VIETNAM JOURNAL OF MATHEMATICS Volume 23, Number 2, 1995

ON ALMOST SURE CONVERGENCE OF 'TWO-PARAMETER RANDOM PROCESSES¹

NGUYEN HAC HAI

Abstract. The aim of this note is to give some criteria of almost sure convergence of two-parameter random processes.

1. INTRODUCTION

Convergence of two-parameter martingales and amarts have considered by Cairoli [5], Cairoli-Walsh [6] and some others. Further, some types of convergence of discrete parameter random processes in Polish spaces were studied by Billingsley [4], Szynal-Zieba [8] etc. The main aim of this paper is to prove some criteria of almost sure convergence of two-parameter random processes in Polish spaces.

2. DEFINITIONS AND BASIC FACTS

Throughout this note, let (Ω, \mathcal{A}, P) be a complete probability space and $I = \{t = (i, j) : i, j \in N\}$. Then I is a directed set with the usual partial order given by: $t = (i, j) \leq t' = (i', j')$ iff $i \leq i'$ and $j \leq j'$. Further, assume that we are given an increasing sequence $(\mathcal{A}_t, t \in I)$ of complete sub- σ -fields of \mathcal{A} with $\mathcal{A} = \bigvee_{n \geq 1} \mathcal{A}_{\overline{n}}$, where $\overline{n} = (n, n), n \in N$.

A function $\tau : \Omega \to I$ is said to be a bounded 1-topping time, write $\tau \in T^1$, iff τ is finitely-valued and the set $\{\tau = (i, j)\} \in \mathcal{A}^1_i$ for every $(i, j) \in I$, where $\mathcal{A}^1_i = \bigvee_{\substack{j \ge 1 \\ j \ge 1}} \mathcal{A}_{ij}$ for any $i \in N$. Thus T^1 is also a direct set with the partial order defined by $\tau \le \tau'$ iff $\tau(\omega) \le \tau'(\omega)$ almost surely (a.s).

¹This work was partially supported by the National Basic Research Program for Natural Sciences and by the Program "Applied Mathematics" of NCSR.

Let $L^{0}(E, \mathcal{A})$ stand for the space of all \mathcal{A} -measurable random elements defined on Ω , taking values in a Polish space (E, ρ) . Then, a sequence $(X_t, t \in I)$ in $L^{0}(E, \mathcal{A})$ is said to be adapted to $(\mathcal{A}_t, t \in I)$ if $X_t \in L^{0}(E, \mathcal{A}_t)$ for every $t \in I$. Next, given an sequence $(X_t, t \in I)$ adapted to (\mathcal{A}_t) and $\tau \in T^1$, we define $X_\tau : \Omega \to E$ and $\mathcal{A}_\tau \subset \mathcal{A}$ by

$$X_{\tau}(\omega) = X_{\tau(\omega)}(\omega)$$

and

$$\mathcal{A}_{\tau} = \left\{ A \in \mathcal{A} : A \cap [\tau = (i, j)] \in \mathcal{A}_{i}^{1}, \ (i, j) \in I
ight\}.$$

As in the discrete case, $(\mathcal{A}_{\tau}, \tau \in T^1)$ is an increasing family of complete sub- σ -fields of \mathcal{A} and $X_{\tau} \in L^0(E, \mathcal{A}_{\tau})$ for all $\tau \in T^1$.

Now we recall some definitions.

Definition 1. A sequence $(X_n, n \in N)$ in $L^0(E, \mathcal{A})$ is said to converge in law to some X in $L^0(E, \mathcal{A})$, write $X_n \xrightarrow{D} X$ as $n \in N$, if the sequence $(P_{X_n}, n \in N)$ of the probability distributions of $X_n, n \in N$ converges weakly to the probability distribution P_X of X (see [4]).

Definition 2. A sequence $(X_t, t \in I)$ in $L^0(E, \mathcal{A})$ is said to converge *a.s.* to some X in $L^0(E, \mathcal{A})$, write $X_t \xrightarrow{a.s.} X$ as $t \in T$, if

$$P\left[\lim_{n\to\infty}\sup_{t>\overline{n}}\rho(X_t,X)=0\right]=1,$$

where ρ is metric in the Polish space E.

ton T' is also a direct

3. MAIN RESULTS

The following lemma is immediate from Definition 2.

Lemma 1. A sequence $(X_t, t \in I)$ converges a.s. to X if and only if for every $\varepsilon > 0$ there exists some $n(\varepsilon) \in N$ such that for all $n \ge n(\varepsilon)$

$$P\left[\sup_{t\geq \overline{n}}
ho(X_t,X)\geq \varepsilon
ight]\leq \varepsilon.$$

Theorem 1. A sequence $(X_t, t \in I)$ converges a.s. to X iff for every (τ_n) in T^1 with $\tau_n \geq \overline{n}, n \in N, X_{\tau_n} \stackrel{a.s.}{\to} X$ as $n \in N$.

