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WEAK COMPACTNESS AND CONVERGENCES

IN BOCHNER AND PETTIS INTEGRATION

CHARLES CASTAING

INTRODUCTION

In this paper we give a brief survey of some recent weak com-
pactness results in the theory of integration as well as some conver-
gence results which arise from Mathematical Economics, Probability
and Variational Analysis. Let (n,7 ,p) b" a complete probabil i ty space,
E a Banach space, and Lrr(p) the Banach space of Bochner integrable
functions equipped with its usual norm. In section 1, new charac-
terizations of conditionally weakly compact (c.w.c.) (resp. relativcely
weakly compact) (r.w.c.) subsets in Banach spaces via a class of regular
method of summability (RMS) a : (ao) @f.. lL4l, 126l) are present-
ed. A subset K c E is c.w.c. (resp. r.w.c.) i f f  for any sequence
(c") in K, there exists a subsequence (c,.* ) such that the sequence

oo

(s7.) with sk : D akurn, (/c e ,nf) is well-defined and weakly Cauchy
g:0

(resp. weakly convergent). This characterization is equivalent to the
following: for any sequence (r") in K, there exists a sequence (ir) with
ftn € co{rrn i rrtr } n}, such that (i") is weakly Cauchy (resp. weakly
convergent).  Also several  cr i ter ia for c.w.c. and r.w.c. subsets in Lr"(p,)
are presented. In particular a bounded uniformly integrable and ball-
condit ional ly weakly compact-t ight subset in LLr(p) i .  c.w.c. In sect ion
2 new sequential weak compactness criteria for convex weakly compact
valued scalarly integrable multifunctions are discussed. In section B we
state some sequential weak compactness results for Pettis integrable
funct ions with appl icat ion to the existence of best approximations the
space of Pett is integrable funct ions. In sect ion 4 using a vector valued
version of Komlos theorem due to Garling, we present a new version of
Komlos - Slice convergence for integrable convex weakly compact valued
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multifunctions and also Banach-Saks property for bounded sequences

in I|r(O,7,p,) where Iy' is a separable Hilbert space.

This paper also contains several types of convergence in Lrr(p) with

applications to Mathematical Economics and Minimization problems.

Most of our proofs are detailed and easy' except for some of them

which rely on deeper results due to Garl ing [29], Rosenthal ([43] , l++l)
and Talagrand [a7].

NOTATIONS AND PRELIMINARIES

We will use the following notions and notations' We denote by
- (O, 7,p) u complete probabil i ty space.
- E a separable Banach space'
- E' the topological dual of E, E! (resp. Ef) (resp' Ef) the vec-

tor space E' equipped with the o(Et,E) (resp. Mackey) (resp. norm)

topology.
-EE (resp.Bs,) is the closed ball  of center 0 and radius I in ,E

(resp. ,E').
- cwk(E) the collection of non empty convex weakly compact sub-

sets of ,8.
- R-x(E) (resp. R 

"-"(E)) 
the collection of borel ian subsets of E

such that its intersection with any ball of E is relatively weakly (con-

ditionally weakly) compact.

6-(., /) is support function of a subset A of E.
- lhjt) is the space of Bochner integrable mappings u : A -' E

and Lfl(p) ir the topological dual of LL"(p.) (cf. A. and c. Ionescu

Tulcea [3a]).
- pijt) is the space of Pettis functions u : dl -' E.
- If X is a topological space, B(X) is the Borel tribe of X.
- A multifunction f : O '-+ B(X) is measurable if its graph Gr(f)

b e l o n g s  t o 7 8 B ( X ) .
- P"'-o(r) (p) it the space of all scalarly-integrable multifunctions.

- Ll_n@)(p) ir the space of all scalarly integrable multifunctions

I : O -- 
".tt(E) 

such that the scalar function lf | : u,' -- sup{llzll : c €

f (r)) is integrable, such a I is said to be integrably bounded.
- A subset of )/ of !.!-1,181(lr) it bounded if the set {lxl : X € }l}
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is bounded in Il (p); )l is uniformly integrable if the set {lxl : X e X)
is uniformly integrable in Il(p).

- A multifunction M : 7 -- cwk(E) is a rnultimeosure if, for any
rt € E' , 6*(r', M(.)) is a scalar mea^sure; M is a rnultimeasure of
bounded uoriotion if there exists a finite positive measure z defined on
./ such thal M(A) c u(A)BB for all A e 7.

- A mappingm;7 - E is a selection meosure of a multimeasure
M : 7 -- cwk(E) if nz is a vector measure satisfying ,(A) € M(A) for
a l l A e T .

- A mapping I : Lfftj4 --+ R is ruid to be ad,d,itiue if for any pair
(f ,, fz) in Lff, (p) with disjoint supports, l(h + fz) :,(/t) + I(f2); I is
said to be obsolutely continuous if. it admits the integral representation

Vu€ Lf f1| i ,  I (u) :  I  o. ( r ( r ) ,  x(r ) )  p(dw)
"  J a

with X e Lf,.r@)(p); such a X is said to be the density of l.
- Si(N) is the set of strictly increasing mapping from N to N.
- A subset )l of Lts(p) is ,R,,r(E) (resp. P"-"(E)) tisitiffor every

e ) 0, there exists a measurable multifunction f, : O ---+ R -k(E) (resp.
R"-"(E)) such that Yu € X, pl{, e O : u(c.r) f f"(o)}] < e.

- If (2") is a sequence in E, w - Ls{xn} is defined by

w - Ls{no} ': |'-] 6; k >4"
n : L

where { . 1" d"rrotes the closure for the o(8, Et) topology.

1. WEAK COMPACTNESS AND CONDITIONALLY WEAK
COMPACTNESS IN BANACH SPACES AND IN I,b

The material of this section is borrowed from Benabdellah-Castaing
([6], [7]). We aim to present some recent compactness results which are
based on the results of Rosenthal ([lrj, [a+]) and Talagrand [42].

An infinite matrix (opq)@,q)eNxN is called a regular mcthod of
summability (RMS) if

\ - ,
r 9 P . L l @ p q l  < + o o ,
PEr\  g:0

(1 .  1 )
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(1 .2 )

(1 .3 )

q :no

Vg € N,  l im ooo :  0 ,
P+oo

g:o

It is easy to check that a : (oo) is a RMS iff for any sequence (r')

in a Banach space E, converging to r e E, then the sequence (z'") given
oo

by ,'*: D anqfrq, converges to c. A sequence (c') in a Banach space
g:o

is called summablewith respect to a RMS o : (apq) if the sequence (z'o)
oo

given by 
"'r: D &nqrq is well-defined and converges for the norm of

g=0

.8. An RMS a: (apc) is positive if, Vp, q, aoo ) O.

Let us mention first an easy lemma before we state the main results.

Lemma l.l. Let (ao) be; positiue nMS and let (x") be a sequence

inR such that the series D apcrc are conuergent. Then we haue
g=0

(r) l iminf zo ( l iminf f ap,tnq.
p - O O  

'  p * @  g : O

In particular, if ftn € co{ry : k ) n}, Vn, then we haue

(z) t iminfc,, ( l iminfi".
n+oo n+oo

Proof. (1) let (r*) eR such that the series up i: f ornro are conver-
9:0

gent in R. Let r < l iminf cn : sup jgl "*.
Then there exists a positive integer ??6 such that k 2 no implies r (

r3. Hence Yq) n6, apcr S apqrq. Therefore ( f l aoo)r 1 i apqtq.
q :no

Consequently we get
oo .  no-L

( * )  ( D " o o ) ' - (  D
g:o g:o

oo

Since lim D ooo -- L,
o--  n :o

(1.2) and (1.3) of the

n o - l

o o o ) ,  1 u p -  D  a p q r q .
g=0

n o - l

and l im D apq :0 by virtue of propert ies
o--  n :o

RMS and s ince l i *  " i t  apqrq:  o ,  then by
ot-  o=o
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taking the liminf in (x), we obtain

n o - l

r  S l iminf(uo - )--  apqro):  l iminf uo
P - m "  

e  
P * o o  r

It follows that lim inf 
", S li,a*f 

n:i__oo*o*l.
(2) is easy consequence of (1).

Now we are able to produce the main results of this section.

Theorem L.2. Let K be o subset of a Banach space E and let a : (aoo)
be o positiue RMS. Then the following are equiualent:

(1) l( is conditionally weakly compact.
(2) Giuen anV sequence (rn)n C K, there eaists a subsequence

(r,)r such that the sequence (s1,)1, with s1, - f ooorno (k e N)
g:0

is well-defi,ned and weaWy Cauchy.
(3) Giuen any sequence (ro)n C K, there erists a sequence (in)n

with tn € co{r,n : m ) n) such that (r") is weakly Cauchy.

Proiof. The implication (t) -- (2) follows easily from properties of the
RMS. Let us prove (2) =) (3).

since K satisfies (2), K is bounded. Indeed it is enough to check
that ,  Vc '  €  E ' ,  we have 6*( r ' ,K) :  sup(c ' ,o)  < +m. Take a se-

reK
quence  ( r " )  c  K  such  tha t  

" l $ (x ' , un ) :6 * (x , ,K ) .  
By  (2 ) , t he re

exists.4 subsequence (uo*)r of (u")" such that the sequence (uo)o with
m

up i: D apqunn is well-defined and weakly Cauchy. Hence the se-
g:0

quence ((r',ro))o with (z', oo) : f orok',u,.") converges in R to a

point us,. Clearly by obviorrs oroo5fi", of the RMS, we have

6* (r '  ,  K) : - l l la(" ' ,  uoo) : l im. i : f  f  orob'  ,uno) :  uz,  <*m .
p+oo o*_  

o=o

Now set M :: sup{llcll : r € K} and let us prove that K satisfies (3).

Let (c,) C K and let s;, - f ornrno given bV (Z). For each

rt  € E' , let  r r , :  , l im (r ' , "1) .  e. . f ; i8 i r ,g to propert ies (r . r )  and (r .z)
/ c + o o '
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( 1 . 2 . 1 )

of the RMS, it is easy to construct two strictly increasing sequences of

positive integers (No) and (pp) such that

/ c - 1

Vp, Vft ) 1, D "on 
< 2-P and I aono 1 2-k

9 ) N p  g : o

Nou

For every k) -L,  set  , \ ;5  : :  t  ao*n '  Then by ( t .Z. t ) ,  we obta in
a  Q : k

o < 
I  

dprq -  ) ,p {  2-k - t  Z-Pr
q:u

Consequently by property (1.3) of the RMS, we deduce that 
*!1It 

:

1 .  Set

V/c, , \ j  : :  Ioprs and
' A k

Then it is clear that ip € co{xnu : q

have

l ( r ' , i u )  -  s , ' l

t  I  r ,  ,  
n - '

:  l i  l \ r '  ,  "or) 
-  (r '  ,T, on,trnu I  t  apxqrnu)] -  

"" '  I
9:0  g)  Npr

- , 1 , ,  \  I  M l l ' ' l l
- .  l ;  ( r ' , "po )  -  s , , l  +  ) i ,  Q- r  +z -Pk )

Hence it follows that 
fthll(r' ,irl : sn,. Whence (6t) is weakly Cauchy

and satisfies ir € co{r^ : m > k}, Vk.

Now it remains to prove (3) + (1). By using Lemma 1.1, we

can show similarly as in the previous implication that K is bounded.

