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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF MULTIVALUED DIFFERENTIAL SYSTEM!

NGUYEN THE HOAN

Abstract. In this paper we show the relationship between the notions “Asymp-
totic equilibrium”, and “Asymptotic equivalence”, and obtain some conditions for
asymptotic equivalence of two differential equation systems.

I. INTRODUCTION

In this paper we consider the following systems

t€ At)z+ F(t, z), (1)
y=A)y, (2)

where A(t) is an n X n matrix whose elements are integrable on each
compact subset of J = (0, oo); F(¢, z) is a nonempty compact convex
subset of J x R™ for each (t, ) € J x R™. By solution of (1) we mean
an absolutely continuous function z(t) such that

i(t) € A(t) x () + F(t, z(t))

almost everywhere (a.e.).

Definition 1. The system (1), (2) are said to be asymptotic equivalent
if to each solution z(t) of (1) there exists a solution y(t) of (2) such that

lz(t) — y(t) = o(1) ast — oo (3)

and conversely, to each solution y(t) of (2) there exists a solution z(t)
of (1) satisfying (3).

1 This paper was supported in part by the National Basic Research Program
in Natural Sciences, Vietnam.



288 Nguyen The Hoan

Definition 2. The system
t € F(t, z) (4)

is said to be in asymptotic equilibrium if its any solution converges as
t — oo and for each ¢ € R™ there exists a solution z(t) of (4) such that
z(t) — cas t — oo.

In this paper we show a relationship between these notions and ob-
tain some conditions for asymptotic equilibrium and asymptotic equiv-
alence of system (1), (2). Our results extend and generalize those in

(4], (8], [7].

2. PRELIMINARY RESULTS

In this section we give some notations and preliminary results which
will be needed in the next section.

We shall write | - | for any convenient vector or matrix norm in R™.
If A is a subset of R™, we define

|A| = sup{|a| : @ € A}.
If A and B are two subset of R" we write
|A — B| =sup{la—b|:a € A, b€ B}.

We denote by 12(Y) the set of all nonempty compact subset of the
topological space Y. "

We assume throughout this paper that F : J x R"* — (}(R") satis-
fies the following hypotheses:

(H1) For each (t, z) € J x R™ , F(t, z) is convex.

(H2) For each t € J, F(t, ) is upper semicontinuous on R™.

(H3) For each z € R", F(t, z) is measurable on J.

Measurability and upper semicontinuity of a multivalued function
are defined in [6], [7]. The proof of the following lemma may be found
in [7].

Lemma. Suppose that F: T x R™ — Q(R") satisfies hypotheses (H1)
- (H3) and for each z € R™, |F(t, z)| < g(t) a.e. on J, where g(t) is
locally integrable on J. Then to each (to, zo) € J X R™ the system (4)
has a solution z(t, to, xo) on J.
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3. ASYMPTOTIC EQUILIBRIUM

In this section we give some sufficient conditions for the asymptotic
equilibrium of the system (4).

Theorem 1. Let F(t, z) satisfy the following conditions: for each
z € R®
|F(t, z)| < o(t) h(]z]) + ¥(t) a.e. on J,

where nonnegative functions p(t), ¢(t) are sntegrable on J ; h(u) is
nonnegative, monotone nondecreasing and continuous tn u such that

o0

/ R S

h(u)
0

Then

1. For each (to, zo) € J x R™ there exists a solution z(t, to, o) of
(4) on J.
2. The system (4) is in asymptotic equslibrium.

Proof. Our proof is modified from [7]. Let

Choose r > d such that

r

/%>th(r)dr.
(¢, 2)

au

Consider the problem

where
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It’s easy to verify that F(t, z) satisfies (H1) - (H3) and for each z € R"
|F(z, t)] < p(t) () + $(t) ae. on J.

Since the function g(t) = h(r) p(t) + ¥(t) is integrable on J, ac-
cording to lemma the problem (5) has a solution z(t) = z(¢, to, zo) on
J. It remains to show that

|z(t)] <r fort>to.

Suppose contrarily that there exists a first moment T > to such that
|z(T)| = r. Then |z(t)] < r for t € (¢, to), therefore i(t) € Flt, z(t)]
a.e. on (to, T) and

£ |a(0)] < |4(0) < IF (5 2] < 0le) A(1=(0) + ¥(0)

hence

t

|l=z()] < Izo|+/¢ dT+/ (r)h(|z(7)|)dr Sd+/s0(f)h(lz(f)|)df

‘to tO
According to the theorem about the integral inequality (see [2])
lz(t)] < v(t)

where v(t) is a solution of the problem
v = p(t) h(v)
’U(to) =d

From (6) we have

hence
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This is a contradiction. Thus z(¢, to, Zo) is a solution of (4) on J
and
|z(¢, to, zo)| < r fort>tg.

Since

t
z(t, to, o) = zo + / z(r)dr,
to

and
/tli'(f)ldf < /t: @(T)h(r)df+/t¢(f)df

Jim z(t, to, o) exists for each (to, z¢) € J x R™.
— 00

Let now ¢ € R" be fixed and M > 0 such that M > 2|c|. Let ¢,
satisfy the condition

: h(M)/go(r)dT—i—/;,b(r)dr < %
Consider
I' = {z € C((to, 0), R") : |z|c < M}.

