VIETNAM JOURNAL OF MATHEMATICS Volume 24, Number 1, 1996

Short Communication

SOME REMARKS ON THE STABILITY OF THE CHARACTERIZATION OF THE COMPOSED RANDOM VARIABLES

then we shall have the following estima

NGUYEN HUU BAO

Let ξ be a random variable (r.v.) with the characteristic function $\varphi(t)$ and η be a r.v. with the generating function a(z). It is known [2] that the composed r.v. of the two random variables ξ , η denoted by $\langle \xi, \eta \rangle$ is a r.v. with the characteristic function $\psi(t) = a(\varphi(t))$. In [1] we have dealt with the class N consisting of the characteristic functions of composed r.v.'s and proved that it is a proper extension of the class L of characteristic function of infinitely divisible laws. However, there are still many properties of the class N which have not yet considered.

In this paper we shall investigate a subclass N_{ε} of N possessing the stability in the following sense: the small changes in the distribution functions of the components ξ and η only lead to the small changes in the distribution function of the composed r.v. $\langle \xi, \eta \rangle$. We will give some remarks on stability conditions for this class.

1. Suppose that $\psi_1(t)$ and $\psi_2(t)$ are two characteristic functions of the class N_{ε} with the same generating function:

$$\psi_1(t) = a(\varphi_1(t)), \ \psi_2(t) = a(\varphi_2(t)), \tag{1}$$

where a(z) satisfies the following conditions:

$$|a(z_1) - a(z_2)| \le K |z_2 - z_1|$$
(2)

for all complex numbers $z_1, z_2, |z_1| \le 1, |z_2| \le 1$, and K is a constant.

If for any sufficiently small ε ($0 < \varepsilon < 1$), we can choose a number $T = T(\varepsilon)$ ($T(\varepsilon) \rightarrow +\infty$ when $\varepsilon \rightarrow 0$) so that

$$\max_{\substack{|t| \le T(\varepsilon)}} |\varphi_1(t) - \varphi_2(t)| \le \varepsilon$$
(3)

then we shall have the following estimation

$$\lambda(\Psi_1; \Psi_2) \le \max\left\{K\varepsilon; \frac{1}{T(\varepsilon)}
ight\},$$
 (4)

where $\Psi_1(x)$ and $\Psi_2(x)$ are two distribution functions which has the corresponding characteristic functions $\psi_1(t)$, $\psi_2(t)$ and the metric λ is defined by

$$\lambda(\Psi_1; \Psi_2) = \min_{T>0} \max\left\{ \max_{|t| \le T} |\psi_1(t) - \psi_2(t)|; \frac{1}{T} \right\}$$
(5)

Indeed, from (1), (2) and (3), we have, for $|t| \leq T(\varepsilon)$,

$$|\psi_1(t)-\psi_2(t)|=|a(\varphi_1(t))-a(\varphi_2(t))|\leq K\varepsilon\,,$$

and hence (4) follows, by the definition of λ .

2. If ν is the r.v. having the Poisson law with the parameter $\lambda > 0$ and $\varphi_1(t)$ is the characteristic function of the r.v. ξ having ε -exponential law (i. e. $\exists T(\varepsilon), T(\varepsilon) \to +\infty$ when $\varepsilon \to 0, \forall t, |t| \leq T, |\varphi_1(t) - \frac{1}{1 - it\theta}| \leq \varepsilon$) then the composed r.v. of ξ and ν has the distribution function $\Psi_1(x)$ which satisfies the following estimation

$$\lambda(\Psi_1; \Psi_1^{\lambda\theta}) \le \max\left\{e^{4\lambda}\varepsilon; \frac{1}{T(\varepsilon)}\right\},\tag{6}$$

where $\Psi_1^{\lambda\theta}(x)$ is the distribution function with the characteristic function

