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ON STRUCTURED SINGULAR VALUES AND

ROBUST STABILITY OF POSITIVE SYSTEMS

UNDER AFFINE PERTURBATIONS
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1. The notion of the structured singular value (or p-values) introduced
in [2] is an important linear algebra tool to study robust stability of
linear systems under perturbations of block-diagonal structure. Struc-
tured block-diagonal perturbations are of great importance in control
and form the object of the so-called p-analysis which studies the prop-
erties of function p, its algebraic characterizations and its computation.

The aim of the present paper is to develop a p'analysis of z-di-
mensional positive linear discrete-time systems and examine, in this
connection, their robust stability under arbitrary affine parameter per-
turbations. As one of the main results, it is shown that real and complex
stability radii of positive systems coincide for arbitrary perturbation
structures, in particular for block-diagonal disturbances as considered
in p-analysis. Estimates and computable formulae are derived for these
stability radii. The results are derived for arbitrary perturbation nornxt
induced by monotonic vector norms [5].

2. We first introduce some notations. Let n, L, q be positive integers.
A matrix P:[p;il € Ruxc is said to be nonnegative (P > 0) if all its
entries p;i arc nonnegative; it is said to be positiue (P > 0) if all its
entries are posit ive. For P,Q € Rlxq, P >Q means that P- Q > 0.

The set of all nonnegativ e (. x q-matrices is denoted Uv n?0. For any
p : Ip;il € czxc we define lpl € R?o bv lpl : Iln;111. The following
definit ionextends the definit ionof Doyle in [2]. Suppose M €Cq't,Iq
denotes theidentity gxq-matrix,0 * D c Clxc andspan D is provided

with a norm l l  . l lp. Then

pD(M)  -  [ i n f { l lA l l p ;  Ae  D ,  de t ( /o  -  ML) :0 } ] - t (1)
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is call the p,-ualue of. M with respect to D' If D : Clxs and ll 'llp it

the spectral norm then p,e(M) is the largest singular value of M. If

q: i, D : CIc and ll .llp ir an arbitrary operator norm then p'e(M)

coincides with ihe spectral radius p(M\. In general p-values are diffi-

cult to determine, but there exist algorithms for computing upper and

lower bounds of po(M) in the standard case where D is the set of all

complex matrices having a fixed block-diagonal structure and ll 'llp it

the spectral norm, see [6]. Very little is known about the real case

(where D c F'L*q). we will see that the situation is much easier, if

iZ i5 nonnegative. For a nofempty subset D C Cexc let us denote

D+ : O nn|lt and Ds : D nR1xc. Then, it is clear by definition that

pD(M) ) tLp*(M) > pD+(M) .

In general the above p-values are different. However, for nonnegative

matrices we have

Lemma l. Suppose M e 11f ', D c CL'c ond ll'llo " 
norm on

spanD euch thot

L e D and '  Ay :11,  ) :A e CLxc :  LY:  u  and '  141 e A

Il D is o cone then

,  and, l l  la l l lp  S l la l lp  .

pD(M\ : FD,(M) - trD+(M) .

(2)

The proof is based on the Perron-Frobenius Theorem (see, e.g. [1]).
we will see in the next section that condition (2) is satisfied for block-

diagonal perturbation classes D.

3. Consider a positive dynamical system described by the linear differ-

ence equation

r ( t + L ) - A n ( t ) ,  t € N : { 0 ,  1 , 2 , " ' }  ( 3 )

where A is a nonnegative t? X n-matrix. We assume that this system is

schur stoble, i.e. p(A) ( 1 where p(A) is the spectral radius of A. since

a dynamical model is never an exact portrait of the real process, it is

important to determine to which extent the stability of a given nominal

,yr1"- is preserved under various classes of perturbations' For the class

oi single perturbations A + A * DLE this problem was considered

in [a], using the state space approach developed first in [3]. In order
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to extend the results of [4] to more general perturbations classes, we
consider arbitrary multiperturbations

