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ON STRUCTURED SINGULAR VALUES AND
ROBUST STABILITY OF POSITIVE SYSTEMS
UNDER AFFINE PERTURBATIONS
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1. The notion of the structured singular value (or u-values) introduced
in [2] is an important linear algebra tool to study robust stability of
linear systems under perturbations of block-diagonal structure. Struc-
tured block-diagonal perturbations are of great importance in control
and form the object of the so-called u-analysis which studies the prop-
erties of function pu, its algebraic characterizations and its computation.

The aim of the present paper is to develop a u-analysis of n-di-
mensional positive linear discrete-time systems and examine, in this
connection, their robust stability under arbitrary affine parameter per-
turbations. As one of the main results, it is shown that real and complex
stability radii of positive systems coincide for arbitrary perturbation
structures, in particular for block-diagonal disturbances as considered
in p-analysis. Estimates and computable formulae are derived for these
stability radii. The results are derived for arbitrary perturbation norms
induced by monotonic vector norms [5].

2. We first introduce some notations. Let n, £, q be positive integers.
A matrix P = [p;;] € R® is said to be nonnegative (P > 0) if all its
entries p;; are nonnegative; it is said to be positive (P > 0) if all its
entries are positive. For P, Q € R¥9, P > Q means that P—-Q>0.
The set of all nonnegative £ X g-matrices is denoted by R’ - X9, For any

= [pi;] € C** we define |P| € RYY by |P| = [|pi;]]. The following
deﬁmtlon extends the definition of Doyle in [2]. Suppose M € C%¢, I,

denotes the identity g % g-matrix, @ # D C C**? and span D is provided
with a norm ||.||p. Then

up(M) = [inf{||Allp; A €D, det(l; - MA) =0}]~" (1)
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is call the pu-value of M with respect to D. If D = C**9 and ||.||p is
the spectral norm then pp(M) is the largest singular value of M. If
g=1¢, D =ClI, and || .||p is an arbitrary operator norm then pp(M)
coincides with the spectral radius p(M). In general u-values are diffi-
cult to determine, but there exist algorithms for computing upper and
lower bounds of zp(M) in the standard case where D is the set of all
complex matrices having a fixed block-diagonal structure and ||. ||p is
the spectral norm, see [6]. Very little is known about the real case
(where D C R®*9). We will see that the situation is much easier, if
M is nonnegative. For a nonempty subset D C C%4 let us denote
D, = DNRY7 and Dr = DNRYY. Then, it is clear by definition that

pp(M) > ppg (M) 2 pp, (M) .

In general the above u-values are different. However, for nonnegative
matrices we have

Lemma 1. Suppose M € R‘_’{_XZ, D c C9 agnd ||.||p @ norm on
span D such that

AcDand Ay=u=3IAeC¥ :Ay=uand |A|€D
~and [[|Alllp < [[Allp - (2)

If D is a cone then
pp(M) = ppe (M) = pp, (M) .

The proof is based on the Perron-Frobenius Theorem (see, e.g. [1]).
We will see in the next section that condition (2) is satisfied for block-
diagonal perturbation classes D.

3. Consider a positive dynamical system described by the linear differ-
ence equation .

st +1) = Az(t), teN={0,1,2,.} (3)

where A is a nonnegative n X n-matrix. We assume that this system is
Schur stable, i.e. p(A) < 1 where p(A) is the spectral radius of A. Since
a dynamical model is never an exact portrait of the real process, it is
important to determine to which extent the stability of a given nominal
system is preserved under various classes of perturbations. For the class
of single perturbations A — A + DAE this problem was considered
in [4], using the state space approach developed first in [3]. In order
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to extend the results of [4] to more general perturbations classes, we
consider arbitrary multiperturbations

N
A— A+ DiAE; (4)

=

and arbitrary affine perturbations of A:

N
A—>A+Z5,'A,', (5)

=1

where the matrices D;, A; and E; are given nonnegative matrices defin-
ing the structure of the perturbations and A, (;) are unknown matrices
(scalars) representing the parameter uncertainty. The assumption that
the structural matrices are nonnegative is quite natural for positive
systems and is not too restrictive since the disturbances A;, 6; are not
restricted to be nonnegative. It is easy to show that arbitrary affine per-
turbations of the types (4) and (5) can be represented by the following
general uncertainty model

A~> A(A)=A+DAE, A€D, (6)

where D € R'_:_xe and E € RY*" are given matrices and D C Ctxa ig
a given subset of perturbation matrices. The structure matrices D, E
and the perturbation class D together determine the structure of the
perturbations DAE. The stability radius of the system (3) with respect
to the general class of perturbations (6) is defined by

rp = rp(A; D, E) = inf{||Allp; A€ D, p(A+DAE)>1}, (7)

where || .||p is a given norm on span D and, by definition, inf @ = oo.
In the particular cases when D = C*%%9 (respectively, R**? or Rixq)
the corresponding stability radii will be denoted by rc (respectively,
rr and rg, ). We shall suppose that the perturbation class D satisfies
the following

Assumption 2. D s a block-diagonal perturbation class, i.e. there
exist integers £; > 1, ¢; > 1 for 1 € N and a subset J C N such that

D:{diag(AI,...,AN); AiéD{, ZEE},
. _{cesxq- ifi€J (8)
Gl A TYEN T
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The vector spaces C%, C% are provided with monotonic norms and D;
with the associated operator norm || . |lp,, for eachi € N. D is endowed
with the norm

IAlls = (Ao )ienllry (9)
where || .||g~ ts a given monotonic norm on RV,

Let us define

N N
e=) &, ¢=) g, Dy =DNRY? and Dr = DAR9. (10)
1=1

==}
The following two propositions are the main results of this section.

