, the rate of convergence
is determined by the spectral radius p(A) of the matrix A. we shall
call p(A) the conaergence lactor of IPIRK methods. Requiring that
p(zA) ( 1 leads us to the convergence condition

p@) p@f lai '
(2.6)

This convergence condition is of the same form as the stability condition
associated with a RK method. In analogy with the notion of the stability
boundary, we shall callllp(A) the conuergence boundary. we refer to [s]
and [8] for specifications ofthe convergence boundaries and convergence
factors for the various (B)PIRK methods.

2.3. Stability boundaries

The linear stability of the IPIRK method (Z.Z) is investigated by
using the model test equation vt - )y, where ) runs through the eigen-
values of Af lAy.

Theorem 2.2. For the model test equation y' : \U, the nurneriial
solution obtained by the IPIRK method. (2.2) satisfies the recursion

z :  \ h , (2.7a)

where Mr*(") is the amplifi,cation matria

a t h o r h <

(;f):*^@(f\ '

( Q.q^v Q4)^- + (r - zA)-r (r - (zA)^)c \
\# (zA)*v r + *r ((zA)^- + (/ - zA)-r (r - (ze)*)c) )

(2.7b)

M r n ( z ) :
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Proof. Applying the IPIRK method (2.2) to the model equation (cf.

[8]), we obtain

Yy) :cuo+ zAYy"-L)
:  ( /  +  zA + (zA)2 + . ' .  *  (zA)^- t )w^ + (zA)^Y@)

:  (zA)^VY?)r+ ( ( /  -  
"A)- ' (1-  

(zA)^)c

* (zA)^u)y.,  (z.sa)

an l . : : v^+* rY f )
: *r (zA)*vYP), + (1 + "f 11".t1^-

+  ( /  -  
"A ) - t  Q  -  @A)^ ) " ) ) y " .  (2 .8b )

Combining the relations (Z.Zb), (Z.aa), (2.8b), the one-step recursion
(Z.Za) of Theorem 2.2 is easily obtained.

The (s + 1) x (s + 1) matrix tut*("), which determines the sta-
bility of the IPIRK method, will be called the amplification matrix,
and its spectral radius p(M*(z)) the stability function. The stabili-
ty region D^,the real and imaginary stability intervals (-0,"(-), O),
(-0r,"(*), 0;,-(*)) of the IPIRK method corresponding to a given rz
are respectively defined by

D,y, : :  {z e C : p(M^(") S1} n {z € C :Re(z) < 0},

(-0,"(-) '  o) , :  {"  € C : Im(z) :  o} o D* ,

?0;^@), 0;^(*)) , :  {"  € C : Re(z) :  o} )  D^,

where |r"(m), 0;^(^) are called the real and imaginary stability bound-
aries associated with rn, respectively. From (2.8) we see that if z satisfies
(2.6), then (zA)^ tends to zero matrix as rrtr --+ m. As a consequence,
the spectral radius of Mr"(z) converges to the absolute value of the
stability function of the corrector method a,s rrtr --+ oo, i.e.,

p(M^(")) - ln(r) l  as rn --+ oo,

where R(z) : l+ *r Q - zA)- le. Hence , the asyrnptotic stability region
Doo ffi n1, --+ @ contains the intersection (on the left-half complex z-
plane C-) of the stability region of the generating corrector and the



248 Nguyen Huu Cong and Hoang Thi Vi

region of convergence in the complex z-plane C defined by (Z.O). For
IPIRK methods studied in this paper, where the corrector method is
.A-stable, its asymptotic stability region is larger than the convergence
region in the left-half z-plane, and the real and imaginary asymptotic
stability boundaries 0,." (€) , 0;*(q) are not less than the convergence
boundaries of the IPIRK methods, i. e.,

D * )  { z € c : l z l < t l p @ ) } . c - ,  0 , " ( a ) :  g i , n ( - )  >  t l p ? q .

Table 2.1 list the stability pairs (0,"(*), 0;^(*)) for various IPIRK
method for a few values of m. The stabiliiy p.itr .orrurponding to the
minimal value of m needed to reach the order of the correctors are indi-
cated in bold face. we observe that for small m, the stability of IpIRK
methods is rather poor, but for m ) P f 2, their stability is large enough
for nonstiff prohlems.