JV

A--, A+ I D1A4E;
d = 1

and arbitrary affine perturbations of A:
N

A - A + t 6 ; A ; ,
r = 1

where the matrices D;, .4; and E; arc given nonnegative matrices defin-
ing the structure of the perturbations and Ai (6;) are unknown matrices
(scalars) representing the parameter uncertainty. The assumption that
the structural matrices are nonnegative is quite natural for positive

systems and is ndt too restrictive since the disturbances A;, 6; are not
restricted to be nonnegative. It is easy to show that arbitrary affine per-
turbations of the types (l) and (5) can be represented by the following
general uncertainty model

|  ^ :> / (A)  :  A l  DAE, A,  e  D ,  (6)

where D e R\xe and .E € Rf " are given matrices and D c Czxc is
a given subset of perturbation matrices. The structure matrices D, E
and the perturbotion class D together determine the structure of the
perturbations DA.E. The stoDrTity radius of the system (3) with respect
to the general class of perturbations (6) is defined by

rD :  rD(A;  D,  E)  :  in f { l l l l l  D;  L  e  D,  p(A+ DAE) > 1} ,  (7)

where ll .lle i. a given normon span D and', by definition, inf 0: m.

In the particula"r cases when D - Cexq (respectively, Rzxe or nfq)
the corresponding stability radii will be denoted by rc (respectively,
rp and rn+). We shall suppose that the perturbation class D satisfies

the following

Assumption 2. D is o block'diagonal perturbotion class, i.e. there
ex i s t i n tege rs2 ;21 ,  g i  )L  fo r  f  e  N  and  osubse t  J  cN  such tha t

P - {diag(Ar, . . . ,  Ary); Ai € D;, i  € I[ ]  '

(4)

(5)

,a I CL;xt; il i €. J

" : \ c l o ,  i f i e N \ J

(8)
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The vector spaees QLi, Qe; are provided with monotonic norfits and D;
withthe assCIeiated operator norm l l  . l la,  for eachi e N. D is endowed
with the norfttr

l l l l l p :  l l ( l l l t l l p , ) ;e rv l ln " ,  (e )

where l l . l l"" is a giuen monotonic norm on Rtr.

Let us define

J V N

t :Lt i ,  e:  f  e; ,  D+: O nneia and Ds :  D nFctxc.  ( ro)
i = l  r = l

The following two propositions are the main results of this section.

Proposition 3. Suppose D satisfies Assumption 2, L, Q, D+, Dn de-
fined as (to) and M eFtqlt. Then

p'D(M) :  PD,(M) :  Fo*(M) .

This assertion follows from Lemma 1 by showing that, under the As-
sumption 2, (2) is satisfied.

Proposition 4. Suppose A e R?x" is Schur stable, D satisf.es As-
sumption 2 and Di €R\xat, E; € Rlt', i e N. Then, with l, e, D+,
Dn d,efind os (tO),

ro(A; D, E) : rDn(A; D, E) : ,o*(A; D, E) ,

where the structure matrices D, E are d,efi,ned by

D : lDr...Drl, E : lET.*ET,l ' .

The crucial point of the proof is the use of Hahn-Banach Theorem
for constructing a destabilizing perturbation L € D which consists only
of rank one blocks A; and the fact that llA;llp, : ll larl ll D; for operator
norms ll .lla induced by monotonic vector norms. There are simple
examples illustrating that the nonnegativity of both system matrix .4
and the structure matrices D, E is essential for the validity of the
previous propositions.

