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ON THE EXISTENCE OF BAYESIAN ESTIMATES
IN MULTIDIMENSIONAL NONLINEAR STATISTICAL
MODELS WITH COMPACT PARAMETER SPACE

UNG NGOC QUANG

Abstract. In this note, we investigate the existence of Bayesian estimates for
the location parameter 8 € © and for the variance component a? in the nonlinear
statistical models X = ©(0) + &, where X 1s a random vector of observations
and © is a compact subset of the finite—dimensional normed linear space F.

INTRODUCTION

An important problem of mathematical statistics is investigating
the linear and nonlinear statistical models (see [1], [2]). In [3] we proved
the existence of Bayesian estimates for the location parameter and for
the variance component in one-dimensional nonlinear statistical mod-
els.

In this paper, by the functional analysis method, we shall investi-
gate the existence of Bayesian estimates in multidimensional nonlinear
models.

First of all, we give some notations:

E, F : finite-dimensional normed linear spaces.

B(E), B(F) : o-algebras of all Borel sets in the spaces E, F.

M(nxq), M(pxr) : spaces of all n X g-matrices and pX r—matrices.

B(nxgq), B(pxr): o-algebras of all Borel sets in M (nxgq), M(pxr).

R"™, RP : n—dimentional and p-dimensional Euclidean spaces with
the standard scalar product (:,).

K : closure of a set K.

1. STATISTICAL MODELS

Let us consider the following statistical models:

X = p(6) + ¢, (1)
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where:
X is an observed random variable, taking the values in E,
€ is a random error variable, taking the values in E,
0 is an unknown parameter, § € ©.
O is a subset of F, and
@ is a known function, p : © — E.

The model (1) is called a multidimensional linear model if © is a
linear subspace of F', and ¢ is a linear function. The model (1) is called
a (g, r)-dimensional linear model if E = M(n x ¢q), F = M(p x r). If
g=r=1(.e M(nxgq)=R" M(pxr)= RP), then (1) is called
one-dimensional linear statistical model (see [1]).

The model (1) is called a multidimensional nonlinear model if
either © is a nonlinear subset of F or ¢ is a nonlinear function (see
[2], [3]). If © is a compact subset of F, then (1) is called a multidimen-
sional nonlinear model with compact parameter space. If E = M(nxgq),
F = M(pxr)and © is a compact subset of M(px r), then (1) is called
a (g, r)- dimensional nonlinear model with compact parameter space.
Ifg=r=1(i.e. M(nxq) = R", M(pxr) = RP), then (1) is called an
one-dimensional nonlinear model with compact parameter space (see
3)-

As we have known, for a random variable X, there exists a condi-
tional regular distribution p*X? (see [4]). We shall use symbol Q4 to
denote pX1?.

Assume that y is a o-finite measure in the space (E,B(E)) and
Q¢ < p for every § € © C F. Then by the Radon~ Nikodym theorem
there exists a function fg(z) such that

i Qg(dz)

olz) pu(dz)

Definition 1.1. A function h : (E,B(E)) — (F, B(F)) is called an es-
timate of the parameter 8 € © C F if it is a Borel measurable function.
A Borel measurable function h is said to be bounded if it satisfies the
condition:

sup || A(z)||r < +oo.

zcE

Let B(E, F) denote the space of all bounded Borel measurable func-
tions from E to F. Clearly, it forms a class of estimates of the parameter
6O CF.
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A Borel measurable function h from E to F is said to be essentially
bounded measurable if there exists a set B € B(E), u(B) = 0 such
that:

sup ||h(z)||F < +oo.
z€E\B

Let us denote by L°(u, E, F) the space of all essentially bounded
measurable functions. Clearly, it is a class of estimates of the parameter

fcOCF.

2. ON THE EXISTENCE OF BAYESIAN ESTIMATES
FOR THE LOCATION PARAMETER

First, let us consider the compact parameter space ® C F. By
B(©) we denote the o—-algebra of all Borel sets in the space ©.

A probability measure 7 in (©, B(©)) is called a priori distribution
of € © C F.

Definition 2.1. Suppose H is a function defined by
H:Ex© - Fx0, H(z,0) = (h(z),0),

and L is a function

L:Fx®—>R =0, +oo].
Then the composed function defined by

L(h(z),6) =LoH:Ex®© - R'

is called a loss function.

Next, let us consider the measurable spaces (E, B(E)), (F, B(F)),
(0, 8(0)), (—R—+, B(—I§+)), where B(F+) is a o—algebra of all Borel sets
inR".

Now, we define:

A={AxB:AcB(E), BeB(0)},

¢C={CxB:CecB(F), BeB(©)}.