$$\psi_1^{\lambda\theta}(t) = e^{\lambda(\frac{1}{1-i\theta t}-1)}$$

3. If ν is r.v. having the Poisson law with the parameter $\lambda > 0$ and ξ has the ε -Normal distribution function (i.e. its the characteristic function $\varphi_2(t)$ satisfies the estimation: $|\varphi_2(t) - e^{-t^2/2}| \le \varepsilon, \forall t : |t| \le T(\varepsilon), T(\varepsilon) \to +\infty$ when $\varepsilon \to 0$). Then the composed r.v. of ν and ξ has the distribution function $\Psi_2(x)$ which satisfies the following estimation:

$$\lambda(\Psi_2; \Psi_2^{0,1,\lambda}) \le \max\left\{e^{4\lambda}\varepsilon; \frac{1}{T(\varepsilon)}\right\},\tag{7}$$

where $\Psi_2^{0,1,\lambda}(x)$ is the distribution with the characteristic function

106

Stability of the characterization of the composed random variables

$$\psi_2^{0,1,\lambda}(t) = e^{\lambda(e^{-t^2/2}-1)}$$
.

4. If ν is r.v. having the binomial distribution function with the parameters p, q and ξ has the ε -exponential distribution, then the composed r.v. of ν and ξ has the distribution function $\Psi_3(x)$ which satisfies the following estimation:

$$\lambda(\Psi_3; \Psi_3^{p,\theta}) \le \max\left\{np(1+2p)^{n-1}\varepsilon; \frac{1}{T(\varepsilon)}\right\},\tag{8}$$

where $\Psi_3^{p,\theta}$ is the distribution with the characteristic function

$$\psi_3^{p,\theta}(t) = \left[1 + p\left(\frac{1}{1 - i\theta t} - 1\right)\right]^n$$

5. If ν is the r.v. having the negative binomial distribution with the parameters p, q and ξ has the characteristic $\varphi_4(t)$ which is ε -exponential then the composed r.v. of ν and ξ has the distribution function $\Psi_4(x)$ satisfying the following estimation

$$\lambda(\Psi_4; \Psi_4^{p,q,\theta}) \le \max\left\{\frac{p}{q}\varepsilon; \frac{1}{T(\varepsilon)}\right\},\tag{9}$$

where $\Psi_4^{p,q,\theta}(x)$ is the distribution function with the characteristic function:

$$\psi^{p,q, heta}_4(t) = rac{p-ilpha t}{p-i heta t} \quad (lpha= heta q)\,.$$

The above Remarks 2, 3, 4, 5 are immediate from Remark 1 since the corresponding generating functions clearly satisfy the condition (2). Indeed, for instance, to show Remark 5, let $a_4(z)$ be the generating function of the negative-binomial law, i.e.:

$$a_4(z) = p [1-qz]^{-1}$$

For any the complex numbers z_1 , z_2 satisfying $|z_1| \le 1$, $|z_2| \le 1$, we have the following estimation:

$$|a_4(z_1) - a_4(z_2)| = \left|\frac{p}{1 - qz_1} - \frac{p}{1 - qz_2}\right|$$

$$\leq \frac{pq |z_1 - z_2|}{|1 - qz_1| \cdot |1 - qz_2|}.$$
 (10)

107

Nguyen Huu Bao

Notice that

108

$$\begin{aligned} |1 - qz_1| \ge |1 - q|z_1|| \ge 1 - q \text{ for all } |z_1| \le 1, \\ |1 - qz_2| \ge |1 - q|z_2|| \ge 1 - q \text{ for all } |z_2| \le 1. \end{aligned}$$
(11)

Distant La

From (10) and (11) it follows that

$$\left|a_4(z_1)-a_4(z_2)
ight|\leq rac{pq|z_1-z_2|}{(1-q)^2}$$

Thus $a_4(z)$ satisfies the condition (2) with the constant $K = \frac{p}{a}$.

REFERENCES

- 1. Nguyen Huu Bao, On the stability of the characterization of the distribution function, doctor thesis, Hanoi 9 1989.
- 2. William Feller, An introduction to probability theory and its applications, New York-London-Sydney, 1966.

Received December 20, 1993

Hydrological Faculty, Hanoi Water Resources College, Hanoi, Vietnam.