Assume by contradiction lhat K is not conditionally weakly compact.

Then according to a result of H.P. Rosenthal [+t], there exist r € R,

6 > 0 and a sequence (r,)o C K such that the sequence (A',B,,),,e11

defined by

An  :  { r '  eB t ,  ;  ( r ' , r n )  2  r ' t 6 }  and  Bn  - -  
{ r '  €

is independent. BV (g), there exists in € co{r^

such that (i") is weakly Cauchy. Each i,, has the

Npr

rt1, :: DXt ","
9 : k

> /c). Moreover, for every k, we

Br ,  ,  ( r ' r r , - )  < - r )

: m ) " \ ( " € N )
f f ln

form ftn: |  \ f ;x;
7 :  f l
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ffin

wi th  ) f  >  0 ,  D  l l  =  1 ,  mo  )  n .  Le t  / l o  : 0 ,  r l r :  mO*  1 , . . . ,  nk+ r  :
t= f r ,

tun* * 1. Then (n3) is a strictly increasing sequence such that for all
i  *  j ,  fn ; , *n, )  n  ln i ,moi l  :  0 .

Now let us consider the following sets
frok frr"k

Lr,: l^i or and .F3 :: [^) tn
i =nk  .  i : n k

Then (1r,, Ed is a sequence of disjoint pairs of subsets in Bs, and
is independent. Indeed, let .I and J be two finite, nonempty, disjoint
subsets of N. Then we have

( n ; - )  n (n  5 i : ( f - l  a , )  n (nBd )  ( r . 2 . 2 )
kel  ke. t  ie l '  ieJ '

where .I '  : :  .U fnk,*o*] and J, : :  U lro,mnol ate disjoint. Conse_
ket kel

quently, the intersection in (t.z.z) is nonempty. on the other hand, for
every /c, we have

247

t  .1 
frok

r '  e Ap ) (r ' , inr) :  D ^l-  (r ' , r ;)
a = n k

and x,' e En + (r',ior) < B \!kr : r.
N : f L K

By invoking again Rosenthal [43], we conclude that (i,r.) is equiv-
alent to the unit vector basis of 11. This contradicts the faci'that li")
is weakly Cauchy, thus proving the implication (g) + (1).

Here is an analogous criterion for relative weakly compact subset
in a Banach space.where equivalence (1) <+ (3) was stated by Ulser [+sl
and Diestel-Ruess-Schachermayer [Ze] by different methods

Theorem L,3. Let K be a subset of a Banach space E and, ret a : (aoo)
be a positiue RMS. Then the following are equiualent:

(1) l( is relatiuely weakly compact.
(2) Giuen any sequence (xn)n in K, there erists a subsequence

(rr*)n such that the sequence (s1r)1, with s1, = f orornu /c € N) iE
g : 0

well-defined and weakly comterg ent.

f r n k

> \ -
L = n k

\ i r ( r * 6 ) : 7 1 6
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(3) Giuen any sequence (rn)n in K, there erists a sequence (ft")

with fr,n € co{r,n i m > n} such that (ft") is weakly conuergent.

( l) Ciuen any sequence (x,-)n in K there etists y such that,Yrt €

E, ,
l iminf  (o ' ,  r , " )  1  ( r ' ,a)  .

proof. The proof of implications (1) + (2) + (3) follows from the

arguments we used in the proof of Theorem 1'2.

(3) + (a) is an immediate consequence of Lemma 1.1 applied to

the sequences ( (z ' ,2 ' ) )  and ( \ " ' , i "1) .

(4) + (1) follows from a classical characterization of relatively se-

quentially weakly compact subset in normed spaces (see e.g. Holmes

[s2]  918.A) .

Remark.It would be interesting to address the following question: what

happens if one replace "weakly relatively compactness" by "norm rela-

tively compactness" in the statement of Theorem 1.3.

The following example shows that, in general, the statement of

Theorem 1.3 is not true if one replace "weakly" by "norm". Let E : co

and let K - 
{"n , n € N} be the unit vector basis of c6. Then

K is not relatively compact for the norm topology since for n * m,

ll"" - e-ll- : 1, although K satisfies the following property: given any

sequence (rn)^ C K, there exists a sequence (i") with in e co{n*:

* 2 n) (z e N) such that (i,") converges for the norm topology'

Indeedset  X:  {xn:  n  e N} .  I f  X is f in i te ,  there ex is ts  r rz  €N and

a subsequence (crr*)p of (z') '  such that, Vlc, tnr: em, so that in this

case, we can take, Yk,, i1, : rnk : em. If X is infinite, there exist

two subsequences (rr)r and (enn)p of (r")' and (e") respectively such
2k

that, Vk, npx : eqr. Set i1 : E+T Pr"n,, 
Vk, then ftp € co{ec, : i >

k) c co{r n : n ) k} and (ip)6 converges to 0 for the norm topology.

Now we are able to present weak compactness criteria and conver-
gence results in Lrr(p').

We begin by recalling a celebrated result due to Talagrand ([47],

Theorem 1).

Theorem 1.4. Let (u^) be a bounded sequence;n LLBfui ').  Then there

exists a sequence (il,") with il'n e co{urn : rn } n} and two sets A and

B in 7 with p'(A u B) : ! such that

(a) for each w in A, the sequence ('m"(r)) is weakly Cauchy,



weak compactness and convergences jn Bochner and pettis integration 24g

(b) for eoch w in B, there eaists ond integer k such that the Eequence
(il"(r))">p is equivalent to the uector unit basis of lr .

Remark. Although the thesis is more general than the one given in
[a7], Theorem 1), in which (u,) is bounded in Lff(pr.), Theorem 1.4 is
an easy consequence of Theorem 1 in ([47]). In the same vein, Diestel-
Ruess-schachermayer obtained a refinement of ralagrand,s theorem by
another method (see [Za], Lemma 2.5). Indeed let an: l l" ,(.) l l ,  Vr.
Then (u") is a bounded sequence in r l(r).  By ([ ls], Theorem 3.r and
Remarks, p. 60- 6l), there is a sequence (frr) with i," € co{u* : rn } n}
such that (fr,") converges almost everywhere to some u e Ll(.r). Each

0,, ha^s the form frn: ." t  ^ irowith 0 S )f  (  l  and f,  ^t :  r .
Extracting a subseque.,.Sfrru."ssary and modifying the ,l-Tr€-N, on
a negligible set we may suppose that (6"(r))" converges to u(c.r) for all
crr € O. Set

Vc. ;  €  O,  M(r) : :  1*  suPfr r , (c . r )  and

'r 'o

h,(r), :  
fu !,1[u1(r^,) .

k :n

then we can apply Talagrand's theorem to (h,). There is a sequence
(f,') with ir,- e co{h,n i rn > rz} which satisfies conditions (a) and (b)
of Theorem 1.4. Now it is enough to set it"(r) : M@)\r,(cr), Var € O.

Now we state our first result which is a direct application of rheo-
rem J.2. and Talagrand's results [47].

Theorem 1.5. Let )l be a bounded subset 
"f 

tb04. Thenthe following
are equiualent:

(1) X is conditionolly weakly compact.
(z) x is unilormly integrable and given anu sequence (f ̂ ) c x, there

exiety @ sequence (i^) w;tn in e co{y* : m } n} such that (i.(a,,)), rs
weaHy Cauchy in E for a.e. w € dl.

Proof. Let us prove (1) + (2). It is well-known that conditionally
weakly compact subsets of LLr(p,) are uniformly integrable (see e.g.
[zt]). Now let (/,") be any sequence in ]/. Then by Theorem 1.4, there
exis ts  a sequence 1;" ) ,  wi t t r  i *  e  co{y* :m}n} ,  and two sets ,  A,  B
in /  wi th  p(AU B)  :1 ,  such that

(a) for each u; in A, (i,(r))" is weakly Cauchy in E,
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(b) for each w in B, there exists an integer k, such that the sequence

(i^@)),>;, is equivalent to the vector unit basis of lr '

suppose that the measure of subset B of o is strictly positive. Then

by Talagrand ([+7]), Lemma 4), there exists k such that the sequence

(f)*>r is equivalent to the vector unit basis of 11. But this contradicts

the fact that (/,) is c.w.c since (/,) l ies in the set co()/),  which is c.w.c.

(see [a+] or [tZ] Theorem 5'E). Therefore p(B) :0, and for a'e' w e {1,

the sequence (f,(ar)) is weakly Cauchy.

Let us prove now (2) * Jt). By Theorem 1.2, it is enough to check

that given (/,) c )/ and (/') ut in (z), the sequ""." (/') is weakly

Cauchy in Lr6(u). Let g € Lff, [E]. Since (f"(r))" is weakly Cauchy in

E f.or a.e. u € O, the sequence ((g("),/"(r)))" converges a.e. Let

p ( u ) : : , l g ( o ( r )  , f * ( r ) )  f o r  w  (  N  ,

where N is a negligible set and p(w) :0 for c' ' r  € N' Then by Fatou's

lemma, p € Lf,.(p) and since ((g, f"))" is uniformly integrable, by

Vitali's theorem, we get

k,  f* )dp:

thus proving that (2) + (1).

concerning r.w.c. subsets in Lrr(p) we recall  the fol lowing which

is essentially due to ulger [+s] and relies on the equivalence (t) <+ (a)

in Theorem 1.3.

Theorem 1.6. (Ulger-Diestel-Ruess-Schachermayer [ZS]) . Let E be

a Banach space and )l  be a subset of L'e1"). Then the fol lowing are

equiualent:

(1) )/ is relatiuely weakly compact.

(2) X is uniformly integrable and giuen any sequence (u.) in X,

there is  a  Eequence ( i l ' " )  wi th  i ln :  co{u^ :  m }  n} ,Yn,  such that

(tn"(w)) is weakly conuergent in E for alrnost al l  w e Q.

The following result is mentioned in Diestel ([zz], p.?37). We pro-

vide the proof here for the sake of completeness'

Proposit ion 1.7. Let E be an arbitrary Banach space, K a nonempty

subset of E. Then the following are equit;alent:

(1) 1( is conditionally weakly compact.

In o,lim t
n -q  J  { l
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(2) For euerv e ) 0, there erists a conditionally weakly compact set
K" such thot

K c K r - f e B B .

Proof. (1) + (Z) being obvious, let us prove (2) + (t).  tet (eo) be a
decreasing sequence of strictly positive numbers with !1g uo : 0, and

(Kr) b" a sequence of conditionally weakly'cornpact slbrets in E such
that

Y p ,  K c K p * e o B B  ( f . 7 , r )

We have to show that, given any sequence (z,r) C K, there exists
a weakly cauchy subsequence. By (1.7.1), for every n, there exists
y; e Kp such that llr" - yP* S ep.

Since each K, is c.w.c., the sequenru (Ai)" admits a weakly Cauchy
subsequence. Then by induction we find a sequence (Vr,) itt Sf (N) such
that

Yp, (vl^  ̂  ^.^ t_\),,  is weakly Cauchy in E ..  '  \ v  g ) o o . , , o 9 . p \ n 1 t '

Let us consider the diagonal sequenc e ,b(n) i :  go o .. .o gn(z), Vz, and
let us prove that (zrp1^1) is weakly cauchy. Let e ) 0 be fixed. choose
p such that eo < !. Then for any z' € Bs,, and for r i  > k > p,we
have

l(rt,r4,pn1 - r4,&) | S l(2t,x,1,1,n1 - yo,t, t^l) l  + l(" ' ,  r , t ,(k) - v0,1,1,;1)l

* l(r ' ,aot,r^l - u1,61)l
1 2eo * , l(r ' ,yo*O,l 

- u0,1,rr1)l

Since by (1.7.2), 
_(aroo"...",2o(,,. .))r,  

is weakly Cauchy, so is (yf,r,)*.
Therefore 

_lg5(r', 
yo+Ol - yo+frl) : O. Hence there exists p" ) p such

rt-oo
that  rn  > k  > p,  impl ies l (x t , r ,1 ,1,n1 -  r , t , (k)  |  <  2. i+  i :  s ,  prov ing
that (ca1,))" is weakly Cauchy.