Table 2.1. Stabil i ty pairs (p,,(*), 0;*(*))
for various IPIRK methods

p-order

methods

M : I m : 2 m : 3 r n :  4 r n :  5 r n :  6

P : 4

P : 6

P : 8

P : 1 0

(0 .25 ,

0 .17)

(0.05,

0.05)

(0 .01 ,

0 .01)

(o.oo,
o.oo)

(o.eo,
0.27)

(0.45,
o.s5)

(o.22,

0.23)

( 0 . 1 1 ,
o . l 1 )

(1 .60 ,

o.3o)
(0.e7,
0.51)

(0.64,
o.63)

(o.42,
0.43)

(2 .74 ,

0.30)

(1 .50 ,

0.65)

( r .12,
0.83)

(0.E3,
o.Es)

(2.10,
o.30)

1 . 9 7 ,
o.6e)

(1 .62 ,

1 . 1 1 )

(r.ze,
1 . 2 1 )

(>3.46,
>3.46)

(>4.65,
>4.65)

(>6.06,
>6.06)

(>7.30,
>7.30)

2.4. Iteration error for the test equation

The iteration error rLn*L-An+r: O(hm+"+z) could be established
by using (z.a) and s-order predictor constructed in subsection 2.1 for
any right-hand side function f(y(t)). In this subsection we will obtain
an explicit expression for the local iteration error of IPIRK method
(2.2) with respect to the model test equation yt : )y. By defining the
iteration error matrix

E*(" ) :  ( -  zbr(z . t ) *v  z t r ( ( t  -  zA)- reA)^e-  (zA)^a i )  (2 .e)
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we have the following theorem:

Theorem 2.8. For the model test e,quation y' - ),y, the

error is erplicitly defined' by the equality

un+r -  Un*L: n*@) :  O( f tm+a+21 .

249

Iocal iteration

function R(z) of
the following rep-

(3 .1 )

Proof. By means of (2.7), (2.9) and the stability
Gauss-Legendre IRK corrector method, we have

resentation

lllry) -yp-rtll"" < ChP and m ) pf2 - L,

(  (zA)^v
\  o t "

("':i )

zA)-L ( I  -  (zA)^)r \  _ /  o","+r \
R(") ) yn-,@) )M^(z) : (zA)*at + (/ -

where O;i is i x j matrix, with zero entries. In view of the order

condition for the predictor methods (Z.Za) and the recursion (2.7) in

Theorem 2.2,Theorem 2.3 easily follows.

3. NUMERICAL EXPERIMENTS

In this section we report the numerical results obtained by the

various PIRK and IPIRK methods. The absolute error obtained at the
end of integration interval is presented in the form 10-d (d may be
interpreted as the number of correct decimal digits (NCD)). In order to

see the efficiency of the various PIRK and IPIRK methods, we follows

a dynamical strategy for determining the number of iterations in the

successive steps (cf. [7], [8]). We have

where p denotes the order of the corrector methods, C is a problem- and
method-dependent parameter. Furthermore, in the tables of results,

AL"q denotes the total number of sequential right hand side evaluations,
and Ng6sp6 denotes the total number of integrations steps.

3.1. Fehlberg problem
' As a first numerical test, we apply the various PIRK and IPIRK
methods to the often-used Fehlberg problem (cf. [2, p.L74l), for 0 (

t ( 5 ,
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W 
- 2tur ( / )  log(max {ar1t1, l0- t } ) ,  ur (0)  :  1 ,

ry 
- -ztvz(t) log(max{yr(t), ro-31), ar(o) : ,,

(3 .2 )

wi th  exact  so lut ion v ! t )  :  exp(s in( f2) ) , ,  ur ( t ) :  " *p( . i . ( r t ) ) .  
The

results listed in Table 3.1 clearly show that the IPIRK methods are
much more efficient than PIRK methods of the same order and of the
same number of processors. To obtain the same accuracy (NCD), the
number of sequential right-hand side evaluations (Nr"q) required by
IPIRK methods is in about 6O% of that required by PIRK methods of
the same order.

