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ASYMPTOTIC ERROR EXPANSIONS
IN DIFFERENCE METHODS FOR EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS!

TA VAN DINH

Abstract. The paper deals with numerical methods for solving third boundary
value problems for a stationary diffusion-convection equation unth discontinuous
coefficients. A difference scheme which satisfies the mammum principle with
any grid stepsize is investigated and an asymplotic expansion of higher order s
presented.

1. INTRODUCTION

In a finite difference method when the error admits an asymptotic
expansion with respect to the grid stepsize, the Richardson extrapola-
tion to the limit can be used for accelerating the rate of convergence
of the method. It reduces the necessary number of algebraic equations
to be solved and thereby provides a very efficient algorithm concerning
both computing time and storage requirements. Many delicate inves-
tigations about such expansions have been done (see [1]-[6] and the
references in them). However very few authors pay attention to the
problems with discontinuous coefficients. In {3, p.68-98] an asymp-
totic error expansion for the first boundary value problem for second
order self-adjoint ordinary differential equations with discontinuous co-
efficients is presented. The non self-adjoint equation with continuous
coefficients is considered in 7, 8] but without asymptotic error expan-
sion. In this paper we consider the third boundary value problem for
unidimensional stationary diffusion-convection equations with discon-
tinuous coefficients. A difference scheme which satisfies the maximum
principle for any grid stepsize and the existence of an asymptotic error
expansion of higher order are presented.

1This publication is completed with the financial support from the Naticnal
Basic Research Program in Natural Sciences, Vietnam.
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2. DIFFERENTIAL PROBLEM
Let 4 be a non—negative integer and £ €]0, 1|, « €]0, 1[. We define

CH*%la, b = {®|® € C¥a, b], |8(#)(z) — ®(#)(2')| < const.|z — =<,
z, ' € [a, b]} ,
QZ+A[0a 1] = {‘I’ |® € CHTH0, ¢], @€ C*TA¢, 1], A=0or o}.

The differential problem to be considered is

Lu:=(Au) +Bu' —qu=f, 0<z<1, z#¢, (2.1)
lew := Au'|z=gr0 — Au'|s=¢—0 — o¢u(€) = g¢,
u(§+0) =u(¢ —-0) =u(f), (2.2)

lou = A(0)w'(0) - 90u(0) = go,
Liu = AQ)u'(1) + oyu(l) = g1, (2.3)

where A, B, ¢, f are given functions satisfying

A>const >0, ¢g>0, A€ QZH'H'\[O, 1], B,gq, f € Q’en+’\[0, 1],
(2.4)
for a non-negative integer m and the given real numbers o9, 01, o¢, go,
g1, g¢ satisfying

002>0, 0 20, 0¢ >0, 0p+0;>0. (2.5)

Applying the method of [1, ch. 1] we can prove the following lemma.
Lemma 1. The problem (2.1) - (2.5) has unique solution u:

ue QP Ao, 1N Cl0,1], A=0or a. (2.6)

3. DIFFERENCE SCHEME (DISCRETE PROBLEM)

3.1. Grid

Let No and N; be two positive integers and let us denote

N = Ng+ N, hozf/No, hlz(l—f)/Nl, ’7=h1/ho=C0nSt.
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:E,;Ziho, 0<:< Ny and:v,-=£+(i—No)h1, N0<ZSN,
In the following we put

b _{ho when z; < ¢,
Y7\ h; when z;> €.

The set wp, = {z;, t = 0, N} is called a grid on [0, 1], each point z; is
called a grid point. The grid point zy, falls exactly at z = £.

A function v defined at each point of wy, is called a grid function
or discrete function. The value of v at z; is denoted by v;. We define
the difference quotients v, and vz of v at = = z; as follows:

0= Vi41 — Vi , vz, = Vi — Vi1 )
' Tip1 — T¢ i — Zi-}
3.2. Discrete problem (difference scheme)
Let
: BT =0.5(B +|B|), B~ =0.5(B — |B|)
so that
B=Bt+B~, |B|=Bt-B~.
Define the discrete functions e, %, b=, d, f, R®), r(*) and r by
putting:
a; = A(z; — 0.5(z; — zi-1));
bf = Bt (z:)/A(z:); b = B (z:)/A(z:);
di = q(zi); fi = f(zi), i # No, 0, N;
Rf") = 0.5h,|B(z;)|/A(z:), v =0, 1;
r) =1-RVW +(RM)?, v=0,1, i # No;
{ (T(O)),; for ¢+ < No,
=
(r(l)),- for ¢ > Ny.