We need a couple of notions which are inspired by ([t] and [aZ])
before we state our c.w.c. cri teria in Lr"(p.). Let us recall  that R."*"(E)
(resp. R-x(E)) is the class of subsets K € g(^E) such that, their
intersection with any ball is c.w.c (rep. r.w.c) in ,8. An element
K € R 

"-"(^E) 
(resp. R*n(E)) is cal led ball-c.w.c. (resp. ball-r.w.c). I t

( 1 . 7 . 2 )
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is'clear that ,R".r(E) and R-*(E) are stable under finite unions and
that they contains the empty set 0.

A subset X c Lrt(pc) is cal led R"."(E)-t ight (reps. .P.*(E)-t ight)
if, for every e ) 0, there exists a measurable multifunction .L, from O
into .R".,"(E) (resp. R..r(E)) such that

Y u € ) 1 ,  p l { w  € O : u ( 4 . ' )  ( L " ( w ) } l < e

A subset X c Lrr(1r) has the cond,itionally wealc Talagrand property,
shortly, conditionally WTP, (resp. weak Talagrand property, shortly,
WTP) if, for any sequence (/") C )/, there exists asequence (g") with

0n € co{f ̂  : rn } n}, Vn, such that, for a.e. u; € O, (g"(r))" is weakly
Cauchy (resp. weakly convergent) in E.

There is a folklore Lemma which characterizes the above tightness
notion.

Lemma 1.8. Let E be o seporable Banach space. Let R. be a closs of
b o r e l i a n s u b s e t s  o f  E  s u c h t h a t : 0 e R . ,  A , B  e  R  +  A U B e R . .  L e t X
be a subset ol LrBQt). Then the following ore equiualent:

(1) for any e ) O, there erists a ffteasurable rnultifunction L" :
O --+ ,R such that

Yu € X,  p- {w eO :  u( t^r )  (  L" (w)} l  <  e.

(2) There exists o 7 I B(E)-measurable integrond p : n x E --+

[0 ,+oo ]  such tha t l o r  a l l a r  €  O  anda l l r  )  0 ,  { r€  E :g (w , r )  < r )  e  R .
and, thot

(3 )  The re  e r i s t s  a f  8B(E) -measurab le in teg randp  inx  E  -+

[0,+oo]  suchthat  for  a l l  t r  €  O and'  o l l  r  €  R*,  {a  € E : ,p(w,x)  <
r) e ,R and that

l im sup p[ {ar  €  { l  :  tp(w," ( " ) )  2  ) } ]  :  0  .
A * * o o  u € X

Proof.  (1)  =+ (2).  Let  eo:3-P ( l  e N;.  Bv ( t )  there exists a
measurable multifunction Lo: O * ,,? such that

V u € ) 1 ,  p l { w  € o : u ( u , , )  ( L o @ ) } l < e o

: : i  I  e@,u(a))p(dw)(  *m .
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Let us consider the multifunctions Kn : fl -- B(E) (z e N u {-})
given by:

Var  € o,  Ko(r )  :  Lo(r ) ,  K"( r ) :  L^(w)  \ I r " - r (ar ) ,  Vz > 1

and K*( r ) :  E\ ,9*O"( r )  :  U\" .U*  L"( r ) .

Then it is obvious that each Kn (z € N u {*}) is measurable and
the sequence (Gr(K")),,eNu{oo; is a 7 a B(E)-measurable partition of
O x .8. Set

p ( w , a :  [ ' "  
i f  ( w ' r )  €  G r ( K " ) '  z  €  N

' - 
I ** if (o, r) € Gr(K*)

We claim that tp is .78 B(E)-rneasurable integrand which satisfies con-
di t ion (2).  Indeed, let  r  )  0.  I f  r  < 1,  {u € E:tp(w,u) S r}  is  empty;
if r ) l, let nz be the unique integer such that * S ^bnr, < m* 1. Then

{ ( * , " )  € o x  E : p ( w , r ) S r } :  U  G r ( K * ) e 7 @ B ( E )
n=0

Similarly for all u; € O, we have

{ r € E 2 e ( w , n ) S r } :  U  K , @ ) =  U  L * @ ) e  R .
n : 0  n = 0

I t  remains to check that sup [np@,u(w))p,(dw) < +*.
utt l

For each u € )l and each n € N U {m}, set

dl i  :  {t . ,  € O : u(w) € K"(w)}

Then (O|)"en1u{oo1 is a /-measurable part i t ion of O with p(n|) <
en-rr Vz € N* and p(O[) : O. Consequently we have

f o o / n o o

l  p@,u(w))1t '(dw) : t  |  ,@,u(w))pr.(dw) : D z"p@I)
J a o:-:o J nX n:o

oo .rfL

< 1 + ) - j _ T ( * o o
/-t 3n
n : l
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thus proving the implication (t) + (Z).

(z) + (3) follows immediately from Tchebyschev's inequality. Let
us prove (3) + (1). For every e ) 0, there exists tr' ) 0 such that
s u p p [ { c ^ r  €  O : g ( w , u ( w ) )  >  t r ' } ]  < t .  S i n c e  e i s T  S 8 ( E ) - m e a s u r -
u€X
able, the mult i function .L"(o) ,:  {,  € E : p(w,r) ( }"}, Vu; € O, is
measurable and takes it values in ,Q by (3). Since we have

Vu € X, pl{ ,  eO : u(t^r) (  L"(")} l  :  pl{w € dt :  e(u,"(r))  > }"} l  < t

(3) + (t) is proved.

Now we are able to present our second conditionally weakly com-
pact cri terion in Ltt(p).

Theorem 1.9. Let E be o separable Banach spoce. Assume that X
is uniformly integroble and R"-"(E)-tight subset of Ltej"). Then X is
conditionally weakly compact ;n LrBQt').

Proof . Let e ) 0 be fixed. Since )/ is uniformly integrable, there exists
6 > 0 a n d o > 0 s u c h t h a t

a n d f e
v B €  7 ,  p ( B )  ( 6 + : E l I l " l d p < i

By our assumption there exists a measurable multifunction L6 : A ---,

P"-"(E) such that

Y u € X ,  p l { u  € o : u ( a r )  $ L 6 @ ) ) l < 6
For each u € )/, set

A u :  f l " |  5  o l  ,  B u :  { a r  €  O : u ( u . ' )  e  1 6 ( o ) }

Then we have

rtr :  lAunB.u * la. nB-u I lB" u

a n d  
l l L t . . n a - u *  l s " u l l  t  = ; + ; :  e .

Set )/" : {L7,-nautl LL € X}. Then it is obvious that

) l c X " * e B 7 ' 6 1 .

f .
s u p  I  l " l d p  < :
u Q t J 2

i l "1  >o l
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Now we claim that )/, is conditionally weakly compact in LL"(p,). Let
(u.)^ C ,V and un i:  lAuonBuou,nrYn. Then

an(w) € (La(r )  u  {o} )  n  ?EE

for all c.r € O. Moreover Ga(r) ,: (La(r) u {0} n qBB is condition-
ally weakly compact in .E because .L6(cu) € R 

"-"(E). 
By Talagrand's

theorem ([a7], Theorem 1), there exist .4 € 7 and. a sequence (fr,) with
6n € co{urn : m } n),Vnrsuch that

(a) Var € A, (6n(r))" is weaklv Cauchy in ,E
(b) for a.e. u e A", there exists ft such that (fr"(cu))*>r is equivalent

to the unit vector basis of 11.
Now, Vo € {1, i l"(w) € coG6(t, ')  and co(G6(o)) is condit ionally

weakly compact (see [++], or [tZ] Theorem 5.E). Hence p,(A"):0. So
we conclude that (6.(w))" is weakly Cauchy for a.e. a.r € O. By virtue
of Theorem 1.5.,)/, is conditionally weakly compact in Lrr(p,). Since
X c X"leBy 1p;, then by Proposit ion 1.7,.V is condit ionally weakly
compact too, thus completing the proof.

Remark. Theorem 1.9 is a slight refinement of some results obtained
by Pisier [42] and Bourgain [11].

Similarly we have the following criterion for relatively weakly com-
pact subsefs of LLr(p,) (see [t], Theorem 6, p. I74for proof).

Theorem 1.1O. Let E be a separable Banach space. Let )l be a uni-
formly integroble and R-r(E)-t;ght subset 

"f 
tb\t). Then )l is rela-

tiuely wealcly compoct ;n LLr(p,).

The following result provides the connections between ,,tightness

notions" and "Talagrand's properties".

Theorem 1.11. Let E be a separable Banach space. If )l is a bounded
R"-"(E) (resp. P-x(E))-t isht subset of Lb\t), then )l  is condit ionally
WTP (resp. WrP) ;n LLB@,).

Proof. We have only to prove the thesis for the R"-"(E)-tight case,
since the proof of R -p(E)-tight case is similar by invoking Theorem
1.10 .

Let (2,) c )/. By Biting lemma ([28], [45]) there exists an increas-
ing sequence (A1) in / with 

ollg r(eo) : t and a subsequence (2,,* )
such that (Lerunr) is uniformly integrable in LrBQt), and that (l a" unu)
converges to 0 a.e. Set K : { lerunr : lc € N}.
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We claim that K is R."-"(E)-tight. Let e > 0. By our assumption,

there exists a measurable multifunction L" z {l -, R"-"(E) such that

Y u € X ,  P I { w  € o : u ( a r )  ( L " ( w ) \ l < e '

Set G"(ar) :: L"(w) U{0}, V(, € O. Then G" is a measurable multi-

function from O to R."-"(E) such that

Vft € N, pl{w e {l : (Larun-(r) ( G"(")}l

: pl{w e Ap : unr(u) ( L"(w)}l < e .

Hence K is .R"-"(E)-tight as desired. since K is uniformly integrable,

by Theorem 1.9, K is c.w.c. in LLrQt). By virtue of Theorem 1.2, there

exists a sequence (up) with uo € co{14*2n1, i k > P}, Vp, such that,

for a.e. ar € O, (ro("))o is weakly Cauchy in E. Each uo has form
vp Yr vP

,p :  f  \pr larun* ,wi th  ) i  >  0 ,  .D ) i :1 .  Set  i lp :  .D \ l ,un,Yp.
'  

n :p 
- '  

k :P k:P
vp

Then &p: up * wp, where up i: Do)tortoru,n* with wp' 0 a'e' since

lti"un* -+ 0 a.e. We deduce that for a.e. w € O, the sequence (to('))

is weakly Cauchy in E, thereby proving the Theorem.

Theorem 1.1-2. Let )1 be o bounded, subset 
"f 

t b?t). Then the follou-
ing are equiaolent:

(1) )/ hos the weak Talasrand propertv (WTP).

