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ON ALMOST SURE CONVERGENCE OF
.TWO_PARAMETER 

RANDOM PROCESSES1

NGUYEN HAC HAI

Abgtract. The aim of thia rutc ir ta 11ioe aome critcda ol dmod tte,ac @nrrer-

letue of fuioprcmctnr mrfum pftncEcet.

1. INTRODUCTION

Convergence of two-parameter martingales and ama.rts have con-
sidered by Cairoli [5], Cairoli-Walsh [6] and some others. Fbrther, some
types of convergence of discrete para^rneter random processes in Polish
spaces were studied by Billingsley [4], Szynal -Zieba [8] etc. The main
aim of this paper is to prove some criteria of almost sure convergence
of two-parameter random processes in Polish spaces.

2. DEFINITIONS AND BASIC FACTS

Throughout this note, let (fr, A,P) be a complete probability space
and .I - {t : (i, j) , i, j e N}. Then .[ is a directed set with the usual
partial order given by: t : (i,i) 1t' : (i',i') iff i < r' and i S it..
Further, assume that we are given an increasing sequence (A1, t € f) of
complete sub-o-fields of I with I : 

J, 
17, where n : (n,n), n e N.

A function r : O -+ .I is said to be a bounded l-topping time, write
r e Tt, iff r is finitely-valued and the set {r : (i,i)} € l,l for every
(r,r) e .f, where Al : Y A;i for any I e N. Thus ?r is also a direct

j > L

set with the partial order defined by r ( r'ifr r(w) < ,'(w) almost
surely (o.").

lThis work was partially supported by the National Basic Reeearch Program
for Natural Sciencee and by the Program "Applied Mathematicsn of NCSR'
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Let Lo(E,l) stand for the space of all l-measurable random el-
ements defined on O, taking values in a Polish space (E,p). Then, a
sequence (Xt, t € /) in Lo(E,l) is said to be adapted to (At, t € I)
if. Xt e Lo(E,lr) for every t € I. Next, given an sequence (Xt, t € I)
adapted to (11) and r € Tr, we define X, : O ---+ .E and A, c A by

X , ( r ) :  X ,@) (u )

a n d  A , :  { A  €  A :  A f l  [ r  :  ( i , r ) ]  e  A l ,  ( ; ,  j )  €  / ] .

As in the discrete case, (A, r € ?t) is an increasing family of
complete sub-o-fields of A and, X, e Lo(E, Ar) for all r € Tr.

Now we recall some definitions.

Definition l. A sequence (Xn, n € N) in Lo(E,l) is said to converge

in law to some X in Lo(E,l), write X* I X as n € N, if the sequence
(Px-, r, € N) of the probability distributions of X,n, n e N converges
weakly to the probability distribution Px of X (see [a]).

Definition 2. A sequence (Xt, t € /) in Lo(E,l) is said to converge
a.s. to some X in Lo(E,.{), write XtT' X as t e T, if.

P

where p is metric in the Polish space .8.

3. MAIN RESULTS

The following lemma is immediate from,Definition 2.

Lbmma l. A sequence (X1, t e I) conaerges a.s. to X if and only if
l o r t ve ry  e>0  the re  ea i s t s  somen(e )eN such tha t fo r  a l l n>  n (e )

P [sup p(Xt ,X)  > r ]  S e.- t>a,

Theorem l. A sequence (X1, t e I) conuerges a.s. to X ;tr for every
(r*) in Tr with ro 2fr, n € N, X,-T' X as n € N.

Proof. Assume that Xs !:| X as t € ? and (rr) is a sequence in ?1
with r,n ) fr, n € N. Then for every n € N,
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supp(X,k,X) S sup(Xr,X),  o.s.
k ) n  t > n

Thus, by Definition 2,

331

1>  P  [_ t im  supp(X" * ,X ) :0 ]  >P  [ - t i n^supp(Xr ,X )  :0 ]  :  r .' n+oo 
k>n 

-  n+oo f t ) ' i

It means that Xr. 2:' X as z € .l[.

Now suppose that XrT X ast €T. Define 
"" 

: ; lg p(Xt,X),

n € N. Then the sequence (s,n, n € N) is decreasing. By virtue of
Lemma 1. there exists e > 0 such that for all n € N

P [s-  > 8el  )  8e. (1 )

Further, since X € Lo (8,.{) there exists a sequence Yo, tu € N such
that Y, € Lo(E,An),n € N and (Yn, n € N) converges in probability

to X, write Y* 3 X as n --+ oo. Then we can find some ze € N such
that

P lp(Y",X) > e] ( e, n 2 n(e) .

But for every n € N

lim sup p(Xt,X) : s,, (4.s.) ,
m+oo n<t<fr

then by (1), for every n € N there exists some tun ) n such that

P I sup p(Xt,X) > +e) > te . (3)
i< t { tn .  

r

Now define rn i O -t / by

r^(w) - rnn for o € [ sup p(Xt,Y.) < Zel
a<t<fi^

and r"(w) -- ( i , j )  for u € [ t t tp p(Xt,Y,)
i< t<rzrn

i - i n f { s i n
n 1 j l m n

j : infP, : n 1 I 1 ntn, w e lp(X;gYn) 2 ztl\.

(2)
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It is easy to check that r,n € ?l with rn ) fl, ,n € N. For every
n € N w e h a v e

r
L sup
i < t < m n

On the other hand

p(Xt,Y") 2 2e) - lp(X,.,Y*) > Zel .