Consider also the quantities:

So = 0.5hoB(0)/A(0), so =1+ So+ (So0)?;

Sy = 0.5k B(1)/A(1), s1=1- 51+ (51)%;

Sg = 0.5hoB(¢ ~0)/A(E - 0), sg =1-— S¢ +(8¢)%;
S§ = 0.5k B(£ +0)/A(¢ +0), sg =1+8H+1(8f)°



294 Ta Van Dinh

Note that for any hy we have

iy S0, S1, sg, S-; 23/4 X

We shall consider the following discrete problem (difference scheme),

associated with the differential problem (2.1)-(2.5)

Lpv :=r(avz), + btat Vv, + b~avz —dv = f,
o) =a;py, fi=f(z:), 0<i< N, i#No,

lepv = s'f"aNOHv,No — SEGNOUENO
- {0’5 =t Os[hlq(£ + O) = hOQ(f - 0)]}vNo = fNo ’
fNo =g¢ +05[h’1f(E + 0) + hof(f = 0)] ’

lo},’v = 80Q1Vz0 — [0’0 ot 0.5hoq(0)]v0 = fo ,
fo = go +0.5hof(0),

llhv = 81aNVzN + [0'1 ‘+‘0-5h1q(1)]vN = fN ’
fn =g1 —0.5h,f(1).

4. THE RESULTS

4.1. Monotony

Since
r>0,a>0 b">0,b"<0,d>0,¢>0,

so>msl>ms?>msg>o,
0020,01,20,00+0; >0, 0 >0,

we can prove the following property.

Theorem 1. For any grid stepsize ho, the difference scheme (3.2)-

(3.5) satisfies the mazimum principle, that is:
1) If v is not constant and
Lpv 20, lepv >0, lopv >0, ljv <0,

then v does not attain its positive maztmum value tn wy,.
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2) If v is not constant and
Lrv <0, lgpv <0, lopv <0, l1pv >0,
then v does not attain its negative minimum value tn wy,.
If the difference scheme satisfies the maximum principle then we

say that it is monotone, and if the difference scheme is monotone for
and hg then we say that it is unconditionally monotone.

In this sense the scheme (3.2) —(3.5) is unconditionally monotone.
Using this fact, we can prove the existence and uniqueness of its solu-
tion.

4.2. Solution of the discrete problem
The problem for v can be written as follows.

Avi_1—Civ;i+ By =Y, 1<i<N, (4.1)
vo = pov1 + Yo, v~ =p1vNn—1 + YN, (4.2)
where
A; = ai(ri —hyb;), Bi= ai+1(ri + hyb?) , (4.3)
C.'=A,'+B,'+h?d;, 1 # Np, (4.4)
0AN, = sgan,, By, = sfany+1/7> 7= h1/ho = const,

| (4.5)

Cno, = AN, + BN, + ho{o¢ +0.5[h1g(€ +0) + hog(£ — 0)]},
(4.6)
po = soa1/{s0a1 + holoo + 0.5h0g(0)]}, (4.7)
p1 = s1an/{s1an + hi]o1 + 0.5h1q(1)]}, (4.8)
Yi=hlf;, i#No,O, N, (4.9)
Yw, = hofn, » (4.10)
Yo = —hofo/{s0a1 + holoo + 0.5hoq(0)]}, (4.11)
Yn = hifn/{s1an + hi[o1 + 0.5h1¢(1)]}, (4.12)

and f; ({=0,1,2,..., N) are defined as in (3.2) - (3.5).

By assumptions (2.4), (2.5), properties (3.1) and (4.3) - (4.8), for
any stepsize hg we have

A; >0, B;>0, C;>A;+B;, 0<i<N, (4.13)
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0<po<1,0<p1 L1, po+p1 <2, (4'.14)
|A,‘ =3 B,'l < Mjihg, M; =const >0, t# Np, (4.15)
1 A; : ‘ _
— < =< M,;, My = t>0, 1=N,. 4.16
M, B; 2 2 = CONs y ¢ 0 ( )

With the aid of (4.13), (4.14), we can write the sweeping formulae
for computing the solution of the problem (4.1), (4.2), that is (3.2) -
(3.5), which are numerically stable (see [8, p.42—44]).

