Short Communication

SOME REMARKS ON THE
 STABILITY OF THE CHARACTERIZATION OF THE COMPOSED RANDOM VARIABLES

NGUYEN HUU BAO

Let ξ be a random variable (r.v.) with the characteristic function $\varphi(t)$ and η be a r.v. with the generating function $a(z)$. It is known [2] that the composed r.v. of the two random variables ξ, η denoted by $\langle\xi, \eta\rangle$ is a r.v. with the characteristic function $\psi(t)=a(\varphi(t))$. In [1] we have dealt with the class N consisting of the characteristic functions of composed r.v.'s and proved that it is a proper extension of the class L of characteristic function of infinitely divisible laws. However, there are still many properties of the class N which have not yet considered.

In this paper we shall investigate a subclass N_{ε} of N possessing the stability in the following sense: the small changes in the distribution functions of the components ξ and η only lead to the small changes in the distribution function of the composed r.v. $\langle\xi, \eta\rangle$. We will give some remarks on stability conditions for this class.

1. Suppose that $\psi_{1}(t)$ and $\psi_{2}(t)$ are two characteristic functions of the class N_{ε} with the same generating function:

$$
\begin{equation*}
\psi_{1}(t)=a\left(\varphi_{1}(t)\right), \quad \psi_{2}(t)=a\left(\varphi_{2}(t)\right) \tag{1}
\end{equation*}
$$

where $a(z)$ satisfies the following conditions:

$$
\begin{equation*}
\left|a\left(z_{1}\right)-a\left(z_{2}\right)\right| \leq K\left|z_{2}-z_{1}\right| \tag{2}
\end{equation*}
$$

for all complex numbers $z_{1}, z_{2},\left|z_{1}\right| \leq 1,\left|z_{2}\right| \leq 1$, and K is a constant.
If for any sufficiently small $\varepsilon(0<\varepsilon<1)$, we can choose a number $T=T(\varepsilon)(T(\varepsilon) \rightarrow+\infty$ when $\varepsilon \rightarrow 0)$ so that

$$
\begin{equation*}
\max _{|t| \leq T(e)}\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \varepsilon \tag{3}
\end{equation*}
$$

then we shall have the following estimation

$$
\begin{equation*}
\lambda\left(\Psi_{1} ; \Psi_{2}\right) \leq \max \left\{K \varepsilon ; \frac{1}{T(\varepsilon)}\right\} \tag{4}
\end{equation*}
$$

where $\Psi_{1}(x)$ and $\Psi_{2}(x)$ are two distribution functions which has the corresponding characteristic functions $\psi_{1}(t), \psi_{2}(t)$ and the metric λ is defined by

$$
\begin{equation*}
\lambda\left(\Psi_{1} ; \Psi_{2}\right)=\min _{T>0} \max \left\{\max _{|t| \leq T}\left|\psi_{1}(t)-\psi_{2}(t)\right| ; \frac{1}{T}\right\} \tag{5}
\end{equation*}
$$

Indeed, from (1), (2) and (3), we have, for $|t| \leq T(\varepsilon)$,

$$
\left|\psi_{1}(t)-\psi_{2}(t)\right|=\left|a\left(\varphi_{1}(t)\right)-a\left(\varphi_{2}(t)\right)\right| \leq K \varepsilon
$$

and hence (4) follows, by the definition of λ.
2. If ν is the r.v. having the Poisson law with the parameter $\lambda>0$ and $\varphi_{1}(t)$ is the characteristic function of the r.v. ξ having ε-exponential law (i. e. $\exists T(\varepsilon), T(\varepsilon) \rightarrow+\infty$ when $\varepsilon \rightarrow 0, \forall t,|t| \leq T,\left|\varphi_{1}(t)-\frac{1}{1-i t \theta}\right| \leq$ ε) then the composed r.v. of ξ and ν has the distribution function $\Psi_{1}(x)$ which satisfies the following estimation

$$
\begin{equation*}
\lambda\left(\Psi_{1} ; \Psi_{1}^{\lambda \theta}\right) \leq \max \left\{e^{4 \lambda} \varepsilon ; \frac{1}{T(\varepsilon)}\right\} \tag{6}
\end{equation*}
$$

where $\Psi_{1}^{\lambda \theta}(x)$ is the distribution function with the characteristic function

$$
\psi_{1}^{\lambda \theta}(t)=e^{\lambda\left(\frac{1}{1-i \theta t}-1\right)}
$$

