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A Short Communication

NEW HIGH_ORDER IMPLICIT RUNGE_KUTTA

METHODS AND APPLICATIONS TO

PARALLEL INTEGRATIONS I

NGUYEN HUU CONG

1. INTRODUCTION

An s-stage implicit Runge-Kutta method (IRK method) for nu-

merically solving the initial value problem (IVP) lQ) : f(g(t)), y(0) :

ye is specified by the Butcher array
' t

. l A

l s
where c, D are s-dimensional vectors, and A is a s-by-s matrix. For
an s-stage collocation IRK method based on the collocation vector

c : (.r r. . . ,  cr\T with dist inct abscissas ci, the parameter vector of

w e i g h t s b :  ( b r , . . . ,  b r ) T  a n d  R K  m a t r i x  A :  ( o ; j ) ,  i ,  i : 1 , . . . ,  s '  a r e

defined by the simplifying conditions B(s) and C(s) (cf. e.g., [6], [9]).

In the literature a number of classes of high- order A-stable implicit

Runge-Kutta methods was proposed: Gauss-Legendre, Radau IA, IIA
and Lobatto II IA, I I IB, I I IC (cf. [ t ] ,  [z], [4], [5], [7] {141). A-stabil i ty
of these high-order IRK methods was obtained by applying .A-stability
of the associated Pad6 approximation to the exponential function.

The above mentioned IRK methods belong nowadays to the set of
the best methods of this type. However, in actual large-scale scientific

computation when a parallel algorithm based on these IRK methods
(cf. e.g., [ t t ] ,  [rz], [ t3]) has to be designed, the freedom on the choice
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of the method parameters has the advantage of improving the efficiency
of the related parallel algorithms. As for an example of this situation we
mention the research reported in [ts] where the freedom on the choice of
the parameters of symmetric RK methods were used to irnprove the rate
of convergence of the parallel iteration process. In this paper in order to
have some degrees of freedoms we consider the s-stage collocation IRK
methods based on s-dimensional ertended Gauss collocation vector.
This s-dimensional extended Gauss collocation vector is obtained by
adding one component denoted by c to the original (s - r)-dimensional
Gauss collocation vector. This additional component c assumes to be
a free parameter. As the result we obtain an s-stage IRK method
dgpending on the free additional abscissa c of the collocation vector.
This method will be denoted by RK (", 

"). 
By this way we sacrify the

nice property of superconvergence of the Butcher's methods. However,
it can be shown (cf. Subsection 2.1) that the new s-stage RK (s, c) is
still of order 2s - 2. Moreover they are strongly A-stable for c > lf 2
and .L-stable for c : | (cf. subsection 2.2). Table 1.1 summarizes the
main characteristics of the high-order IRK methods available in the
literature and of the one-parameter family of new RK (s, c) methods
considened in this paper.

Table.r./. summary of main characteristics of s-stage IRK methods

IRK methods Order Stage
order

Stability properties Original
references

Gauss-Legendre

Radau IA

Radau IIA

Lobatto IIIA

Lobatto IIIB

Lobatto IIIC

R K ( s , c : 1 )

R K ( s ,  c > I l 2 )

2s
2 s . _ L
2 s - L

2 s - 2
2 s - 2
2 s - 2

2 s - 2

2 s - 2

s

s - l

a

s

s - 2

s - 2

, s

.9

A-stable for all s

.L-stable for all s

.[,-table for all s

A-stable for all s

A-gtable for all s

.L+table for all s

.L*stable for all s

Strongly A-stable
for all s

Butcher [2]
Ehle [7]

Ehle [7J,
Axelsson [1]

Ehle [7]
Ehle [7]

Chipman [5]

[This paper]

[This paper]

From Table 1.1, we see that the class of new RK (s, c : l) meth-
ods seems to be more attractive than Lobatto IIIC methods by having
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the stage order higher. Especially, RK (s, c > Llz) forms a family of

strongly A-stable methods which gives us a freedom on the choice of

one collocation point. Several possibilities of exploiting this freedom

applied to parallel integrations will be discussed in Section 3 where we

report an application of a special class of the new IRK methods to a

parallel iteration scheme. This application shows a promising aspect of

the IRK methods proposed in this paper. We do not claim that this

family of new IRK methods is already accepted as the efficient oDE

methods. A further study and application of these methods will be

subject of further research.

2. ONE-PARAMETER FAMILY OF IRK METHODS

Let us consider a collocation s-stage implicit Runge-Kutta method

(IRK method) based on collocation vector

" :  
(4 - t , c " )T  ,  c r - t :  ( c r ,  .  . . .  ,  c " - r ) f  .

For the sake of convenience, we will from no$' assume lhat c" f ci

(t :1,.. . ,  s-1) andthat c" is afreeparameter abscissa. Furthermore,

the subvector cr-1 is always the (s - l)-dimensional Gauss collocation

vector, that is the components cit i : 1,..., s - I are the zeros of the

shifted Legendre polynomial of degree s - 1

) e - L

E^(n"- t ( r  
-  1) ' - t )  .

The resulting s-stage RK (s, c) method is now depending on the free

abscissa c" and will be denoted by RK (", t").