Proof. Assume that $X_t \xrightarrow{a.s.} X$ as $t \in T$ and (τ_n) is a sequence in T^1 with $\tau_n \geq \overline{n}, n \in N$. Then for every $n \in N$,

330

Almost sure convergence of two-parameter random processes

$$\sup_{k\geq n}\rho(X_{\tau_k},X)\leq \sup_{t\geq \overline{n}}(X_t,X), \ a.s.$$

Thus, by Definition 2,

$$1 \geq P\left[\lim_{n \to \infty} \sup_{k \geq n} \rho(X_{\tau_k}, X) = 0\right] \geq P\left[\lim_{n \to \infty} \sup_{k \geq \overline{n}} \rho(X_t, X) = 0\right] = 1.$$

It means that $X_{\tau_n} \stackrel{a.s.}{\to} X$ as $n \in N$.

Now suppose that $X_t \xrightarrow{a.s.} X$ as $t \in T$. Define $s_n = \sup_{\substack{t \geq \overline{n} \\ r \geq \overline{n}}} \rho(X_t, X)$, $n \in N$. Then the sequence $(s_n, n \in N)$ is decreasing. By virtue of Lemma 1, there exists $\varepsilon > 0$ such that for all $n \in N$

$$P[s_n \ge 8\varepsilon] \ge 8\varepsilon. \tag{1}$$

Further, since $X \in L^{0}(E, \mathcal{A})$ there exists a sequence $Y_{n}, n \in N$ such that $Y_{n} \in L^{0}(E, \mathcal{A}_{n}), n \in N$ and $(Y_{n}, n \in N)$ converges in probability to X, write $Y_{n} \xrightarrow{P} X$ as $n \to \infty$. Then we can find some $n \varepsilon \in N$ such that

$$P\left[\rho(Y_n, X) \geq \varepsilon\right] \leq \varepsilon, \ n \geq n(\varepsilon) . \tag{2}$$

But for every $n \in N$

$$\lim_{m\to\infty}\sup_{\overline{n}\leq t\leq \overline{m}}\rho(X_t,X)=s_n\ (a.s.)$$

then by (1), for every $n \in N$ there exists some $m_n > n$ such that

$$P\left[\sup_{\overline{n}\leq t\leq \overline{m}_n}\rho(X_t,X)\geq 4\varepsilon\right]\geq 4\varepsilon. \tag{3}$$

Now define $\tau_n : \Omega \to I$ by

Then there cuists

$$au_n(\omega) = \overline{m}_n ext{ for } \omega \in [\sup_{\overline{n} \leq t \leq \overline{m}_n}
ho(X_t, Y_n) < 2\varepsilon]$$

and $\tau_n(\omega) = (i,j)$ for $\omega \in [\sup_{\overline{n} \le t \le \overline{m}_n} \rho(X_t,Y_n) \ge 2\varepsilon]$, where $i = \inf\{s : n \le s \le m_n, \omega \in \bigcup_{\substack{n \le j \le m_n \\ n \le j \le m_n}} [\rho(X_{s,j},Y_n) \ge 2\varepsilon]\}$ and $j = \inf\{\ell : n \le \ell \le m_n, \omega \in [\rho(X_{i,\ell},Y_n) \ge 2\varepsilon]\}.$ It is easy to check that $\tau_n \in T^1$ with $\tau_n \geq \overline{n}$, $n \in N$. For every $n \in N$ we have

$$ig[\sup_{\overline{n}\leq t\leq \overline{m}_n}
ho(X_t,Y_n)\geq 2arepsilonig]=[
ho(X_{ au_n},Y_n)\geq 2arepsilonig] \ .$$

On the other hand

$$egin{aligned} &P\left[\sup_{\overline{n}\leq t\leq \overline{m}_n}
ho(X_t,X_n)\geq 4arepsilon
ight]\leq \ &\leq P\left[\sup_{\overline{n}\leq t\leq \overline{m}_n}
ho(X_t,Y_n)\geq 2arepsilon
ight]+P\left[
ho(Y_n,X)\geq 2arepsilon
ight]\leq \ &\leq P\left[
ho(X_{ au_n},Y_n)\geq 2arepsilon
ight]+P\left[
ho(Y_n,X)\geq arepsilon
ight],\ m\in N\,. \end{aligned}$$