P I sup p(Xt, X^) > arl <' r . < t< rn *

< P I sup p(Xt,Y") 2 ze) + P lp(Y*,X) > 2rl 3
i< t<tn^

3 Plp(X,^ ,Yo)  > ze l  +  P lp(Y" ,X)  > e) ,  rn€ N.

From (2) and (3) we obtain

P [ p ( X , ^ , Y . ) 2 2 t ] 1 >  3 e ,  n  €  N .  ( 4 )

B u t ,  s i n c e  P l p ( x , . , Y n ) Z 2 r l S P l p ( x , ^ , X )  >  e l +  P t p ( Y " , x )  2  r l
so by (2) and (4) we get

Plp(x,^,x)  > e l  )  2e,  n € N.

It follows that X,^ 7 X as n € N, a contradiction. The proof of
Theorem 1 is completed.

Before giving a criterion of almost sure convergence of (X1, t € I)
in terms of the convergence in law of (X", r € Tt) we need the following
lemma which is a two parameter version of a result of Austin-Edgar-
Ionescu Tulcea [2, p. tA].

Lemma 2.  Let  (Xt ,  t  e  I )  and.  X be in  Lo(E,A) .  Thenthere er is ts
a sequence (rn) in Tr with rn ) n, n € N such that the sequence
( X r - , n  € N )  c o n u e r g e s a . s . t o X , w r i t e X r ^ T  X  a s n e  N , i f f X  i s
cluster point of (Xt, t € I) a.s. i. e.

r l igf_o\t,x) :o] 
- l ,  n € N

Proof . The part "if is obvious.

To prove the part "ifl' we assume that X is an element of Lo (8, A).
Then there exists a sequence (Yn, n € lf) adapted lo An,, n € N,

(5)
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such that Y^ I X as n € N. Therefore there exists also an increasing

sub-sequence (np) such that for every fr € N

P lo(Y,*,x) > 2-(t+t11 s 2-(k+r) '  (6)

and hence the sequenceY,,* k € N converges a.s. to X.

Now let (Xr,t € 1) be asequence in Lo(E,l).  Then for every /c €

N,  the sequence (o;21^{Xr ,X) ,  m,  
"o)  

decreases to  
,9*  

p(Xt ,X) ,

a . s .

BV (S) for each k e N there exists some tn,c ) n1 such that

P | -  i ,nf,-  p(xr,x) 2 2-(t+t)1 S 2-(t+t;  .
' i p 1 t l m p

Then bV (0) we get

p l -  in f , -  p (x1 ,Yn* )>z-o lsP[ -  i+ t - -  p (x t ,x )  >2- ( t+ t l1' n t< t< rn * '  '  f r p l t (m*

*  P  lP(Y^r ,  X)  >  2 - (k+r ) ]

4  2 - ( r + r )  +  2 - ( k + r )  : 2 - k .  ( T )

Now we define r1 : O --+ f by

,*(r) - m1, for u € [o_ ]]{r_ 
p(Xt,Y**) < 2-o)

and r1(r) :  (f , f) for other tr,  where

i : i n f  { r , n o ( s S m 1 " , w €  U  l o ( X " , i , Y n r ) } r - * ]  }t  
n1"3i 1rn1,

and l :  in f  { l  ,  n1 ,  <  ( .  <m1, ,  e  €  lo (x ; ,uY^* )  22- r l ) .  Then

r p € T r  w i t h r l  ) n y )  k a n d

I  i " r _  p ( x t , Y n , ) > 2 - o l : | -  i + t -  p ( x r 1 " , Y n 1 , )  > 2 - * ] ,  / c € N .
L  n p < t < r n 1 , "  t  t i k l t ( m x

This combining with (7) implies that

P lp(x , r ,Yn*)  >  z-n l  3  2-k ,  k  e  N,



334 Nguyen Hac Hai

and thus the sequence p(XrkrYnr), k g N converges o.s. to zero.

Moreover, bV (O) the sequence (Xr*, /c e N) also converges o.s. to
X completing the proof of Lemma 2.

The following theorem gives a criterion of the almost sure conver-
gence.

Theorem 2. For a sequence'(X1, t € I) and X in L}(E,A), the
following conditions are equiualent

( i )  X t 2 3 ' X a s t € 1 .

( i i )  X "  3 X o , , € T r .

(iii) X, 3 X and X is a cluster point of (Xb t e I).

Proof. ( i)  + ( i i) .  Suppose that Xrt j 'X ast € /.  Then by Theorem
!, Xr-n ?S' X and hence Xr- 3 X as n € N for every sequence (r,")
in ?r with rr. ) fr, n € N. But the convergence in probability is
metrizable , so X, 3 X as r € Tr. The implication (ii) =+ (iii) is
obvious. It remains to prove that (iii) =+ (i). Let X be a cluster point
of (Xr, t e I). Then by Lemma 2, there exists a sequence (o,") in ?l
such that on) n, n € N and

x o ^ 2 5 ' X a s n € N . (8)

Now assume that X, I X as r € Tr. By Theorem 1 and Theorem 2 in
I7l ,  xr?S'  x 'as f  €, I  for  some x 'e Lo(8, .4)  wi th Px,-  p26. Then
by Theorem 1, we have

X r . o S ' X t a s n € N , (e)
for every sequence (r") in ?r with r ) fr, n € N. From (S) and (9) we
conclude that X' : X, a.s. and X1 23' X as I € /. This completes the
proof.

For other results related to the above Theorem we refer to [1] and
[3]. Here we present only the following corollary of Theorem 2 which
can be considered as a two-parameter version of Theorem 2 in [a].

Corollary. Let C be an element of E and (Xt, t e I) a sequence in
L j (E,A) .  Then X1"S'  c  as t  e  I  ; f l i  X,3 C o,  r  €TL.
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