(Z) Giuen anV sequence (un) in X, there are on increasing se-

qvence (A1,\ in 7 with 
ofjg rz(et) : t and a subsequence (un*) of

(un) such that (L4*unr)k is relatively wealely compact in Ltr(1t) and,

that (Laiuo*)k conuerges a.e. to zero.

(3\ Giuen any sequence (un) in X , there exists a sequence (fi'") with

f i ,o e co{um. rn ) n),Vn, and u* € lb1t) such that (f i 'n) conuerges

o.e. to uoo for the norm topology of E.

proof. (1) + (z). Bv Biting lemma ([28, [45]) there exist an increasing

sequence'(/r) in / with 
*l]llp(e*) 

: t and a subsequence (2,"*) of

(u,") such that (1a. un*)r is uniformly integrable in Lts(Lc) and that

(Lo'iu'"*)r converges to zero a.e. Now we claim that the set K ::

{tirunr: /c e N} has the (wTP). Indeed, bv (t) there exists a subse-

q"*." 
-(un*) 

of (u'*) and a sequence (uo) with u, € co{un*i I i 2 p},
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Vp, such that for a.e. u € O, (uo(ar))o converges weakly to u(t,,) in E.

Each uo has form ,r: f \!junr, with )f ) 0 and Di,:olf : 1. Set
i :p

vp

up:  D \ l i to- run* t ,Yp.  Then i t  is  eas i ly  seen that  .p( r )  - -  u(w)
J : p

weakly a.e. in.E. As w, eco{Lnriunri :  i  > p),Vp, K has the (WTp).
since K is uniformly integrable, by ulger-Diestel-Ruess-schachermayer
Theorem (Theorem 1.6), we conclude that K is r.w.c. in Lrr(p.).

(2) + (3). Let (Ar) and (z,n* ) according to (2). By Mazur's lemma,
we may assume, by extracting a subsequence if necessary, that there
exists a sequence (u;r) with ap € co{la*{n* : m } k}rVk, such that
(us)p converges a.e. to an element uoo € Ltr(p). Each u; has the

f o r m u l :  f  \ t o r u n ; , w i t h g < l k < r  3 t * -
Fx  

, ' LA iun i '  w r th  u  S  l i  =  t ' , . ! o r i :  r .  Le t  i t 1 " :

vk

D. \f "",, 
Vft. Then (,np) has the desired properties. (3) + (f ) is

1: r t
obvious.

corollary 1.13. Let K be a conver bounded wrp set in tb1t) which
is closed for the topology of the conuergence in rneasure. Let J : K --+

[0, +oo[ bc o convex lower semicontinuous function for the topologv of
conuergence in measure. Then J reaches its minimum on K.

The preceding corollary generalizes a result due to Levin [ss]. (see
[f5] for details an references).

Let us mention the following consequence of Theorem 1.12.

Proposit ion 1.14. Let x be a bounded wrP set in th04. thenthe
following are equiualent :

(t) Vu e Ln(p), {(r(.),  "(.)) 
:  u € )1} is uniformly integrabte in

t'il.Q').
(2) )l is relatively weakly compact ;n Lrr(p,).

lr*t (2) =+ (1) being obvious, it is enough to prove that (1) =+ (2).
we may suppose that E is separable. Let (u") be a sequence in )/.
By Theorem 1.12, there are zoo e nb1r) and a sequence (fr,) with
ilo € co{u^ z m ) n}, such that (fr") converges a.e. to zoo for the
norm topology of E. BV (f), Vu € Lff,(p), the sequence ((r, i l^))*
is uniformly integrable, then by Vitali's theorem lim /n (u,it,nld,p, :
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.[n (r, u*ldp. By virtue of ,Theorem 1.3, we conclude that I is relatively

weakly compact in LrBlt).

Now we present some nice properties of bounded WTP sequence in
nb1').
Theorem 1.15. Let (u*) be o bounded WTP sequences ;n LLr(p').
Then the following properties hold':

(o) There eaist on inueasing sequence (Ao\ in 7 withlimp(A) :

L, a subsequcnce (rr,* ) ol (un), a sequence (il") with &n e co{un1, : k }

n) and u* € tb\ i  such thot,Vp, (unrltr)*o(L',tr-) conuerges to

u*lAp and, thot ilt"(")) cont)erges in norm to u*(w) for o.e. s'r € O.

(b) If (rr) rt o bounded. sequence in Lff,(p') conuerging in meosure

to u* a tfi,"!t) fo, the norm topology of the strong d'ual of E and if the

sequence ((J.,r,)-)n is unilormly integroble in LL!t), then we haue
f f

tlg*f 
ln@",un)dp 

, 
ln!*,u*)dp 

.

(r) tl p i n x E -+ [0,+o[ is on 7 e B(E).^"*urable integrond
such thot, Vcl € {1, g(wr.) is conuex lower semicontinuous on E, then
we houe

Proof. (a) Repeating the Biting lemma ([28], [45]), we find an in-
creasing sequence (r{o) in / with fu u(,+; : t and a subsequence

(u'") of (u.) such that, for each p, ("t^1o) is uniformly integrable.

Since (ur) is WTP, then (u'*'oo),, is uniformly integrable and WTP

in L\@). By virtue of Theorem 1.3, Yp, (u'nl,q),, is relatively weak-

ly compact. Consequently, by a straightforward diagonal procedure,

there are uoo e t'bjt) and a subsequence (urr*) such that, for every p,

(un*1,+) k o(Lr,.L-) converges to u*lAr.

Since (r,"*)* is WTP, by Theorem 1.12 there exist uoo e LLBfu') and'
(0") with iln e co{un1, i Ie ) rz} such that (i") converges a.e. to u-
for the norm topology of. E.

For any fixed p, and B € 7 n Ao and a'ny x' € E', we have

f f f f
I  @',a*)dp :  l im I @',f i , , )  :  . l im I @',uo*)dp :  I  @t,u*)d'p'  .

J S  | 7 , + 6 J B  n - a J B  J B

l,,q'*f 
| 

,{r,u,(w\)p,(d'4 > 
Ire(w,u*(w))pQa4 

-
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Hence (a'ru*):  \ r ' ,uoo) a.e. on Apt so ( f i "( t r))  converges in norm to
u""(c^,) for a.e. t'., € O. This proves Assertion (a).

Assertion (b) follows from the arguments given in [tS]. Let us check
(c).  We may suppose that o : :  l iminf [nV(w,u"(w))p,(d,r , , ' )  is f in i te and

by extracting a subsequence that o : 
,!g Inp@,u^(w))p,(d,w). Let

(fr") and

il,"(w) :

we have

u @
vtu

D
i :n

e tbQ") given by Assertion (a). Each fr,, has the form

\lun,(c.r) with 0 S )l ( 1 and f ^f : 1. By convexity,
l=n '

lim inf /n _ q  J A

Hence

lim inf /n  J n

vtu

yw,  Vn,  e (w, i tn (w) )  S  |  \ i v (w,u , i@))  .
j : n

Hence

l imsup [  , ( r , i l ^ (w) )p , (d .w)  3o .
n  J a

By lower semicontinuity of p(w, .) and by Fatou's lemma, we get

e(w, i ro(w))p(d")  2 ,p (w,uoo(w) )p(dr )  .

s (w ,uo (w) )p (d r ) p (w ,u* (w) )p (d r )  .

Remarks. (1) Properties (a) and (b) yield a version of Fatou's lemma
in Mathematical Economics. See [tS] for a complete bibliography of
this subject.

(2) Property (.) is a lower semicontinuity result. It turns out that
(c) allows to state a minimization problem as in the corollary of Theo-
rem 2.9. The details are left to the reader.

(3) If .E is separable and if (un) is bounded and R.-p(E)-tight, then
one can check that uoo(ar) e cou, - Ls{u^(w)} u.". We refBr the reader
to Amrani-Castaing-Valadier ([1]), Theorem 8) for details.

There is a variant of Theorem 1.15.

Theorem 1.16. Assume that Et6 is separable. Let (u*) be a bounded
sequence ;n LLr(p) such that

(i) V,4 € 7, Xn ': 
V { 

Inu"dp} is relatiuely wealely cornpact.

(ii) Any vector me@surc m : 7 --+ E with bounded uariation such
that, YA € 7, m(A) € co()/A) , admits a density ;n LrrQt).

L
,- l,
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Then propert;es (1), (2), (S) in Theorem 1.12 hold.

Prool. We sketch only the proof. It is enough to repeat the arguments

of the proof of Theorem L. l2 by not ing that,  for each p, (utnro) is

re la t i ve ly  o (LL , .L* )  compact .  See ( [ f7 ] ,  Theorem 3 .1) .

2. SEQUENTIAL WEAK COMPACTNESS IN
SET-VALUED INTEGRATION

We recall and summarize some results which will be used in the
sequel.

Theorem 2.1. Let E be a separable Banach space and let |  :  f) -r

cwk(E) be a scalarly integrable mult i function such that the set {6* (r '  ,  X)
r '  € BB,\ is uniformly integrable. Then the set S{" of al l  Pett is
integrable selections of X is nonempty and the mult iualued integral

' l oXdp , :  
{ l e f  dp :  f  €  S { " }  i s  

"onu" r  
weak ly  compac t .

Proof . By criteria of Pett is integrabil i ty ([eo, [33], [40]) Sfl" is nonempty
and the weak compactness of the integral IoXdp fol lows from ([19,
Theorem V-14) .

The fol lowing result ([ f0], Lemma 4.1) is a key ingredient of several
proofs of the results that we present below and we provide the proof
for the sake of completeness.

Lernrna 2.2. Let E be a separable Banach space and (X,.),"6p o se-
qu ence of s cal arly int egrabl e cw k(E) - ualu ed rnultifuncti ons satisf ying :

(1)  {6 .  ( r ' ,X ' , " )  :  r '  €  B 8, ,  n€ Ni  is  un i formly in tegrable.

(2)  For  euery A € 7 the set  ) le ' . : ,U - [o  Xndp, is  re la t iue ly  weakly

compact.

Then there is a subsequence

V A € 7 , Y r ' € E ' ,

erists rn R.

Proof . We may suppose that for every A € 7, there exists a convex

weakly compact subset Ka such that ) /a C Ke. Let D'  be a countable

dense sequence in E' ,  for the Mackey topology (see [ to] ,  Lemma II I -32)

and le t  A :o(At ,  r  e  N)  be  the  o-a lgebragenera ted  by  (X" ) "eN.  By

(X"* )re 1.T such that
I

, l im I  6 -  ( r ' ,X . r )dp
r c - q J A
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Theorem 2.1, for each z € N and for each Ae f , Inx*dp is a convex
weakly compact subset of Ka. Further observe thii'for each i, the set
Ci : {C e cuk(E) : C c Ke,} is compact for the Hausdorfi topol_
ogy associated to the weak topology. Then by (z) and by extraciing
diagonal subsequences, we find a subsequence (x";)66ry such that for
any fixed a e N, (lo.Xr*dp) convergus to an 

"lemenf 
C; e C; for this

topology which coincides with the topology of pointwise convergence of
their support functions on Dt. By strassen's theorem ([ro], rleorem
V-14), it follows that

for all xt € Dt and for all l € N. Now since D' is dense for the Mackey
topology, the preceding equalities are valid for every rt € E,. Let A € A
and e ) 0. Since the set {6*(r,,Xo): r,  eEB,, k €N} is uniformly
integrable, there is a measurable set ,,{; such that

!o,onl6* 
(r' , x*r)ld,pt, < e

so that

ol$ a- ('', 
In,x*rdp): ,,lgx Io,o. 