From (2) and (3) we obtain the tail thin 0 of a chaires and 1.1 accessed

$$P\left[\rho(X_{\tau_n}, Y_n) \ge 2\varepsilon\right] \ge 3\varepsilon, \ n \in N.$$
(4)

But, since $P\left[\rho(X_{\tau_n}, Y_n) \ge 2\varepsilon\right] \le P\left[\rho(X_{\tau_n}, X) \ge \varepsilon\right] + P\left[\rho(Y_n, X) \ge \varepsilon\right]$ so by (2) and (4) we get

$$P\left[
ho(X_{ au_n},X)\geq arepsilon
ight]\geq 2arepsilon,\,\,n\in N\,.$$

It follows that $X_{\tau_n} \not\rightarrow X$ as $n \in N$, a contradiction. The proof of Theorem 1 is completed.

Before giving a criterion of almost sure convergence of $(X_t, t \in I)$ in terms of the convergence in law of $(X_{\tau}, \tau \in T^1)$ we need the following lemma which is a two parameter version of a result of Austin – Edgar – Ionescu Tulcea [2, p. 18].

Lemma 2. Let $(X_t, t \in I)$ and X be in $L^0(E, A)$. Then there exists a sequence (τ_n) in T^1 with $\tau_n \geq \overline{n}$, $n \in N$ such that the sequence $(X_{\tau_n}, n \in N)$ converges a.s. to X, write $X_{\tau_n} \stackrel{a.s.}{\to} X$ as $n \in N$, iff X is cluster point of $(X_t, t \in I)$ a.s. i. e.

$$P\left[\inf_{t\geq\overline{n}}\rho(X_t,X)=0\right]=1,\ n\in N.$$
(5)

Proof. The part "iff" is obvious.

To prove the part "if" we assume that X is an element of $L^{0}(E, A)$. Then there exists a sequence $(Y_{n}, n \in N)$ adapted to $A_{\overline{n}}, n \in N$, Almost sure convergence of two-parameter random processes

such that $Y_n \xrightarrow{P} X$ as $n \in N$. Therefore there exists also an increasing sub-sequence (n_k) such that for every $k \in N$

$$P\left[\rho(Y_{n_k}, X) \ge 2^{-(k+1)}\right] \le 2^{-(k+1)}, \tag{6}$$

and hence the sequence Y_{n_k} , $k \in N$ converges a.s. to X.

Now let $(X_t, t \in I)$ be a sequence in $L^0(E, A)$. Then for every $k \in N$, the sequence $(\inf_{\overline{n}_k \leq t\overline{m}}(X_t, X), m \geq n_k)$ decreases to $\inf_{t \geq \overline{n}_k} \rho(X_t, X)$, a.s.

By (5) for each $k \in N$ there exists some $m_k > n_k$ such that

$$P\left[\inf_{\overline{n}_k \leq t \leq \overline{m}_k} \rho(X_t, X) \geq 2^{-(k+1)}\right] \leq 2^{-(k+1)}.$$

Then by (6) we get

$$P\left[\inf_{\overline{n}_{k} \leq t \leq \overline{m}_{k}} \rho(X_{t}, Y_{n_{k}}) \geq 2^{-k}\right] \leq P\left[\inf_{\overline{n}_{k} \leq t \leq \overline{m}_{k}} \rho(X_{t}, X) \geq 2^{-(k+1)}\right] + P\left[\rho(Y_{n_{k}}, X) \geq 2^{-(k+1)}\right] \leq 2^{-(k+1)} + 2^{-(k+1)} = 2^{-k}.$$
(7)

Now we define $\tau_k : \Omega \to I$ by

$$au_k(\omega) = \overline{m}_k ext{ for } \omega \in \left[\inf_{\overline{n}_k \leq t \leq \overline{m}_k}
ho(X_t, Y_{n_k}) < 2^{-k}\right]$$

and $\tau_k(\omega) = (i, j)$ for other ω , where

$$i = \inf \left\{ x: n_k \leq s \leq m_k, \ \omega \in \bigcup_{n_k \leq j \leq m_k} \left[
ho(X_{s,j}, Y_{n_k}) \geq 2^{-k}
ight]
ight\}$$

and $j = \inf \{\ell : n_k \leq \ell \leq m_k, \omega \in [\rho(X_{i,\ell}, Y_{n_k}) \geq 2^{-k}]\}$. Then $\tau_k \in T^1$ with $\tau_k \geq \overline{n}_k \geq \overline{k}$ and

$$\left[\inf_{\overline{n}_k \leq t \leq \overline{m}_k} \rho(X_t, Y_{n_k}) \geq 2^{-k}\right] = \left[\inf_{\overline{n}_k \leq t \leq \overline{m}_k} \rho(X_{\tau_k}, Y_{n_k}) \geq 2^{-k}\right], \ k \in \mathbb{N}.$$

This combining with (7) implies that

$$P[\rho(X_{\tau_k}, Y_{n_k}) \ge 2^{-k}] \le 2^{-k}, \ k \in N,$$

and thus the sequence $\rho(X_{\tau_k}, Y_{n_k}), k \in N$ converges a.s. to zero.