Let B(E) x B(©) denote the o-algebra generated by 4, B(F) x B(O)
denote the o—algebra generated by C. Then, the following propositions
are well-known:
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Proposition 2.1. Let L be a (B(F) x B(©), B(§+))—mcasumble func-
tion. Then the loss function L(h(-),') is a (B(E) x B(©), B(ﬁ+))—mea-

surable function.

Proposition 2.2. The classes of estimates B(E,.F) and L*°(u, E, F)
are Banach spaces with the following norms:

Il 5(z,r) = sup [[A(z)]|r ,

hlloo = inf su h .
oo =, 8, sup_Ie)ls

By Propositions 2.1, 2.2, we can define following Bayesian estimate.

Definition 2.2. A functional ¥ : B(E,F) — R is said to be a
Bayesian risk function with a priori distribution 7 if

/ / 0)Qs (dz)r(ds)
/ / o(o)u(da)r(d9)).

An estimate h € B (E, F) is said to be a Bayesian estimate of the
parameter § € © C F with a priori distribution if

Y(h)= _inf (k).

heB(E,F)

Definition 2.3. A functional ¥ : L®(u,E,F) — R is said to be a
Bayesian risk with a priori distribution 7 if

Y(h) = // 0)Qo(dz)r(d8)

= [ [ 262, 0150(0)(ao)r (a9)).

An estimate h € L*°(u, E, F) is said to be a Bayesian estimate of
the parameter § € ® C F with a priori distribution 7 if

$(h)= _ inf (k).

heL* (u,B,F)

Theorem 2.1. Let K be a class of all estimates of the parameter
0 € © C F satisfying the following conditions:
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(i) h(E)c©, YhEe K.
(ii) For any € > 0, there ezist a finite partition {E;}7., C E and
points z; € E;, 1 =1,..., m such that

sup ||h(z) — h(z:)||lFr <€, VREK, Vi=1,...,m.
TEE;

(iii) There ezists C > 0 such that:

|L(y,0) — L(y',0)| < Clly—¢'llr, Yy,y' € F, V€ O.

Then K is a relatively compact subset of the space B(E, F) and in
the class K there exists a Bayesian estimate.

Theorem 2.2. Let K be a class of estimates of the parameter

6 € © C F, satisfying the following conditions:

(i) h(E) C © (modp), VRE K.

(ii) For any € > 0, there ezist a finite partition {E:}[2, C E and
points z; € E;, 1 =1,..., m such that

(@) ||h(z:)||F, is uniformly bounded for h€ K and i =1,..., m.

(b) For each h € K there exists B € B(E) with u(B) = 0 such that

sup ||k(z) — h(zi)|F <e, (1=1,..., m).
ZEE.'\B

(iii) There exists C > 0 such that

IL(yvo) - L(y"a)l < C”y al y,”F ’ Vyay’ = F, VoeO.

Then K is a relatively compact subset of the space L*°(u, E, F) and
in the class K there exists a Bayesian estimate.

3. ON THE EXISTENCE OF BAYESIAN ESTIMATES
FOR THE VARIANCE COMPONENT

In this section we shall investigate the existence of Bayesian esti-
mate for the variance component in the (g,r)-dimensional models.

First, let R™? be the ng-dimensional Euclidean space. Let us con-
sider the following mapping T : M(n x ¢} — R™, defined by
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T(A) =A= (allaaZIa*"vanlv al?aa’22""aan2,"', Q14,02 1"')anq)7
q q

where A = (a;;) € M(n x ¢) and A is a ng-dimensional vector.
Obviously, T is a linear mapping of M(n x g) onto R™. Moreover,
T is an isometry of M(n x g) onto R™,
Now, let us consider the following (¢,7)~dimensional nonlinear mod-
el:

X =p(0) +e, (1)

where X is an observed random matrix, taking the values in M(n x q)
and ¢ is a random error matrix, taking the values in M(n x q).

The covariance matrix D(€) of the ng—dimensional random error
vector € is called the variance component of the random error matrix .
We will denote by Vare the variance component of the random matrix
€. For each k, let Mz(k x k) denote the space of all non—negative
definite s x s-matrices. We shall assume that, for non-linear model
(1), Vare = ¢(0?), where ¢ : M2(s x s) — MZ=(ng x nq) is a known
nonlinear function and o2 is an unknown parameter, 02 € M2 (sxs) C
M(s x s).

In this section we shall estimate unknown parameter 0% ¢
M?Z(s x s). This unknown parameter o2 also is said to be a variance
component.