Table 9.1. Values of NCD / AG"q for problem (3.2) obtained by
the various p-order PIRK and IPIRK methods

3.2. Euler's equation

Next, we solve Euler's equation of motion for the rigid body without
external forces (problem JACB \n [2, p.236]) by various PIRK and
IPIRK methods

PC
methods

p ALt"p,
: 100

Nrt"p,
: 200

Nrtup,
: 400

Nrt"pt
: 800

Nrt"p,
: 1 6 0 0

C

PIRK

IPIRK

PIRK

IPIRK

PIRK

IPIRK

PIRK

IPIRK

4

4

6

6

8

8

10

10

2.7 /3e2
2.6 l25e

5.2/60r

5.2/4o5

7.8/774

7.81525

e.e/e42

s.e/636

4.O/842

4.0/532

7.011245

7. r l8 r8

ro.2l1603

ro.2/1070

12.9/1947

12.e/1272

5.2/1756

5.2/rr25

8.e/2542

8.9/ 1634

12.613297

12.612L53

15.e/s973

r5.s/2537

6.5/3650

6.5/2320

ro.7 /'ree
ro.7l33O4

r5.r/6674

L5.r 14276

18.e/8r34

rE.e/5092

7.7 /74Oe
7 .7 147s4

r2.5/10488

12.5/66e4

17.5/1s468

17 .518515

22.O/16407

22.O/10176

103

103

103

l0s

103

103

103

103
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dvr(t)

251

dt
d,vr(t\

dt
dys(t)

dt

: yr(t) as(t), ar(o) : o,

= -vr(t)  vr(t) ,  y2(o) :  1, o < t  S20,

: -lc2 rn?\ uz(t), va(0) : 1 , k2 : O.5I.

(3.3)

The exact solution of the problem (S.f) is given by the Jacobian elliptic
funct ions yr ( t )  :  sn( t ;  lc ) ,  Vz( t ) :  cn( t ;&) ,  yr ( t )  :  dn( t ; /c) .  Fol low-
ing the same testing procedure as described above, we obtain the results
as given in Table 3.2 which once again show the described advantage
of IPIRK methods over PIRK methods.

Table 3.2. Yahrcs of NCD / Nr"q for problem (3.3) obtained by
the various p-order PIRK and IPIRK methods

PC
methodr

p Nrt"pt

: 100

ALt"pt
: 2 0 0

Nrt"pt
: 4 0 0

Nrt"pt

: 8 0 0
Nrt"p.
: 1 6 0 0

C

PIRK

IPIRK

PIRK

IPIRK

PIRK

IPIRK

IPRK

IPIRK

4

4

6

6

8

8

10

10

2.3l3oo
3.2/2Or

5. t1486

5.e/3O7

8.2/678

8.71408

ro.rl765
ro.o/447

5.1/800

4.5/402

7.8/1126

8.1/63e

tL.L/r47O

11.3/Se6

13.41t655

13.5/ese

6.3/1600

5.718o2

rr.212345

10.0/1419

t4.o/3028

t4.2/1840

16.81347e

16.e/1e56

7.5132oo

8.5/2oO2

L2.514775

12.el3202

t6.7 /6Le5
L7.213737

1e.6/70e5

2O.3/4O4O

8.e1657i

e.5142e2

14.3/e600

r4.8/6402

re.t/r254o
20.717600

23.2/t4e68

23.r183e3

10r

101

100

100

10-r

10 ' r

1o-r

10-r

4. CONCLUSIONS

This paper proposes a class of IPIRK methods which are obtained
from the class of PIRK methods considered in [ ] by means of replacing
last step value predictors by high-order extrapolation predictors. The
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higher precision in the predictor formulas has the effect to deduce con-
siderably the number of sequential stages. The stability investigations
have shown that the IPIRK methods have sufficiently large stability
regions for nonstiff problems. The numerical experiments also have
confirmed a better performance of the IPIRK methods in the compar-
ison with the PIRK methods of the same order and the same number
of processors.

These conclusions encourage us to pursue the investigations of
IPIRK methods. In the forthcoming paper (cf. [10]) we will consider
a stepsize strategy for IPIRK methods.
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