Moreover, by (6) the sequence $(X_{\tau_k}, k \in N)$ also converges *a.s.* to X completing the proof of Lemma 2.

The following theorem gives a criterion of the almost sure convergence.

Theorem 2. For a sequence $(X_t, t \in I)$ and X in $L^0(E, A)$, the following conditions are equivalent

- (i) $X_t \xrightarrow{a.s.} X$ as $t \in I$.
- (ii) $X_{\tau} \xrightarrow{P} X as \tau \in T^1$.
- (iii) $X_{\tau} \xrightarrow{D} X$ and X is a cluster point of $(X_t, t \in I)$.

Proof. (i) \Rightarrow (ii). Suppose that $X_t \stackrel{a.s.}{\to} X$ as $t \in I$. Then by Theorem 1, $X_{\tau_n} \stackrel{a.s.}{\to} X$ and hence $X_{\tau_n} \stackrel{P}{\to} X$ as $n \in N$ for every sequence (τ_n) in T^1 with $\tau_n \geq \overline{n}$, $n \in N$. But the convergence in probability is metrizable, so $X_\tau \stackrel{P}{\to} X$ as $\tau \in T^1$. The implication (ii) \Rightarrow (iii) is obvious. It remains to prove that (iii) \Rightarrow (i). Let X be a cluster point of $(X_t, t \in I)$. Then by Lemma 2, there exists a sequence (σ_n) in T^1 such that $\sigma_n \geq \overline{n}$, $n \in N$ and

$$X_{\sigma_n} \stackrel{a.s.}{\to} X \text{ as } n \in N.$$
(8)

Now assume that $X_{\tau} \xrightarrow{D} X$ as $\tau \in T^1$. By Theorem 1 and Theorem 2 in [7], $X_t \xrightarrow{a.s.} X'$ as $t \in I$ for some $X' \in L^0(E, \mathcal{A})$ with $P_{X'} = P_X$. Then by Theorem 1, we have

$$X_{\tau_n} \stackrel{a.s.}{\to} X' \text{ as } n \in N$$
, (9)

for every sequence (τ_n) in T^1 with $\tau \geq \overline{n}$, $n \in N$. From (8) and (9) we conclude that X' = X, a.s. and $X_t \xrightarrow{a.s.} X$ as $t \in I$. This completes the proof.

For other results related to the above Theorem we refer to [1] and [3]. Here we present only the following corollary of Theorem 2 which can be considered as a two-parameter version of Theorem 2 in [8].

Corollary. Let C be an element of E and $(X_t, t \in I)$ a sequence in $L^0(E, \mathcal{A})$. Then $X_t \xrightarrow{a.s.} C$ as $t \in I$ iff $X_\tau \xrightarrow{D} C$ as $\tau \in T^1$.

Almost sure convergence of two-parameter random processes

REFERENCES

- 1. K. Astbury, Amarts indexed by indirected set, Ann. Probab., 6 (1978), 267-278.
- 2. D. G. Austin, G. A. Edgar, and A. Ionescu Tulcea, Point wise convergence in terms of expectations, Z. Wahrsch. Verw. Geb., 30 (1974), 17-26.
- 3. A. Bellow and A. Dwotetzky, A characterization of almost sure convergence, In: Probability in Banach space II. Lecture Notes in Math., Vol. 709, Springer-Verlag, 1979, 45-65.
- 4. P. Billingsley, Convergence of probability measures, New York, 1968.
- 5. R. Cairoli, Une inegalité pour martingales à indices multiples, Lecture Notes in Math., 124 (1970), 1-27.
- 6. R. Cairoli and J. B. Walsh, Stochastic integrals in the place, Acta. Math., 134 (1975), 11-183.
- 7. Dinh Quang Luu and Nguyen Hac Hai, On the essential convergence in law of twoparameter random processes, Bull. Pol. Acad. Sci. Ser. Math. Phys. Chem. (to appear).
- 8. D. Szynal and W. Zieba, On some characterization of almost sure convergence, Bull. Pol. Acad. Sci. Ser. Math. Phys. Chem., 34, No.9-10 (1986), 635-642.

Received July 22, 1993 Revised February 2, 1994

Department of Mathematics, Pedagogic College I of Hanoi, Hanoi, Vietnam