Definition 3.1. A Borel function h : (M(n x g, B(n x q)) —
(M(s x s),B(s x s)) is called an estimate of the variance component
o€ MZ(s x s).

As we have known, for a random matrix X there exists a conditional
regular distribution px"’z, where 02 ¢ M2 (s X s). Denote by Q- the
conditional regular distribution px102 and assume that Q,: < pu, for
every 2. Then, there exists fo2(z) such that

Q02 (d.’E)
() = 22 )
(=) p(dz)

Denote by B(M(n x ¢), M(s x s)) the space of all bounded Borel
measurable functions and by L>(u, M(n X g), M (s x s)) the space of all
essentially bounded measurable functions from M (n x gq) to M(s x s).
Then, they are Banach spaces with the norms

Al B(M(nxq),M(sxs)) =  sup 1A ()|l M (sxs) 5
zEM(nxq)
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hilec = inf sup h(z sdoad
Ihleo =, nf ,_ swp (e o

)
Theorem 3.1. Let K C B(M(n X q), M(s x s)) be a class of estimates

of the variance component o € MZ(s x s), satisfying the following
conditions
(i) h(M(n x q)) c MZ(s x s), Yhe K.
(ii) For any € > 0, there ezist finite partition {E;}2;, C M(n X q)
and points z; € E;, 1 =1,..., m such that

sup ||h(z) — h(z:)||m(sxs) <€, VREK, Vi=1,..., m.
zcE;

(iii) There ezists C > O such that

|L(y,0%) = L(y',0%)| < Clly — ¥'||M(sxs)» V¥, y' € M(s x ),
Vole M > (s xs).

Then, K is a relatively compact subset of B(M(n x ¢),M(s x s))
and in K there exists a Bayesian estimate.

Theorem 3.2. Let K C L®(u,M(n x ¢), M(s x s)) be a class of

estimate of the variance component 02 € M2(s x s) C M(s x s),

satisfying the following conditions:

(i) h(M(n x q)) C MZ(s x s), YhE K.

(ii) For any € > 0, there exist finite partition {E;}, C M(n X q)
and points z; € E;, 1 =1,..., m such that

(@) ||h(z:)|| M (sxs)s t5 uniformly bounded forhe Kandi=1,..., m.

(b) For each h € K, there exists B € B(n x q), with u(B) = 0 such
that

sup ”h(z) T h’(xi)“M(sXs) <e, Vi=1,...,m.
IEE,‘\B

(iii) There exist C > 0 such that

|L(y,0%) — L(y',0%)| < Clly = ¥'llm(sxs), Y, ¥’ € M(s x 5),
Vo2 € MZ(s x s).
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Then K 1s a relatively compact subset of L (u, M(n x q), M(s x s))
and in K there exists a Bayesian estimate.

4. THE PROOFS

In this section we shall prove the results in the preceding sections.

Proof of Theorem 2.1. Since © is a compact subset of F', by the condi-
tion (i), we have

sup ||h(z)|lF < +o0.

z€FE

Hence, we obtain that K C B(E, F).
Now, let F™ = F x :-- x F (m factors). Clearly, F™ is a finite-
dimensional normed linear space with the norm:

lyllpm = max fvilr .

Let us consider the function ® : B(E,F) — F™, defined by

®(h) = (h(z1), h(z2),..., h(zm)).
By the condition (i), we see that ®(K) is a bounded set of F™. It

follows that ®(K) is a totally bounded set of F™. Consequently, there
exist balls B(t;,€), s =1, 2,..., r such that

®(K) C U B(t;,e) .

i=1

By a similar argument of the Proposition 1.1 in (3], there is a function
h; € K such that

||h(.’1:,) = hj(I,')”F <2¢e Vi=1,...,m.
Moreover, since h, h; € K, by the condition (ii), we have
sup ||h(z) — h(zi)||lFr <€, Vi=1,..., m;
z€E;

sup [|hj(z) — hj(z:)l|F <€, Vi=1,...,m.

IE,‘
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It follows that

sup ||h(z) — hj(z)|lr <4e, Vi=1,...,m
z€EE;

Consequently

sup ||(z) = hj(z}|r = mex sup Ih(z) = hj(2)l|F < 4e.
z€EE iSmzcE

This means that .
K c | B(h;,4e).

=1
This shows that K is a totally bounded set of B(E, F) and it follows
that K is a relatively compact subset of B(E, F).
Next, we shall prove that
h(E)c O, VheK.
Indeed, take any h € K. Then, there exists a sequence (h,) C K such

that
|\hn = hllB(E,F) 0, as n—oo.