4.3. Stability

Now for any grid function z defined on wy , we define the norm
||zl = max{|z]}, 0<i<N.

Taking into account the sweeping formulae for solving the problem
(4.1), (4.2) (see [8, p.42—44]) and the relations (4.3) - (4.16) we can
prove

Lemma 2. For any posittive grid stepsize hg,

[lvl| < const - || f],
where f = (fo, f1,..., fN) are the right-hand members of the problem
(3.2) - (3.5) and v is the solution of that problem.
4.4. Asymptotic expansion for the error

First we introduce a notation. Assuming that
A
w e Qt[0, 1]nClo, 1]. (4.17)
We denote by p(h) a quantity which depends on w and h (h > 0)
with the following properties:
olh) ifAr=0,
h) =
o() { O(h®) if A= a,

where o(h) — 0 when h — 0 and lﬂh’;_“)_’ < const.

Lemma 3. For any h > 0, we have
o —~ B
w(z +h/2) = w(z) + 3 5wV(2) + hp(h),

1=1

z,z+h/2€(0, ] or (¢, 1];
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b} » » (—1)‘hi
w(z —h/2) = "{(z) + 2 W"’(’)(z) + k*p(h),
z,z—h/2€]0, € or [¢, 1];
) by izt ) —w(z)  #Y
Aet3) =T = L e
k=0
h [(n—2)/2| :
Gl 2 Z hzktpk(w) + h”_lp(h) .
k=0
z, z+h €0, € or [ 1];
2 [(r—2)/2]
> hpi(w) + k4 2p(h),
z, z+h, z—h €0, £ or [, 1],
where
B (Aw(2i+'1))(2j)(z)
¥a(w) = H_zj;k (2 + 1)!(2)12%+%

B (Aw(2i+1))(2j+1)(z)
ZORDY (20 + 1)1(25 + 1)122i+27

i+y=k
Note that ¢o(w) = Aw’' , o(w) = (Aw')’.

Proof. By Taylor’s formula we have

w(:c+h/2 = w(z) +Z wd(z )+—w(“)(z+0h),

2%
0<b<1
Since by assumption (4.17) w(#) € Q0,1 and z, z+ h € [0, ¢] or
[€, 1], we have ;
w®(z + 0h) — w¥) (z) = p(h),
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and hence

w¥)(z + 0h) = w(u)(z) + {w(u)(_,,, + 6h) — w(n)(z)}
= w(2) + p(h).

This first implies a) and then b), ¢), d).
Applying Lemma 3 we can prove

Lemma 4. If w € Q'g+2+)‘[0, 11N C[0, 1], A =0 or o, then

(/2]
Lyw=Lw+ Y _ hZ¥Fp(w) + hip(ho), i # No, 0, N,
k=1
(/2] (n/2] |
lghw =lew+ Y hP*Gr(w)|a=gro — Y h3*Gi(w)|ome-o
k=1 k=1
(1/2]
+0.5h1[Lw+ Y h*Fy(w)]
k=1
(1/2]
+ 0.5h¢ [Lw + Z hZk (w)]
k=1

z=£+40

=£—0 + hgp(ho) ’
(#/2]
lon = low + Z he*Gr(w)|z=0
k=1
[#/2]
+ 0.5k [Lw +Y hngk(w)]
k=1

- + h‘gp(ho) )
(/2]
l"lh = llw i Z h%ka(w”z:l
k=1
(1/2]
~ 0.5k [Lw+ Y hi*Fi(w)]|

o hgp(hO) ]
k=1 1

where Fi(w) and Gi(w) depend upon w and the derivatives of w as
follows:
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B2
Fi(w) = pr(w) + Z k() + § 5z 0r-1(0),

1 B® (4.18)

Gr(w) = va(w) + 2B o) + 22 dmi(w),

4A 4 A2
Fk(U)) = ng—2k+z\ .