3. If ν is $r . v$. having the Poisson law with the parameter $\lambda>0$ and ξ has the ε-Normal distribution function (i.e. its the characteristic function $\varphi_{2}(t)$ satisfies the estimation: $\left|\varphi_{2}(t)-e^{-t^{2} / 2}\right| \leq \varepsilon, \forall t:|t| \leq$ $T(\varepsilon), T(\varepsilon) \rightarrow+\infty$ when $\varepsilon \rightarrow 0$). Then the composed r.v. of ν and ξ has the distribution function $\Psi_{2}(x)$ which satisfies the following estimation:

$$
\begin{equation*}
\lambda\left(\Psi_{2} ; \Psi_{2}^{0,1, \lambda}\right) \leq \max \left\{e^{4 \lambda} \varepsilon ; \frac{1}{T(\varepsilon)}\right\} \tag{7}
\end{equation*}
$$

where $\Psi_{2}^{0,1, \lambda}(x)$ is the distribution with the characteristic function

$$
\psi_{2}^{0,1, \lambda}(t)=e^{\lambda\left(e^{-t^{2} / 2}-1\right)} .
$$

4. If ν is r.v. having the binomial distribution function with the parameters p, q and ξ has the ε-exponential distribution, then the composed r.v. of ν and ξ has the distribution function $\Psi_{3}(x)$ which satisfies the following estimation:

$$
\begin{equation*}
\lambda\left(\Psi_{3} ; \Psi_{3}^{p, \theta}\right) \leq \max \left\{n p(1+2 p)^{n-1} \varepsilon ; \frac{1}{T(\varepsilon)}\right\} \tag{8}
\end{equation*}
$$

where $\Psi_{3}^{p, \theta}$ is the distribution with the characteristic function

$$
\psi_{3}^{p, \theta}(t)=\left[1+p\left(\frac{1}{1-i \theta t}-1\right)\right]^{n}
$$

5. If ν is the r.v. having the negative binomial distribution with the parameters p, q and ξ has the characteristic $\varphi_{4}(t)$ which is ε exponential then the composed r.v. of ν and ξ has the distribution function $\Psi_{4}(x)$ satisfying the following estimation

$$
\begin{equation*}
\lambda\left(\Psi_{4} ; \Psi_{4}^{p, q, \theta}\right) \leq \max \left\{\frac{p}{q} \varepsilon ; \frac{1}{T(\varepsilon)}\right\} \tag{9}
\end{equation*}
$$

where $\Psi_{4}^{p, q, \theta}(x)$ is the distribution function with the characteristic function:

$$
\psi_{4}^{p, q, \theta}(t)=\frac{p-i \alpha t}{p-i \theta t} \quad(\alpha=\theta q)
$$

The above Remarks 2, 3, 4, 5 are immediate from Remark 1 since the corresponding generating functions clearly satisfy the condition (2). Indeed, for instance, to show Remark 5, let $a_{4}(z)$ be the generating function of the negative-binomial law, i.e.:

$$
a_{4}(z)=p[1-q z]^{-1}
$$

For any the complex numbers z_{1}, z_{2} satisfying $\left|z_{1}\right| \leq 1,\left|z_{2}\right| \leq 1$, we have the following estimation:

$$
\begin{align*}
\left|a_{4}\left(z_{1}\right)-a_{4}\left(z_{2}\right)\right| & =\left|\frac{p}{1-q z_{1}}-\frac{p}{1-q z_{2}}\right| \\
& \leq \frac{p q\left|z_{1}-z_{2}\right|}{\left|1-q z_{1}\right| \cdot\left|1-q z_{2}\right|} \tag{10}
\end{align*}
$$

Notice that

$$
\begin{align*}
& \left|1-q z_{1}\right| \geq|1-q| z_{1}| | \geq 1-q \text { for all }\left|z_{1}\right| \leq 1 \tag{11}\\
& \left|1-q z_{2}\right| \geq|1-q| z_{2}| | \geq 1-q \text { for all }\left|z_{2}\right| \leq 1
\end{align*}
$$

From (10) and (11) it follows that

$$
\left|a_{4}\left(z_{1}\right)-a_{4}\left(z_{2}\right)\right| \leq \frac{p q\left|z_{1}-z_{2}\right|}{(1-q)^{2}}
$$

Thus $a_{4}(z)$ satisfies the condition (2) with the constant $K=\frac{p}{q}$.

REFERENCES

1. Nguyen Huu Bao, On the stability of the characterization of the distribution function, doctor thesis, Hanoi 9-1989.
2. William Feller, An introduction to probability theory and its applications, New York-London-Sydney, 1966.

Received December 20, 1999
Hydrological Faculty,
Hanoi Water Resources College,
Hanoi, Vietnam.