4. As is well-known, the transfer matria plays an important role in
deriving computable formulae for stability radii. For every triplet
(A, Drp) € Cn-xn 

" 
gnxd X f,{xn the associated transfer matrix

(1 1)

(r2)



Structured aingular valuea aad robust stability of positive systemd 117

is defined by G(s) : E(sI - A)-t D, s € C \ "(A), 
where o(A) is spec-

trum of A. In the case of single perturbations the stability radii are
easily characterized via the transfer matrix. In fact, we have:

Theorem 6. Suppose thot (A, D, E) € Rix" 
" 

Ri*'x Rf ', p(A) <
!, C2, Ce ore prouided with.monotonic norms and, D - gLxq is en-
doued with the induced operator norm. Then.

rn* (A; D, E) :  rc(Ai  D, E):  rn( ,A; D, E) -  
l lc( l ) l l - t ,  (13)

where, by definition, O-r: 6.

We note that a result similar to'the last equality in (13) has been
derived in [7] for nonnegative stable A and arbitrarg reol structure ma-
trices D, E and the spectral perturbation norm. But in [7] the real
stability radius is defined in a nonstandard way, namely as the norm of
the smallest real perturbation A such that A + DLE is unstable ond
nonnegotiue. By the latter additional condition the admissible param-
eter perturbations depend on the nominal system which is an awkward
assumption. Moreover, the equality of the real and the complex stabil-
ity radius does not hold under the conditions of [7].

We now return to the block-diagonal perturbation classes D as de-
scribed in Assumption 2. Let D, E be defines as in (f2). Then, the
transfer matrix associated with triplet (A, D, E) is

G(s) :  E(sI . -  A)- 'o = (G; i (")) ; , ierv ,

Gii(t) : E;(s/ - A)-t Di,, d, i e N .

Theorem 6. Suppose A € Rlx" is Schur stable, D; e RiI", E, e
RT", r e N ond D, E are defined by (12). It D (s) is a closs of block-
diagonal pcrturhations and prouided with the operutor norm induced by
o giaen poir of uector norms ll . ll"r, ll . ll"' on Ct and, Cq (where \ q

(14)

are def,nel by (t0)), then

[ ;gr. l l r (") l l ] - '  3ro+(A; D, E),

whcre F(a) :: (a;G;i(l)oi-,t)t, j .ro, d : (ot,..., ary) ) 0.

Moreouer, il t; = qi for all i e N and Co, Ct are prguided uith the
s@me norm then

(15)

[3r, ttrt")l l]- ' 1 rD+Qq; D, 4 s lp(c(l))l- ' (16)
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Finolly il D;: clo, for olt i e N, i.e. the perturbations ol A are of the

form (5) with A;: D;E; then

r p * ( A ;  D ,  E ) :  [ P ( G ( l ) ) l - r . (17)

Although arbitrary affine perturbations of the nominal system ma-

trix can be represented in the form (f) it is more convenient in certain

applicatiom (".g. in control, see[6]) to represent parameter uncertain-

tG UV multiperturbations (+). For these disturbance classes Theorem

6 only yields a lower bound (15) (which may be tight) and an upper

bound (16) (which will in general not be tight). we conclude the paper

by preslnting another lower bound, which is less sharp but more easily

computable than (15).

Proposition 7. Suppose A e RlI" is Schur stable and subiected to

perturbotions ol thc lorm (l) where D; € Ri*", E, € Rt'n, i € N

ore giuen, Suppse

P -  {d iag(Ar, . . . ,  Aiv)  ;  Ai  € C4 *o'  ,  i  € I [ ]  ,

is prouided with the norm (9) where ll .11"" : ll .ll*. Then (11) hold

ond

ro*(Ai D, E) > tjgt,l lr(")l l l- ' > [p((llc;r(r)l l),,i.")]-'. (18)

The proof of the above assertion is based on the balancing result

due to Stoer and Witzgall [9] which states that for a positive matrix

M e nf"tr
mjg lldias(o;) M diag(od 1)ll: p(M) ,

where ll .ll it the operator norm induced by any p-norm on RN, 1 (

p S oo'"oi th" minimum is taken over all a - (oy "', a,v) ) 0'
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