2.1. Order considerations

The results about order of accuracy of the RK (s, c") methods are

given in the following theorem:

Theorem 2.1. The RK(s, cr) method is ol stoge order r: s ond step

point ord,er p :2s - 2 lor any giuen integer s ond real ualues of c" (cu

is different lrom the zeros of the shifted Lcgendre polynomiol of degree

s - L ) .
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Proof . Firstly we prove that the simplifying conditions C(s) and B(s *
u) imply the simplifying condition D(r). Secondly, we show that the
weights  br , . . . ,6" -1,  b"  o f  the RK(" , . " )  method def ined by the s im-
plifying condition B(s) satisfy also the simplifying condition B(zs - 2)
for any real values of c". Then, Theorem 2.1 can be proved by using
Butcher's Theorem (cf. e.g. [9, p.204], [ to, p.Zs]).

2.2. Stabil i ty considerations

Since the s-stage RK (", .") method is of collocation type, its ra-
tional stability function .R(z) has the form (cf. e. g. [10, p.48], and also

[18 ] ,  [ 16 ] )

*G) (L )  +  MG- t )A"  + . . .  +  MM _  p ( " )  
1o  r \R ( z ) :  : M  l 2 . I )

where

M(") il," - r,) .
i : l

We can show that the following relations are satisfied

l8(*) l  :
1  f o r  c " - I f 2
p < L  f o r  c " > L l z
0  f o r  c " : 1

I

s !
(2.2)

(2.3)

Basing on the results concerning with the conditions for /-stability
of a rational function R(z) : P(z)lQQ) @t. [10, Prop.3.6, p.n+l) by
the virtue of Theorem 2.1 and in view 

;f 
the relation (2.3) we have:

Theorem 2.2. For any giuen s, the' stability function R(z) of the
RK(s, c" > tl2) method is l-stabte (cu is different lrom the zeros of
the shifted Legend,re polynomial of d,egree 

" 
- 1/. I

It is noted that the stability function of RK (r, ., > ll2) method is
not a Pad6 approximation to the exponential function. The applications
of order stars to a pth-order ,I-stable rational approximation fi(z) to
the exponential function e" reveal that p S 2dt, where d1 is the number
of poles of R(z) lying in the positive half complex plane C* :: {z € C :
Re(z) > 0) (cf. [10, Theorern4.7, p.58]). From here, it can be shown
that the stability function of RK (", 

"" > ll2) method has no poles in
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C- :: {z e C : Re(z) < 0}. By means of Theorem 2.2, Maximum
principle, and relation (2.3), we obtain the final theorem about the
properties of the family of RK (", t") methods:

Theorem 2.3. For the stability properties of the family of RK (", .")

method,s, where c" is different lrom the zeros of the shifted Legendre

s - l, the follouing assertions hold:

(i) RK (r, ." : ll2) rnethod is A-stable for any odd ualues ol s.

(ii) RK(", 
"" 

> Llz) rneThod''ii t{ro"gti A-stable for any s. More-

ouer, RK(sr cs : L) is L-stable.

3. AN APPLICATION TO PARALLEL INTEGRATIONS

In this section we consider an application of the new family of

RK (s, c") methods to the parallel predictor-corrector iteration scheme

(PIRK (", 
"") 

methods). This iteration scheme is defined exactly the

same as PISRK methods proposed in [fS]. For a scalar equation it

assumes the form

Y n@) : vYP),, I uun, Yo(o) : eo

Y^G)  :  can  +  hA f (Y , ( i - t ) ) ,  i  :  1 , . . .  t  f f i  ,

an*L : y, + hf f (Y*) ,

(3 .1 )

(3.2)

(3.3)

where the s-by-s matrix V and s-dimensional vector tD are determined

by order conditions (see also [15]).

The rate of convergence of (s.t) is defined by using the model test
equation V'(t) : ly(t) and characterized by the conuergence factor p(A)

(.f. [11], [15]). we can exploit the freedom in the choice of the collo-

cation vector abscissa c" of the corrector RK (s, c") for minimizing the
convergence factor p(A). In this paper we restrict our considerations to
the special class of corrector methods RK (s, c" : 0). Table 3.1 lists the
convergence factors for the PIRK (", ." : 0) and the PIRK methods
proposed in [fZ]. From this table, we see that the convergence factors
of the PIRK (", ." : 0) methods are substantially smaller than those

of the PIRK methods of the same order.

The numerical experiments have also shown that the PIRK (", 
"" 

:

0) methods are superior to the PIRK methods of the same order by a

speed up factor about two.
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Table 9.1. Convergence factors of the pth-order
PIRK and PIRK (", t, :0) methods

Methods P : 4 P : 6 P : 8 P :  L O

PIRK
PIRK (s, c, : 0)

0.289
0.166

0.215
0.164

0.165
0.141

0.137
0.119

4. CONCLUSIONS

In this paper we propose a new family of high order A-stable
Runge-Kutta processes which seem to be promising numerical methods
for ODEs.

The class of .L-stable RK (", t" : 1) methods which forms the
fourth class of .L-stable IRK methods in the literature seems to be more
attractive than the class of Z-stable Lobatto IIIC methods by being of
higher stage order (cf. Section 1, Table 1.1). We hope that this class
of methods would be efficient integrator for stiff ODE problems.

The family of strongly r{-stable methods RK (", r" > ll2) is at-
tractive by. having the freedom on the choice of one collocation point.
This freedom can be used for constructing parallel diagonally implicit
Runge-Kutta methods for stiff problen$ as in [tS]. This subject will
be investigated in the forthcoming paper.

A class of parallel predictor-corrector iteration methods PIRK (s,
cs - 0) appiied to the special class RK (", ," : 0) of the new
RK (s, c") methods have better convergence than PIRK methods based
on Gauss-Legendre IRK methods.
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