It follows that
|hn(z) — h(z)||F = 0, as n—oo.
On the other hand, we have
ha(E) C©,VneN.
By a similar argument of the Proposition 1.4 in [3|, we obtain that
h(E)Cc ©,Vhe K.

Finally, let us consider the functional ¢ : B(E,F) — R defined

by
// 0)Qg(dz)7(d0)
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/ / 0) fo(z)u(da)r(ds)) .

By a similar argument of the Proposition 2.1.2 in [3], we obtain that ¢
is a continuous function on the compact subset K C B(E, F). Conse-
quently, there exists an h € K such that

P(h) = inf y(h).

hEK

By the Definition 2.2., his a Bayesian estimate and the proof of the
theorem is completed.

Proof of Theorem 2.2. Since L™ (u, E, F) is a Banach space, we obtain
by a similar argument as in the proof of Theorem 2.1, that K is a
relatively compact subset of L*(u, E, F).

Let us consider the functional ¢ : L*°(u, E, F) — R defined by

/ / 6)Qe(dz)r (do)
($(h) = / / 2),6) fo()u(dz)r(d6)) .

Clearly, 9 is a continuous function on the compact subset K and hence
there exists in K a Bayesian estimate.

Proof of Theorem 3.1. By a similar argument of Theorem 2.1, we see
that K is a relatively compact subset of B(M(n x ¢), M (s X s)).
Next, we want to show that if

h(M(n x ¢)) C MZ(s x s), Vhe K

then : 4IL
h(M(n x q)) C M2(s x s), Vhe K.

Indeed, take any h € K. Then there exists a sequence (hm) C K such
that h,, = h (as m — oo) in the norm of B(M(n x g}, M(s x s)).
It follows that hp,(x) — h(z) for each £ € M(n X g). Since hy(z) €
M2 (s x s), by the definition of the non-negative definite matrix, we
have (t, hy,(z)t) > O for all t € R°. This implies (¢, h(z)t) > 0 for all
t € R®, and thus h(z) € M2Z(s X s). Since z is arbitrary in M(n X g),
we have h(M(n x ¢)) C M2 (s x s), as to be shown.
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Finally, consider the functional v : B(M(n x ¢), M(s X s)) — R
defined by

s = [ [ Lk@.o)Qu(m)rE?).

M2 (axs) M(nxq)

Clearly v is a continuous function and hence in K there exists a Bayesian
estimate.

Proof of Theorem 3.2. We shall prove that, if
h(M(n x q)) C MZ(s x s) (mody), Vh € K,

then, N -
h(M(n x q)) € M2(s x s) (mody), Vhe K.

Indeed, take any h € K, by a similar argument of the Theorem 3.1,
there exists a sequence (h,,) C K such that, for each m (¢, h,,(z)t) >0
(mod u) and, as t — oo, (t, hyu(z)t) — (¢, h(z)t) (mod u), Vt € R°.
Let us define :

A={zeMnxq):t kn(z)t) =" (t, h(z)t)},

Then clearly, for each z € AN B, (t, h(z)t) > 0, Vt € R®, and
1 (M(s x s) \ (AN B)) = 0. Consequently, h(z) € MZ(s x s) (mod ),
which implies that

h(M(n x q)) € MZ(s x s) (mody), Vhe K.

Remark: Let us consider one-dimensional model. Suppose that E =
R, F=R!, © ={a, b].

Take any continuous function h whose support is a compact subset
[4, v] € R'. Clearly, h is a uniformly continuous function on [u, v].
Therefore, for every € > 0, there exists 6§ > 0 such that:

|h(z) — h(y)] < €, whenever [z —y| < §.
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Let us divide the interval [u, v] into the subintervals, whose length < §.
Then we get the following subintervals: E,, E,,..., E,,_;. Next, let

E,, = (—o0,u) U (v,+00).

Thus, {E;}™, is a finite partition of R!.
Now, take the points z; € E;, ¢t =1,..., m—1, and z,, € (v, +00).
By the above consideration, we have

|h(z) — h(z;)| <€, VZ€E;, Vi=1,...,m—1.

Moreover,

h(z) = h(zm) =0, Yz € Epy, .

Therefore,

sup |h(z) — h(zi)| <€, Vi=1,..., m.

z€E;
Usually, the collection of all continuous functions on R! whose support
is compact is denoted by C{y,.)(R').

Let K = {h} be a subset of C[,,)(R") satisfying the above prop-
erties. Then K # 0 and K satisfies the conditions of the Theorem 2.1.
Consequently, K is a relatively compact subset of B(R!, R!) and in K
there exists a Bayesian estimate.
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