(r' , xnr)dp : 6* (xt ,c;)

I I^0.(a',xn*)d1r- l^,6*(r',x^)drrl = In,onl6*(r,,x**)1d,1^c < e

;g I 
h6* (x',x^)dp: *tL lrnn 

no. (r', xn)d,1,t.

for all r' €.E p, and for all /c e N. It follows that 
*liTo Io6. (rt , Xn*)d,p,

exists in R. consequently, for any a' € E' and. for any positive
.{-measurable and bounded function h

f

m" /" 
h6* (x' ' xn*)dP

exists in R. Now let h be any positive .7-measurable and bounded
function and let EAh the conditional expectation of ft., then we have

Here is an integral representation theorem for sublinear continuous
functions defined on LffiQt).
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Theorem 2.3. Assume that Et is strongly separable. Let I : Lff, (p) *

R be o sublineor continuous mapping. Assume that the following con-

ditions ore satisfied':

(i) For any pair (lt, fr) in Lff,fu') w;th d'isioint supports,

t ( f t  + fz) :  l ( / t )  + t( fr) '
(ii) For any increosing sequence (A^) in 7 with An I' A and for

any nt € E',

" l$ l (xo,  
r ' ) :  l (xer ' ) .

(i i i) For any fired A e 7, s' a l(yan') is r(E', E) continuous on

Et.
(iu) Ang uector measure m: 7 -+ E with bounded, rtariation uerify-

ing
Y(A,n ' )  €  7  x  E ' ,  ( r '  , * (A))  3 l (xer ' )

admits a density ;n Lrr(p').

Then there erists a unique X € tl-k(afu) such that

Proof. since the proof is rather long, we sketch only the main steps.

See Castaing-Clauzure [t7]. Note that for any X e tl-;tsl(p) th"

function
f

" 
-  

ln6- 
(u(t . ' ) ,  X(w))p(dw)

is a sublinear continuous mapping from Lfiljr) to R which satisfies all

the conditions of our theorem.

Conversely let t : Lfr104 --+ R satisfving (i)' (ii)' (iii)' (iv)'

Step 1. It is obvious that for any fixed .4 € 7, r' *+ l(yart) is support

function of a convex weakly compact set M(A) in E. Set

6*(r ' ,M(A)) - l(x,q,, ') ,  V(/, r. t) e 7 x Et '

By ([f Z], Prop. 2.1), the multifunction M : 7 ' cwk(E) is a multimea-

sure of Lounded variation, that is A r- 6* (x' , M(A)) is a scalar measure

and there exists a finite positive measure y such that M(A) C u(A)E B,

for all A e 7. Moreover y is absolutely continuous with respect to p.

Vu € Lff,(p), t(u) : 
Ino.(r(r), 

X(w))p(d'w) .
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Step 2. Let ,S1a be the set of all selections measure of M. Then for
every A e 7 and every d € Etwe have (a ' ,M(A))  16*( r ' ,M(A)) .
Since rn is of bounded variation, by (iv) there is f ,n e nb1t) such that

v A e 7 , m ( A ) :  I  I * a r .
J A

Set
X : { f , " : m € S y a }

and

VA € 7, Xe,: {  [  f , ,dpt f* € tb!"),  m € sp1).
J A

Then Xe : M(A) and it is easily checked that )/ is uniformly integrable
because we have

l im sup I V^ldp < .lir-n u(A) : g.
p ( a ) - o m e i v J t ' - '  '  -  

r ( A ) - o

As E' is strongly separable, )/ satisfies all the conditions of Theorem
4.1 in Castaing-Clauzure [17]. Hence )/ is relatively weakly compact in
tbjt). Sihce )/ is closed and convex, )/ is weakly compact. Moreover,
for any A e 7 and any pair (u, u) in )/, we have Xe,u I yn.a € )/, then
by a well-known result (cf. e.g.[ro]), there exists X € !,1-1,1ay(lz) such

that )/ : S.+ where S| is the set of all integrable selections of X. It
follows that

VAe 7,  M(A)

Equivalently we have

s i ) .

VA € 7,  Yr '  e E'  ,  l (xer ' )  :  6* (r '  ,  M(A)) 6* (r '  ,  x)dp .

To finish the proof, it is enough to repeat the arguments given ([17],
Prop. 2.2) to obtain

Vu € Lf i1| i ,  I (u) :  I  o. ( r ( r )  ,x(w))p,(d,u) .o  J a

The followhg is a weak sequential compactness result in tl-pp1}t).

Proposition 2.4, Suppose that Et is strongly separable and E has
Radoq-Nikod,ym property and (X") is a bounded sequence in l.l-1,181fu)
sotisfying:

:  
Io*or, :  {  Iof  

d,pt :  f  e
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(1) {6- (r ' ,Xn) i  s'  € B s,, n € N} is uniformly integrable;

(2) for euery A € 7, X4::U IoX"dp is relatioely wealcly compact

in E, then there erist a subsequence (Xnr) and X* € Ll-oe)Qt') such

that

for euery A e 7 and every r '  € Et.

Proof. Bv (t), (Z) and Lemma 2.2 therc exist a subsequence (Xo*) of

(X") such that

lim tn - 6 J A

f

. l im I 6. (r"xn)dp
te+6 J A

exists in R. Now we complete the proof by adapting the arguments

in ([tO]), Theorem 4.1). Note that for each z € N*, the mapping

ln: u * . [n 6-(u(ar), X"("))p(dt, ')  is addit ive sublinear and continuous

for the norm of. Lff, since we have
f

1,"(")l s ll"ll""::R,/" lx"ldp (z'+'z)

for all u € Lff,. By (2.+.2) (1") is relatively compact in the space of

all continuous mappings from Lff, to R endowed with the topology

of pointwise convergence. Hence there exists a filter U finer than the

Frechet filter and a mapping l*: Lff, p+ R such that
f

Vu € Lfi, , l*(u) : ltfl |,nU. (u, X")d'P' .

f
6* (r' , x.)dp : 

J oo. 
(r' ,x*)dpt

(2 .4 . r )

(2.4.3)

It is obvious that loo is sublinear additive and by (2.4.I) satisfies

the inequality

V(A,x ' )  €  7  xEB ' ,  l * (Yer ' )  S 6*  ( r ' ,X" )dp . ,  (2 .4 .4 )

By (z.a.a) we see that, for any fixed rt e Etand for any sequence (,4")

such that An I A, we have 
,1!5/."(x A*/) :  l*(xet ').  Moreover i t

is clear that l-(xer') S 6*(r ' ,)/n) for al l  (-4, r ')  e 7 x E' so that

for every A € 7, r' - l*(Xao') is continuous on E' for the Mackey

topology. Hence we can apply the integral representation Theorem 2.3

to loo which provides Xoo € Ll-ofq such that

sup t
a ' 6 E s , , n € N  J A
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Yu e Lff,, X*)dp. (2 .4.6)

Then (2.4.r) ,  (2.+.2) and (2.4.6) y ie ld
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t*(r) : 
lno-(u,

-r5-l^6*(r',x^)dp: lo

v(A, r') € f x E', *lix Ioo" 
(r, , xnr)dp : 

Ino. 
(r, , x*)d4t

as stated.

Now we aim to extend the preceding compactness results to scalar-
ly integrable nrultifunctions. It is convenient to introduce the following
limiting notions.A sequence (X") of scalarly integrable cuk(E)-valueJ
multifunctions scalarly Mazurconuerges to a scalarly integrabie cuk(E)-
valued multifunction Y if there is a sequence (yr) of convex combina-
tions of (X") of the form

y , : f  A ix ; ,w i th  o  s  ) f  <  I  and i ^ ,  : ,
I  i : n  i = n

which scalarly converges almost everywhere to y, that is the support
functions of Yn converge almost evervwhere to the support functions of
Y. We will write Yn e co{Xn i trtr > n}. If the Cesaro sums j i *n

scalarly converge almost everywhere to Y, we say that X," ,.ut#ty:t c-
converges to Y almost everywhere.

. We need first an easy lemma.

Lemma 2.5, Let (Xo)reN be a sequence of scalarly integrable cwk(E)-
ualued rnultifunctions such that

(1) {6-(r ' ,X,.):  rt  e Bs,, n € N} is uniformly integrable.
(z) ror eueru measurable set A, U I o x,dt" is reratiuely weakly com-

pact in E. 
n

? 
(l) for euerv subsequenc" (Yr) of (X*) there is a sequence 17*,1 w;ttt

Yn € co{Y^ : rn ) n} which scalarly conuerges to a scalarly integrable
cw k (E) - v al u ed rnultil un cti o n.

Then there erist a subsequence (Xn*)
that

and Y 
.€ 

PJ-r,1ry(u) such

6* (' '  ,7)a,
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for all A € A and lor all rt € Et .

Proof. BV (t) and (2), we may aPPIY

is a subsequence still denoted by (X")

f
V,4 € 7, Yr' € E', [Y* J ̂ 6* 

(r',X")dP

exists in R. Bv (g) there is a sequenc" (7") with 7" € co{X^ z m } n)

which scalarly converges almost everywhere to a cwk(E)-valued scalarly

integrable multifunction Y. Since each Y," has the form

vn va

t * :  D  ^kx , ,  w i tho<  Ih  S  1  and  f  , l ;  :  r

then the ."n";; (7") satisnes also the UI .""u,;:" (1), namelv

{6 . ( r ' ,V)  t  r '  €  BB, ,  z  €  N}

is uniformly integrable. Hence by Lebesgue-vitali's theorem we get

f -
6* (r '  ,Y)ap, :  1 6* (r '  ,Y)dp .

J A

Remark. Lemma 2.5 holds if we replace (3) by: Every subsequence

(%) of (xr) admits a subsequence which scalarly c-converges to v €

P)-nrel1t)'
Now we are ready to produce weak sequential compactness results

for scalarly integrab le cw k(E)-valued multifunctions.

Theorem 2.6. Let X be a scalarly integrable cwk(E)-ualued, multi-

function such that {6*(r,,X): r '  €BB,) is uniforrnly integrable. Let

(Xr)rreN be a sequence in P"'-r\") such thatYn, Vw, X"( ') c X(ur) '

Then there are a subsequenc" (Xor) and X* € PJ'ojt) such that

l im I  o-@',xn)dp: I  t (r ' ,x*)d,p' .
k - q J A  J e

proof. Let (e,) be a dense sequence in E' for the Mackey topolo-

gy. Applying Komlos theorem [a+] and using a standard diagonal pro-

cess there exist a subsequence (Xn*)terv and a sequence (g2p)peN in

,i l .(O, /,p) such that

Charles Casbaing

Lemma 2.2 to (X"). Then there
such that

^ry* I ̂ 6* (r' , x*)dp : ],X I ̂
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- t f l

, l im I  ) - -  a.  k 'o,X,,u(r))  :  vp(w) a.e.  (*)
k - x f l u  

\  P '
k : l

Since * i *,r(r) c 
'X(r) 

for all n € N* and for all cu € O, by
Jc= I

(*) we may apply ([fa], Lemma 8.3) providing a scalarly integrable

cwk(E)-valued mult i function Y such that ( * i  x,r(ar)),eN. scalarly
k : l

converges to Y a.e., that is (x"r) scalarly c-converges a.e. toy. Final-
ly ,  by Theorem 2.L, for  every A e 7,  Xa: :  U [oX^dp is  re la t ive ly

n € N
weakly compact because it is included in the convex weakly compact
InXdp.So we can f inish the proof by using Lemma 2.5.