Now assume that wg, k=0, 1,..., [m/2], are functions satisfying

w, € QT2+ 0, 1]n Clo, 1] . (4.19)
We put
P (/2]
szz:hgkwk, z2=v—S,, wy=u, (4.20)
k=0

where wo = u is the solution of the differential problem (2.1) - (2.5) and
v is that of the discrete problem (3.2)-(3.5). Applying Lemma 4 we
have

Lemma 5. Under the assumption (4.19), we have

(m/2]
L}uz = - Z hgk[ka + Ek] + thP(ho) ? 7‘75 NOa 0, Na
k=1
{m/2]
lenz = —0.5hy Y h3*[Lwk + Exllz=¢+o
k=1
[m/2]
—0.5h0 Y h3*[Lwk + Ex]lz=¢—o
k=1
(m/2]
— Y hZ*[lewk + Hilz=g+o — Hlz=¢~o] + h3s(ho) ,
k=1
[m/2]
lonz = —0.5hg Y hZ¥[Lwi + Ex)lz=o
k=1
(m/2]
— Y h&¥(lowk + HY)|z=o0 + 7' p(ho) ,
k=1
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[m/2]
linz =0.5hy Y hZ¥[Lwi + Exlz=1
k=1
[m/2]
= 3 B2 (lywk + HY)om1 + A p(ho)
k=1

where A
Y. Fr—j(w;) if 0<z<E,
=0

k—1 _
Y. 12(""-’}Fk_j(wj) if E<z<1,

=0

k—1 k-1 '
HY =) Gi-j(w), Hi=) Y* G ;(w)),

Er =

and by (4.18) m—2k+X
BecQr 0, 1] (4.21)

Lemma 6. There ezist functions wi satisfying (4.19) so that the grid
function z defined by (4.20) verifies the following discrete problem

Lpz =y; = h'p(ho), t #0, No, N,
lenz = yn, = hg'p(ho),

lonz = yo = hg'p(ho)

linz = yn = hg'p(ho) .

Proof. We choose wo = u and determine wg, k = 1,2,..., [m/2],
satisfying

Lwy=—-Ex, 0<z<l, z#¢ (4.22)

lewk = ~Hy|s=¢+0 + Hilz=¢-0, wk(§+0)=wi(§-0), (4.23)
lowy = —HP|z=0 , (4.24)

Lwg = —Hi|z=1 . (4.25)

By (2.6) wo = u € Q70,1 N C[0,1]. So (4.21) yields that
E, € QZ"—H’\[O, 1]. Hence w, is determined by Lemma 1 and be-
longs to Q'ﬁn+’\[0, 1]nC|0, 1]. Again, by (4.21) E; € Q'e"_4+'\[0, 1} and
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so wy is determined by Lemma 1 and lies in Q?"Z’L)‘[O, 1]nCjo, 1],
etc. Thus, with wo = u the sequence of problems (4.22) - (4.25) de-
termine wy successively from k = 1 to k = [m/2], which satisfy (4.19)
and are independent upon ho (because the problems (4.22) - (4.25) are
independent upon ko).

With these [m/2] functions wy, the right-hand side members of the
equations in Lemma 5 can be reduced so that Lemma 6 is proved.

Taking Lemma 2 into account we can deduce from Lemma 6 that

2]} < [lyll = kg p(ko) -
So we have

Theorem 2. Under the assumptions (2.4) — (2.5) there exist [m/2| func-
tions wg, k = 1,2,..., [m/2], which are independent upon ho but de-
pendent on v and satisfy (4.19) such that

[m/2]
vi —u(zs) = Y h&we(z:) + kT p(ho) - (4.26)
k=1

This is the asymptotic expansion of order 2[m/2| for the error v; —
u(z;) with respect to the grid stepsize parameter ho.

Remark. Consider the particular case when B = 0 and o, = 0. Then
the equations (2.1), (2.2) coincide with (3.1), (3.3), (3.4) of (3, p.87]
and the corresponding difference equations coincide with those of [3].
The boundary condition (3.2) in 3] is simpler than (2.3). As a result
we have obtained (4.26). In comparison with (3.16) of (3, p. 90] we note
that, when m is odd, the first parts of (4.26) and of (3.16) of {3] are the
same because in this case [(m — 1)/2] = [m/2]. When m is even, (4.26)
have one term (h3*w|s,/2]) more than (3.16) of [3] because in this case
[(m—1)/2] = [m/2] - 1. Besides that, the remainder in (4.26) is smaller
than that in (3.16) of [3] by the factor p(ho) which tends to zero when
ho tends to zero.

So our problem is more general and our result is somewhat better.
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