Proposition 3. Suppose D satisfies Assumption 2, £, q, Dy, Dr de-
fined as (10) and M € RY*%. Then

puo(M) = ppy (M) = up, (M).

This assertion follows from Lemma 1 by showing that, under the As-
sumption 2, (2) is satisfied.

Proposition 4. SuI;pose A € RTY*™ is Schur stable, D satisfies As-
sumption 2 and D; € Rixe‘, E; e RY¥*" i€ N. Then, with ¢, q, D,,
Dr defined as (10),

ro(A; D, E) =rp (A; D, E) =rp, (A; D, E), (11)
where the structure matrices D, E are defined by
D = |D,..Dy], E = [ET..EZ|T. (12)

The crucial point of the proof is the use of Hahn-Banach Theorem
for constructing a destabilizing perturbation A € D which consists only
of rank one blocks A; and the fact that ||A;||p, = || |A:] [|p, for operator
norms ||.||p, induced by monotonic vector norms. There are simple
examples illustrating that the nonnegativity of both system matrix A
and the structure matrices D, E is essential for the validity of the
previous propositions.

4. As is well-known, the transfer matriz plays an important role in
deriving computable formulae for stability radii. For every triplet
(A, D, E) € C™*™ x CM*¢ x C9%" the associated transfer matrix
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is defined by G(s) = E(sI — A)~'D, s € C\ 0(A), where o(A) is spec-
trum of A. In the case of single perturbations the stability radii are
easily characterized via the transfer matrix. In fact, we have:

Theorem 5. Suppose that (A, D, E) € R™*" x R™¢ x R1*™, p(4) <
1, C¢, C? are provided with monotonic norms and D = C¥¥9 45 en-
dowed with the induced operator norm. Then,

rr,(4; D, E) = rc(4; D, E) =rr(4; D, E) = |G(1)]*,  (13)

where, by definition, 0~ = oo.

We note that a result similar to the last equality in (13) has been
derived in |7] for nonnegative stable A and arbstrary real structure ma-
trices D, E and the spectral perturbation norm. But in [7] the real
stability radius is defined in a nonstandard way, namely as the norm of
the smallest real perturbation A such that A + DAFE is unstable and
nonnegative. By the latter additional condition the admissible param-
eter perturbations depend on the nominal system which is an awkward
assumption. Moreover, the equality of the real and the complex stabil-
ity radius does not hold under the conditions of [7].

We now return to the block-diagonal perturbation classes D as de-
scribed in Assumption 2. Let D, E be defines as in (12). Then, the
transfer matrix associated with triplet (A, D, E) is

G(s) = E(sI — A)™'D = (Gy;(s)) ijEN > (14)
Gij(s) = Ei(sI - A)"'D;, i,jEN.

Theorem 6. Suppose A € R}*" is Schur stable, D; € R'_l‘_xe", E; €
R¥*"™ i€ N and D, E are defined by (12). If D (8) is a class of block-
diagonal perturbations and provided with the operator norm induced by

a given pair of vector norms ||.|lce, ||.|lce on C¢ and C? (where £, q
are defined by (10)), then 5
[ inf IF())|] ™ <ro,(4; D, E), (15)

where F(a) := (o ;j(l)a—l)-jeN, a=(ag,..,ay)>0.

Moreover, if £; = g; for all 1 € N and C%, C¢ are provided with the
same norm then

[inf IF(@]) ™" <ro, (4 D, B) < (G (16)
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Finally if D; = CI,, for alli € N, i.e. the perturbations of A are of the
form (5) with A; = D;E; then

ro, (4; D, E) = [p(G))] ™" (17)

Although arbitrary affine perturbations of the nominal system ma-
trix can be represented in the form (5) it is more convenient in certain
applications (e.g. in control, see[6]) to represent parameter uncertain-
ties by multiperturbations (4). For these disturbance classes Theorem
6 only yields a lower bound (15) (which may be tight) and an upper
bound (16) (which will in general not be tight). We conclude the paper
by presenting another lower bound, which is less sharp but more easily
computable than (15).

Proposition 7. Suppose A € R’j_x" ts Schur stable and subjected to
perturbations of the form (4) where D; € R'frxz", E;e R¥*", ie N
are given, Suppose :

D = {diag(A1,..,An); Ai € CHX%, i€ N},

is provided with the norm (9) where ||.|lrv = || .|lco. Then (11) hold
and

-1

ro, (4; D, E) > [inf |F (@)™ 2 [p((IG:(Wsjen)] - (18)

The proof of the above assertion is based on the balancing result
due to Stoer and Witzgall [9] which states that for a positive matrix
M € RNXN

-+

min ||diag(as) M diag(e;t)|| = p(M), (19)
where ||.|| is the operator norm induced by any p-norm on RV, 1<

p < oo and the minimum is taken over all & = (1,...,an) > 0.
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