3. WEAI{ COMPACTNESS FOR BOCHNER AND PETTTS
E-VALUED FUNCTIONS

The material in this section is borrowed from Amrani-castaing [21.
we recall  the fol lowing basic result ([30], [33], [+o]) and we provide an
alternative proof for the convenience of the reader.

Theorem 3.1. Let E be a Banach space, (/")"erv a sequence ol E-
ualued Pettis functions and f : O --+ E a scalarly integrable function
satisfying:

(t) {(" ' ,  I) ,  r '  €EB,} is uniformly integrable.
(2) For et)ery z' e E' ,  (r '  ,  f  ,) conuergeE o(L, , L*) to (r, ,  f) .

Then f is Pettis-integrable.

Proof. BV (Z) for every r '€ E'and for every A€ f ,  we have

so, in order to prove the theorem, it is sufficient to show that for every
A e 7, the sequence (l,a,fndp.)'eN is relatively weakly compact in ,8.
By the Eberlein-smulyan-Grothendieck theorem ([sr], corollary 1 of
Theorem 7) it is equivalent to prove: for every sequence (z'o)7r6N in

,l$(' ', lor^or): ,"lg1 Io,r' ,f *)dp : 
lob,,f)dp .
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Bp, and.for every subsequen ce (fn*)meN of (/o)rreN' we have

c :: lim lim"(c',,, [ . r*^d,tt) :B ,: -l]Too fiX("'*, lof**orlr t+oo m+oo .  . -  
J  l  rn+oo k+oo 

(3 .1 .1 )

provided theses limits exist. First by (2) we have

f f f
jrT5(z'r, J of^*au) 

: Jl15("'r, J ol,-^)dp 
: 

I o@L, f)dp. (e.r.z)

By Komlos theorem [37], applied to the sequence ((c'1,,/))rex there

exists a sequence (ylr)"eN with yl : * i a'1r. anda real valued inte-' -  
d = 1

grable function h such that (yl, /) converges to h almost everywhere.

So by (e.t.Z) and (1) we have

f  f  . .  f
a : J_B I n@L,f)dp 

: ,rH J ̂fu'^' fldp : J ooor. 
(3.1.3)

Lef y'o be a weak* cluster point of (glr)"eN, then for every rn € N, we

have

Jg("'p, lof^*orl 
= JllL(vl" , Ior*^d'p) 

: fui, lnfn*dp':
:  

lo\o'o,ln^ld,p,. 
(3.1.4)

Taking the limit when 7n -+ oo in the last integral in (e.t.l) and using
(Z) we obtain

(3 .1 .5 )

Since (VL,Il converges to h almost everywhere and y[ is a weak* cluster
point of (ylr)^ery , h: (y'o,/) almost everywhere. Returning to (s.r.1)
and using (e. f  .e) ,  (3.1.4),  (3.1.5) we get a:  0.

Theorem 3.2. Il E is o separoble Banoch space and X is a subset of
pb\i satisfying: (t) {("', f) , ,' € B 8,, f e .V} rs uniformly inte-
gittt; (2) given any sequence (f *) in X, there ore a sequence (f ) witt

p :  r im  [  f uL , In^ )dp :  [  f uL , I )dp .
M . A  J A  J A
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i ^e  .o1 { r . i k>  n )  and  i *ep i (p )  such tha t , yx 'e  8 , ,  ( r , , i n )  , on -
uerges o(Lt, L*) to (rt, f *), then x is relatiuely sequentially co,mpact
for the topology of pointwise conuergence on rff A 8,.

Proof. step 1: Let (/,.)"6N in )/. we note that by (t) xA is bounded
fo-r every measurable subset .4. Now we claim that, VA € A, X4 ::
([of"du)"eN is relatively weakly compact or equivalently Ka ::, ' rcx,e
is weakly compact. By James's theorem [35] it is enough to prove that
for every x'€ Et, there exist g € Kt such that

("" f)  :  j .?(" '  ' r)  :  6* ( '"  Ke') :  6. ( t"x4) '

LeI (f,"r)reN be a subsequence of (/"),eN such that

, l i m  ( c ' ,  I  f ^ r d , p ) : 6 * ( r ' , X a ) .
,c+oo J A

Let (i^)^.51 and i* e pi04 associated to (fn) rex by (2). Since
each  inhas the fo rm/ "  :  f ,  \ i f ; ,w i th0S  ) f  S  l  and  " f  ^ i : r ,
then we havb

6* (z ' ,  Ka) f  . ,dp1

so the claim is true. Note that in this step, it is not necessary to'suppose 
that .E is separable.

step 2: since ([nf"du)"erv is relatively weakly compact we may
apply Lemma 2.2 insection 2 which provides a subsequence still denoted
by (.f",")teN, such that for every measurable set.4 and every z, €
E', 

&UL [o\r',f.)dp exists in R. Let (/,),.]g and /oo e pi|")

associated to (fnr),teN by (2). Then we have

: o!1g("', Inr*rd'ri :,uL("', 
2^, I^

: (r ' , 
lof *ory 3 6. (rt , Ka) .

H I^(r', fnr)dp:

so that by standard arguments we get

lim I n@', f*r)dp, : I hp' ,I*)dpk - a l  J

for all h €. Lfr and c' e E'.

:y* l^@', i*)dp : l^@" iddp
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Corollary 3.3. If E is a separable Banach space and )l is a subset

"f  
pb?i sat isfyins: ( l )  { \r ' , f l  ,  r '€86',1 €N) is uniformlv inte'

grabl"; (2) giuen any sequenr" (fd in X, there is a Eequence (f") with

f^ e co{y1, : k ) n} such that (f") weakly conuerges in E almost eu-
-erywheri, 

then )l is relatiuely sequentially compact for the topologV of

pointwise conuergence on Lfi I E'.

Proof. Let (f)^e51 in I and let (/') given bV (Z). Let us consider

f*@):: weak-l im/'(o) for c,.r f  N where N is a negligible set and

f*@): 0 for co € N. Bv (r) and ([39], Remark 1, p' 162) . i ." i t  Pett is

integrable and by Lebesgue-Vitali's theorem we have

l im [  @', , i^ lap:  [  @', f* )ap
n - a J A  J A

for every A e 7 and every r' e E'. So Corollary 3.3 follows from

Theorem 3.2.

Corollary 3.3 allows to deduce a recent weak compactness result in

[16] .

Proposition 3.4. Let E be a separable Banach space. Let | : O *

cwk(E) be a scalarly integrable multifunction and sp the set of scalarly

inte)rabte selection of l .  I f  {(r ' , f)  ,  r '  €BE',.f  e Sr} is uniformly

integrable, then the set S{" is nonempty and, sequentially cornpact for

the topology ol pointwise conuergence on Lfr I Et '

proof. Nonemptiness of Sf is ensured by hypothesis and ([aO], [fS],

[40]). Now let (/,),,eN c 5f" and let (ei)peN be a dense sequence

inBs, for the Mackey topology. Since for each p € N, the sequence

(kte,j^D^€N is uniformly integrable, by Komlos theorem [S7], then by

.rr'oblriorrc diagonal process, there exist a subsequence (f n) tex and a

sequence (pp)peN in I l(O' / ,pc) such that

, f u

l im I  I ( ' ; ,  / " .  ( r ) )  :  ep(u) a.e.
n_* n f_r

fr,

Since * L I"r(r) e l(ar) for all n € N* and for all tr € O, and l(cu) is
k: l  

r t '

convex weakly compact, it is not difficult to see that (j Drf n*(t"'))"eN.

weakly converges a.e. So by Corollary 3.3 and, using the fact that I

is scalarly integrable with convex weakly compact values, we conclude
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that ^9f" is sequentially compact for the topology of pointwise conver-
gence on .[ff I E'. n

To end this section we mention two applications of the preceding
techniques to best approximation in pb1t) and to weak compactness
in Lrr(p,).

Proposit ion 3.5. Let B be a sub-o-algebra of 7 and let E be a sep-
arable Banach space and let f : o -- cwk(E) be a scalarly B -mea-
surable and_integrable rnultifunction such that the set {(r,, f) : / €
Ep,,,f  € SF"(B)) * uniformty integrable. Then S{"(Ai * pr 'oriminal
in  P$(a,7,p) .

Pr_oof. Let f e P;(n,7,p.) and let (/") be a minimizing sequence in
sf"(B), that is

"li.'.:||ILll 
I - f^11""': l@" 1 -  f " ) ldp

e

l (r ' ,  f  - I) ldp

lim sup tn-6  
r ,E$r ,  J t l

o."tff,r, llf 
- g

Bg, we hav

( lim inf I
n-e_ Jn

< l im inf sup I l@'n _ @  
" , q $ " ,  

J  A

S,.h l l f  - I^l lp"
:  inf  l l f  -  s l l . " .

s € S  { '  ( B )  " '  
e  ' '

l lp"

where l l , l l"" denotes the Pett is norm. By Corollary 3.3 we may suppose
that (/") converges o(P$(n,7 , p),I ;  e.O') to a.Pett is integrable func-
t ion /oo € SF"(8). We claim that (/") converges o(p$(n, f ,  p), rf f  S
Et) to /oo. Indeed, let rt e E' and, h € Lfr(7). Denote by EBh-the
conditional expectation of h with respect to 8. Then we have

l im I o@', f .]dtr : lim I rt h(rt, f  ̂ )d,1tn-oo Jct  " ; *  tn

I  nu h@t, f  *)dp.
J n

f
I h(r', Iddp .
l n

In part icular, for every r '€

f

I  l@"f  -  f * ) ldp
J N

, f  -  f " ) l dp
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By taking the supremum over B B, in the preceding inequality, we get

l lf - f*llp" : n.Jpf,r, l lf - gllp"

The following is a criteria of sequential weak compactness in ,L!.

Proposit ion 3.6. Let E be a separable Banach space and X a sub'
set of lbjr).  Assurne that: (1) {(" ' , f) ,  r '  € Bs,, f  e X} is uni-

formly integrable; (2) giuen any sequence (f 
") 

in X, there are a se-
quence (i) ,;tn i* e co{f1, : k ) n} and, i* e t'b\t) such that,

Yl € E', (r ' ,  i , .)  "onrrrges 
o(Lr, L*) to (rt,  i*7, th"n ) l  is relatiuely

sequential ly o(LrB,rff  S Et) compact.

In particular, if Et is strongly separable and X is a unifoTrnly in-
tegrable subset .f LbQt) satisfying (2), then )l is relatiuely sequentially
o(Lb, Lff,) compact.

Proof. Apply mutatis mutandis the proof of Theorem 3.2 and use the
norm'separabil i ty of Etand a result in ([t t ]) which says that on the
unit ball of Lff, the topology of convergence in measure coincide with

the topology of uniform convergence on uniformly integrable sets in .L|.
We omit the details which are Ieft to the reader.

4.  CONVERGENCE OF GONVEX WEAKLY COMPACT RANDOM

SETS IN SUPER-REFLEXIVE BANACH SPACE

We shall assume that E is a separable super-reflexive Banach space.
We recall the following vector E-valued version of Komlos theorem [37]
due to Garl ing ([zs], Theorem 6, p.310).

Theorem 4.1. Suppose that E is super-reflexiue and (f 
") 

is a bounded
Eequence in LrB. Then there is a subsequence (gn) : (f  *r) ard, f  in LLB
such that

I

l lqD,ox,(")) -' f (')
i = l

a.e,, lor each subsequence (gx,).

We will use the following limiting notions. Also we shall use the
fo l lowing l imi t ing not ions.  I f  C1rC2, . . . ,Co, . . .  and Coo are nonempty
closed convex subsets of E, Cn Mosco conuerges to Coo (shortly C*:
M -lryCn) \f the two following inclusions are satisfied:
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C* C s-l iCn:: {r € E : l l" - ""l l  
---+ O; ro e C^}

w - lsCn z: {x e E i frnk --+o weakly; a,,,r € Cn*) c C*.

Given two nonempty subsets B and c in E, the gap between B
and C is defined by:

D(B,C) - inf{ l l "  -  yl l  :  x € B, y € C) .
The slice topology r" on cc(E) (nonempty closed convex subsets of E) is i
the weakest topology r on cc(E) such that for each nonempty bounded
closed convex subset B of E, the function C r-+ D(B,C) is r-continuous
(see, [8], Theorem S.3).

-  _  Asequence ( / " )  in I ! (O,  7,p, )  Korn los conuergesto /oo € Lb(n, f  ,p) ,
if there is a subsequence (f pO) of (f") such that

. t 1

"'l.'..||.*;DI'.a:r*j : l

a.e., for each subsequence (/"f"1) of (/pt" l).

Given a sub o-algebra B of 7 and X e Ll-*1r,1, the conditional ex-
pectation EB x is a 8-measurable cwk(E)-valued multifunction which
enjoys the following property:

We refer to [tO] for details.

The following is a version of Komlos-slice convergence theorem for
convex weakly compact random sequences (X") in Ll_01r1.

Theorem 4.2. (castaing-Ezzaki [t8]) suppose thot E is a separable
super-refleriue Banach space and, (X,.)n€N. rs a uniforrnly integrable
sequence io Ll-r@). Then the fotlowing hold:

(a) There exists a subsequence (X.,6) and, Xoo € !,!_1r1r1 such
thot

vB € B, vxt € E', 
I"u. 

(n', EB x)dr : 
Iu6* 

(r,,x)dp .

vA € 7, vzt € E', :y* | ̂ 6* 
(r', xo@))dp : 

I oo. rr,, **roln.r.r,
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(b) There is a subsequence (Xp@)) of (X.@1) such that
, f t

M - nti^ ;D, 
xtil(r) : x*(r) (4.2.2)-,

J : I

a.e. ,  for  each subsequence (Xr(" ) )  o f  (X96) '

(c) Assume further that (7,)^eN. fs an increasing sequence of sub-

o-algebras of 7 with f*::  o(l)7^), Y is a posit iue random uariable

such that E\ 'Y ( *oo and' t tat lX,l  < Y for al l  n e Tl and' a-e.

c,.r € O, then Q.e.e) implies

.  -  - 1  
r L

l im D (8, E'^ f 1 t Xr(i)]) :  D(a, Er- x*)
r r + o o  \  '  ' n  

, : ,

, f ,

, lg1 6- (" i , iD X",r l  ("))  :  d- (e[ ,  X."(r))
j = l

almost everywhere, for each subsequence (Xrf" l) of (XB1"y);
t t u

l im  1 Io * ,n . , ( r )  :  
"L@)n + @  f ' l '  a  t \ J  '

; -  l

, ,g ;11" " , r ,  l (u ) :  p (w)

(4 .2 .3 )

for any bounded closed conuer subset B of E and a.e. o € O.

PfGf . Statement (a) follows directly from Theorcm 2.4. Let us prove

(b). Let Di : :  (. i)r.N. be a dense sequence in B B, for the norm topol-

ogy. Let (Xo(")) and X* as in (a). For each ft, we pick a maximum

integrable selection o\@t of Xo1,,; associated to ei. Using (a), (u) '

Theorem 4.1 (Garling's theorem) and extracting diagonal sequences,

we f ind a subsequence (XB61), a subsequence ("f i6),oL e Lrs and

9 e Lf,* such that, for each /c the following hold:

(4 .2 .4 )

(4 .2 .5 )

almost everywhere, for each subsequence ("!,6) 
"t 

("fi6); and that

(4 .2 .6 )

J : l

almost everywhere, for each subsequence (Xt@)) of (XB1,y). Apart

from the use of weak compactness result in (a) Komlos arguments in

(4.2.4) and (4.2.6) are not new since they have been already used in a

series of papers by Balder (see e.g. [3]) whereas Garling's theorem is

f irst used in (+.2.S). For simplicity we set
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t f r

S,(r)  ' :  1)--  Xt fn@),  
" ? ,

for all n € N* and for all ar € f,l. Then by (4.2.0) we have

sup 1,S,,(ar) l  < +m 1+.2.21

a.e. so that by the norm separability.of Et (4.2.4) holds for all r* e B B, ,
that is, there exists a negligible set N such that

1 t u

, !g 6- ("., iD ""tr, 
(")) : 6*("*, x-(r))

t : l

for al l  (r,"*) € (O \ N) x BB,. Now by,"obvious propert ies

(4.2.4), (a.Z.S) and the definit ion of s-/r j  D Xr(r)(a. ') we have

(4 .2 .8 )

of (of;),

j : l

6.(" i ,x."(r))  :  k i ,oj"(r))  S 6-(r [ ,  ,  u: ixrr i l ( r))  (a.z.e)
j : l

almost everywhere, for all ft. Hence (4.2.2) follows from (4.2.8) and
(4 .2 .s) .

Now using (4.2.8), (4.2.9) we wil l  prove (4.2.8) that is a new for-
mulation of Komlos-slice convergence in Ll-n@) involving conditional
expectation.

Stepl. Claim: (*) V"- e B 8,, , l !5 
E7^ 6* (r* ,  Sn(r)) :  E7- 6* (z-, X"" (c^r))

a.e.  on O.

Since ET|Y ( *oo and lX"l 1 Y, for al l  n € N and a.s., then
using (4.1.8) and a new version of dominated convergence theorem for
conditional expectation of real-valued integrable random variable ([27],
Chap V, Lemma 2.4) we deduce that Vc* € Di, there exists a negligible
set N". in O such that

) i ^  
E ' , "6*  ( r * ,  s r ( r ) )  

, , l i *  
6 ' ( r *  , (E ,^s" ) ( r ) )

:  E ' * 6 * ( " * , X " " ( r ) )

: 6 * ( u *  , ( E ' - X . " ) ( r ) )

:  U  l [ , . .  For  any  (o , " * )  €  (O\N)  xDI ,
x , ' e  D i

for all t^.r € O \ 1f".. Set N

we have
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, lg5 6. (r* ,(87'"s")(r))  :  6* (r* ,(E'* X.")(r))  .

Let w € O \ N, n* €Be- and let e ) 0. There exists r[ in

that  l lc  -  
" ; l l  

(  e .  Hence

(4.2.10)

Di such

16.  ( " -  ,  (E7*  Sn) ( " ) )  -  6*  ( " *  ,  (87*  X- ) ( " ) ) l

S l6- ( " - , (E ' *s" ) ( " ) )  -  6"  ( r i , (Et "s" ) (u) ) l

+  l6-  (z [ ,  (87"  S^)( r ) )  -  6 .  ( r i ,  (Er-  X*) (u) ) l

*  16 - (c [ ,  (E7*  X* ) ( r ) )  -  6 * ( t *  , (E ' - x - ) ( " ) ) l
(  max(6* (r* -  , i , (E7'"s")(")) ,  6. (r i  -  x* ,(n7^ s,11w))

+ 16. (r i ,  (87" S,)(r))  -  6. (r i , (Er- x.")(u)) I
(  max(6*  ( " i  -  , *  , (E ' *X"" ) ( r ) ) ,  6*  ( " *  -  r i ,@7* X*) (u) )

Szl lr .  -  , ; , l l tT'r(o) + 16-("[ ,  (87" sn)(r)) -  6- (r i . , (Et-X.")(u)) l

1  2eET'Y(o)  + 16.  ( " [ ,  (87"  s , ) ( " ) )  -  6 .  ( r i , (87-  x*) ( r ) )  .

Since by (+.z.to) the last term of the right side of the preceding in-

equality goes to 0 when rz goes to infinity, the Ciaim follows'

Step 2. Claim: (**) D(.B, 
"r* 

X*)

bounded closed convex subset B in E and a.e. t,' € O.

BV (*) we have

lim inf D (8, E 7'" S n) : li,At*f 
,_tll*, 

{ -, 
* (r*, E 7*S' 

) - 6 - ( - c -, B) }

, * E E r ,  
n - *

:  sup  { - l imsup  6*  ( " *  ,  E7 'Sn )  -  6 -  ( - c - ,  B ) }
x *  € B  p ,  

r L + 6

:  sup { -6-  ( t -  ,  E7* X-)  - -  6 .  ( -c- ,  B)}
a ' € B  B t

:  D(8, 97* x*)

for any bounded closed convex subset B in E and a.e. c,.r € O, thus

proving the timinf part (**). Let us prove now the limsup part.

Step 9.  Cla im:  (x**)  l ims:pD(B,Ur"Sn)  S D(8,87*X*)  for  a l l

bounded closed convex subset B \n E and a.e. ar € O.
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Let (gp);r6hr be a Castaing's representation of E7* X* in Slr_2r_.
By (a.Z.S) and ([27], Chap V, Theorem 8.1), we have

E7* X*(.) c s-unT^ S,(.)

almost surely on o. Hence there exists a negligible set M in o such
that

Vu.r e o \ M, vft € N, 9r(r) e s-ti(87^ s*)(r) .

Hence

V a r €  O \ M , V o  e E , V l c  € N ,  l i m s u p d ( x , ( 8 7 ^ S n ) ( r ) )  <  d , ( x , s r , ( w ) ) ,

which implies that

l imsun d(x , (E1"S") ( r ) )  S ip l  
d( r ,gr ( " ) )  -  d( r , (87*X." ) ( r ) )

a.e. on O. Now let B a bounded closed convex subset of .8. then

lrSsunD(A ,,(87* Sn)(r)) : l imsut 
itLl(r,(87" S,)(u))

< i4 l imsup d(r , (87*  S") ( r ) )
re.b 17,+6

< jel d(r,(Er-X.")(r))

: D(8,(rr-x.";1c,.,;;

almost surely on O. Hence (4.2.3) fol lows from (**) and (***).

Remark. The preceding result holds for a decreasing sequence (B,r),"6N.
of sub-o-algebras of / with B* :: lB". In this case we assume that

EB:Y ( oo and lx, l  < Y for ui l  nZN* and a.e. u € O. Then
t t u

"lIL 
D (8, Et^ t; D xt']) : D(a, uo* x*)

j : l

for any bounded closed convex subsets of .E and a.e. a; € O.
To end this paper we will discuss some Banach-Saks properties with

respect to a RMS (or).
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The remainder of this section is borrowed from Benabdellah ([0],

l7 l ) .
Let E be a Banach space' Let a : (ap) be a RMS' The Banach

space E has the Banach-saks (resp. weak Banach-saks) property with

respect to the RMS (aon) if any bounded (resp. weakly null) sequence

in E, has a summabie subsequence with respect to (aon) (.f. lZ+1,
p.75; lZOl, p.ZZZ). Analyzing Theorem 1.2 and 1.3 reveals that the-

ses properties characterize relative weakly compact and conditionally

weakly compact subsets in E. Hence it is noteworthy to study theses

properties and their implications on convergence problems for bounded

sequences in Lrr(p').

We need first a lemma.

Lemma 4.3. Let H be a Hilbert space and (ao) be a RMS such that

' .  S t  1 2

" tg )  
l oon l '  : o  ( * )

II @) is a weakly null sequence in H, then there erists rp € Sf(N) such

that

l im sup llf,oonro"+(q) ll : o.
o** 9e si iN) =o

Proof. W.l.o.g., we may suppose that l lz"l l  S l  for al ln. Let (e, '),">1

be a decreasing sequence in R-F* such that 
Prr'" 

( tm. Set M :

oo

sup D loool < *m and ?'|o :0' Choose n1 ) ns such that
P  q = o  

l ( " r o ,  ' . r ) l  t  
#

Take n2 ) z1 such that

l(",,0, rn,)l < fi ""a i(t,, ' , ,,,)1 . #
Then by induction, there exists a finite sequence with n,6 ) np-v )
. .  .  )  zo such that

V j  < k ,  l ( * n , , " * r ) 1  . #

Take tp(/c) ; :  nk,Yk. We shall  show that rp has the desired property.

Let lt € Si(N). For everY & € N, we have
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@

d=O

m  l - l

r : 0
I  lorr l '

oo

fll "rt" r",r(d) | I 2 - D la1,;12 llr o"e 1;.1112
r :o

+  2Da* ia t  t ( r ,p  o  rh ( j ) tae" { t ( r ) )
j < t

oo

= I loorl' + zl,la1,1 a"ft#
i : 0  ,  j < l

= i to*,t, . #ifbo,or,1,,
z : 0  l :  I  t : O

since eoog(t) S 6r, Vl. On the other hand by H6lder inequality

oo l - l  oo

Dt lo*iooil ',: Dlo*,1',(f bnil) < t la1,1le1M
l= t  r_0 l = l  , : 0  l : l

I  lorr l '
l = l

set Z r: I ef . Then we obtain
t= t  

-  oo

lll"or"o.,1(d)ll2 < D loo,l'+2\/L
i : 0

m
since by our assumptio" 

Jl:" \lanol' 
:0, the assertion we are after

follows from the preceding inequality.

Remark 4.4. Let us consider the two following (RMS):
1  |  i f O < q < p

@pq :  {  : * t
t 0  i f ' q > p

,  ( z n - o  i f q > p
o r e : l o  

f i q s p
It is easy to check that (aoo) and (6oo) are (RMS). Moreover, for all p,
we have

i  loool '  :
9:0

p + L
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( * )

I t o
3q:o q>P

Then {ooo) satisfies the condition

,qi loool':o
g=0

[m I loool' :o
p+oo -^

9=v

whereas (6oo) does not satisfy (x).

Now it is worth to observe that the (RMS) which satisfy the con-
dit ion (*) are those for which the spaces ,t(S, D,u), where (S, D, rz) is
a Probability space, have the weak Banach-Saks property. Indeed let
a: (epq) be a RMS that does not satisfy (x).

Let O : [0, 1] and, y, be the Lebesgue measure on O. Let us consider
the sequence (rrr) of Rademacher functions on [0, t]. It is well-known
that (r,) is an orthonormal system in the Hilbert space L"([O,1]) and
rn + 0 for o(.Lr,L*) topology. Suppose by contradiction that there
exists a subsequence (r,"* ) of (r") which is summable with respect to the

RMS (ooo) in rt([O, 1]). Then the sequence (so) with so ,: i  apqrno
g:o

converges to 0 for the norm of Lt, hence converges to 0 in measure.
Since (so) is uniformly integrable in -L2([0, 1]), to --+ 0 for the norm of
,2([0, 1]). As (r,,) is an orthonormal system in .L2([0, 1]), we deduce
that 

oo oo

l l"oll? : l l  D apqtnoll; : t loool'
9:0 q--0

This contradicts the fact that o : (ap) does not satisfy (*). Hence
.Lt([0, 1]) does not satisfy the weak Banach-Saks property with respect
to the RMS (oo).

Now we are able to produce the.following result which generalizes
the Szlenk's one to (aoo)-summability in LLs where If is a Hilbert space.

Theorem 4.5. Let H be o Hilbert spoce. Let a: (op) be a RMS.

(l) f (ao) satisfies the property

( * )

then, for any weokly null sequence (u") in Lh\r), there erists th €
Sr(N) such that
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li14- sup ll)- "on"+.otol ll l : o
p-m 

ee€S i (N )  
, ,F

(2) Conuersely, i f  al l  the spaces rh(S, D,u) have the weak Banach-
Soks property with respect to the RIyfS o 1 (op), then a satisfies

li- i loool' : o. (*)
P + @ u '  "

9=u

The assertion (2) follows from the above remark 4.4.

Proof. We shall divide the proof in two steps.

Step7. Claim: For any e ) 0, there exists r/ e SilN; such that

l imsup sup llD,"oo"+"otol ll, S ,.
p * o o  ( p € S i ( N ) '  -

W.l.o.g. we may suppose that l lu"l l t  (  1 for al l  n.

Let M > max(l,sup f laonl) and let e ) 0. As (u,") is uniformly
P  q : o

integrable, there is a ) 0 such that

' :o /  , l l , * l ldp=#n J  i l l u "  l l>o l

Set Ar, ,: [ l l",, l l  ) o], u'n :: LA*Itrn and ul i: !4. u,n. Since l l" 'r l l l  < "a.e., there exists a € Lff (p) such that l lull ( a, a.e. and a subse-
quence (u'J6),/ e silN;, such thar (u'jg",) converges o(Lff,,Lrr) to
u. Hence u',1,&): u,t,(k) - u'JOl converges o(LL,Lff) to -u. More-
over it is obvious that, V/c, l lu'+ttl l lr < ;, hence llr l l t S eiz. As

@'ifol - u)o(L2s,Lzr) converges to 0, then in view of Lemma 4.3, we
may suppose that 

oo

lim. '_9p__. ll D ,oo @$"o61- ,) ll 2 : o .
pr€  a€s i (N )  F

There is p" € N such that p ) p" implies

jjP^,, ll i'r, (u'i,",(u)- ')ll , s Zoe si(N) f-6

Then for all p ) p" and g € Si(N), we have
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l lD"oo"*"orol l l, < ll t ae*',1,"e1n111, + ll D"oo(u'J"rk) - ,)l l,
9:o g:o g=o

+ l l ( i  oon)ul l ,
g : 0

oo oo oo

< t  l " r r l#*  |  Doonl ' l l ' l l '  +  l l  D ooo(u ' , i , "e1q) - ' ) l l ,
g:o 

'  
g :u o:o

s ' r r * ' # + ; : e
thus proving our claim.

Step 2. Let (u,) be a weakly null  sequence in LLp(p) with l l"" l l t  <
1, Vn. According to the f irst step, we f ind, by inductiotr, po, .. .  ,  gk
in Si(N) such that

l imsup ,op l l  ioonrrr."rol l l  ,  3 2-r (4.s.1)
p+oo- oesi(N; " fi

with r/r : :  eo o .. .  o g*. Let us consider the diagonal sequence

{t(k) z: ,hn(k), V/c and let us show that r/(.) has the required prop-
erty in Theorem 4.5. Let d € Si(N) and k € N be fixed. Define

(  n  i f  n < k
9 ( n ) : :  {  

-
(  p r + t  o  .  . .  o  e e 6 1 @ @ ) )  i f  n  )  k - r  I

Then s, € Si(N) and, Vg > k + L, rb o 0(q) : rhn o p(q). Moreover we
have

l l  t  apcu,boek) l l ,  < l l  \anau+(atol l l l ,  + l l  D apqu,t ,r"ek) l l t
g :o  g :o  g=k+ l

, t m k

l l "wl + l l  t  apqu,bxop(q) - 
t  apqu{o.otol l l ,

g:o g:o g:o

/c oo

= , 
E 

loool-t,jJ,r*, llD"oo"+*."(q)llr 
(4.s.2)

By (a.s.t) and (4.5.2), it follows that

l imsup r"p ll looou,1,"o(c) llr < 2.lilL ll"ool + z-o : 2-k
p_oo d€si(N) ;o "-"* i I  

(4.5.3)
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since ft is a arbitrary, assertion (1) follows immediately from (4.b.3).

corollary 4.6. Let H be a Hilbert space and, a: (op) be a RMS which
satisf ies property (*). Let ("") bg a bounded sequence in Lrr(p.). Then
there exist r/ e S4N; and u € LhQt) such that, for all p € Si(N), fhe

sequence (D apqu4"ek))p conuerges in  measure to  u.
g:o

Proof . By Theorem 1.12, we may suppose that there exists an increasing
sequence (,4") in ./ with 

*ly5u(,+"") 
: O such that (le^u,) o(Lr , L*)-

converges to z € lh}") and (In."ur,) converges p-a.e. to 0. Now we
apply Theorem 4.5 to the weakly null sequence un : L4,",tLn - 1"1.
Then there exists { € si(N) such that, vp € si(N), the sequence

oo

(1,^aroug"ek))p converges in Lla(p) to 0. Let p € Si(N) be f ixed and
g=0

s e t d : t h o p . T h e n
oo oo oo

\.- \- \-
)  a p c u e k ) :  L a p q r A u t u t u e k )  *  L o o o l o . r r o r u r ( o )
s:o tT 

oo 
g:o 

oo
= ( t  orn)u+ I  apquek)+ D opcre.urotuek)

g :o  g=o g:0

As (oon) is a RMS, the sequen." (( f  opc)u)p pointwisely converges to
g : 0

u and the sequen." ( i  apqlAi,, , ,uek1)n converges LL-a.e.to 0. Hence
g : 0

oo
(D opcuelo;)o converges in measure to z.
g:o

open Problem. It might be interesting to obtain a multivalued ver-
sion of Komlos theorem for integrable closed convex random sets Xr,,
that is d(0, x"(.)) is bounded in .Ll and sLLN for closed convex valued
martingales in separable super-reflexive Banach spaces. The first prob-
lem for convex weakly compact random sets is studied in this paper
(cf. Theorem 4.2), whereas the second one was stated in Ezzaki [zT) for
convex weakly compact valued martingales in psmooth separable Ba-
nach spaces. To end this paper we would like to address the following
question: What happens if one replaces the Cesaro sums

t t u

I Ix,n u
J : I
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in vector-valued Komlos version theorem ([29], Theorem 6) by the fol-

lowing ones oo

D oooxo
{ : 0

where (Xr) is a bounded sequence in Lr, and (ooo)(p,q)e1.rxN is a pos-

itive regular method of summability satisfying suitable conditions (see

lZ+l;IZOJ, Cor.2.l7). Taking account into the above mentioned results,

we suspect that oo
(L"'nx"'to)o
g = 0

converges in probability to X* e .L!, that is

l im llX." - i apqXt(c) ll : o
p+oo. ,  

7 :o

in probability where (X"1"y) is a subsequence of (X"). This conjecture

is a sort of Banach-Saks property for bounded sequences in ^L! with

respect to a regular method of summability.
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