Clearly, T is closed, bounded and convex. For each z € C(R™)
there exists a measurable on (to, o0) f; such that f,(t) € R(t, z(t)) a.e.
on (tq, oo) (see [7]).

Define now a map

o o]

S;ZC—/fx(T)dT; zel, t>1,.

We have
Sele < lel+ [ e + [ vir)ar <,
to to
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therefore ST C T and the functions of set {Sz, = € I'} are uniformly
bounded and equicontinuous.

According to our assumption, Sz(t) — ¢ uniformly on I as t — o
that’s why set S T is relatively compact on J. By the Schauder theorem
there exists z(t) € T such that z = S,. It’s easy to verify that Z(t) €
F(t, z(t)) a.e. on J and tl—l-glo z(t) = ¢. Theorem is proved.

As a corollary we have:

Theorem 2. Suppose that the system (2) is in asymptotic equilibrium;
F(t, ) satisfies the conditions of Theorem 1. Then the system (1) is
in asymptotic equslibrium.

Proof. Let Y (t) be the fundamental matrix of (2) such that Y(t) =
I+ o0(1) as t — oo, where I is an unit matrix. According to our
assumption Y (t) exists. Consider the system

;e Y t)F(t, Y(t)z). (7)

It’s easy to verify that ®(¢, z) = Y ~1(t) F(t, Y (t)2) satisfies (H1)
- (H3) and the conditions of Theorem 1. Therefore the system (7) is in
asymptotic equilibrium. It’s remain to remark that z(t) = Y (t) 2(t) is
a solution of system (1).

Theorem 3. Let F(t, z) satisfy the condition
|F(t, z) = F(t, v)| < p(t) h(lz — y|) ae onJ,

where the positive functions @, h are the same as tn Theorem 1
and

/IF(t, 0)]dt < co.
(0]

Then the statement of Theorem 1 s true.

The proof is analogous to that of Theorem 1.

4. ASYMPTOTIC EQUIVALENCE

In this section we show a relationship between the asymptotic equi-
librium and asymptotic equilibrium and obtain some conditions for the
asymptotic equivalence of the systems (1) and (2).
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Let Y (t) be the fundamental matrix of (2) such that Y (0) = I. It’s
easy to verify that if z(¢) is a solution of (1) then z(t) = Y ~1(t)z(¢) is
a solution of (7) and inversely if 2(t) is a solution of (7) then z(t) =
Y (t) 2(t) is a solution of (1).

Theorem 4. Suppose |Y (t)| < M for any t € J. Then, the asymptotic
equilibrium of the system (7) is a sufficient condition for the asymptotic
equivalence of the system (1) and (2).

Proof. Let z(t) be an arbitrary solution of (1). Then 2(t) = Y ~1(¢) z(t)
is a solution of (7). By virtue of the assumption, z,, = tlim 2(t) exists.

Consider y(t) = Y(t) z00. It is a solution of (2) and

tlim |z(t) —y(t)| < M tlim |2(t) — 20| = 0.

Let now y(t) be an arbitrary solution of (2). Then y(t) = Y (t) yo,
Yo € R™. According to the assumption there exists a solution 2(t) of
(7) such that tlim 2(t) = yo. Consider z(t) = Y (¢) 2(t). It is a solution
—00
of (1) and tlim lz(t) — y(t)] < tlim Y (¢)] ]2(t) — yo| = 0.

Thus the system (1) and (2) are asymptotically equivalent.

Remark. The case when (1) is an ordinary differential system, Theorem
1 was proved in [4] and partly was used in [5]. Even in the case when
(1) is an ordinary differential system, Theorem 1 isn’t reversible, in
general. Consider the following example:

t= Az + B(t) z, (1)
y= Ay, (2))
where . ]
-1 0 e~
A—[ 0 _2] ’ B(t)-[e—t 0 :'
In this case
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By Levinson’s theorem (see [3]) the system (1’) and (2’) are asymp-
totically equivalent. However the system

;=Y 1(t)B()Y(t) 2

isn’t in asymptotic equilibrium. In fact, this system can be written in
the form

él = 6_2t22

22 =21

Suppose that this system was in asymptotic equilibrium. Then for
¢ = (1, 1) there exists a solution (21(t), z2(t)) such that zi(t) — 1,
z3(t) — 1 as t — oo. From 23(t) = 2,(¢) it follows that 23(t) — 1 as
t — oo. Therefore

l-e<2(t)<l+e fort>T>0.

Hence 22(t) > 22(T)+(1—€)(t-T).

This is a contradiction.
However we have the following.

Theorem 5. Let |Y~1(t)| < M for any t € J. Then, the asymptotic
equilibrium of system (7) is a necessary condition for the asymptotic
equivalence of the system (1) and (2).

Proof. Let ¢ € R™ and y(t) = Y (t) ¢ be a solution of (2). According to
our assumption there exists a solution z(t) of (1) such that |z(t)—y(t)| =
o(1) as t — oco. Consider 2(t) = Y ~'(t) z(t). It’s a solution of (7) and
|2(2) — | < Y1) 2(t) — w(t)] < Mlz(t) —y(1)]-

That mean z(t) — ¢ as ¢t — oo.

Let now z(t) be an arbitrary solution of (7). Then z(t) = Y (t) 2(t)
is a solution of (1). By virtue of assumption there exists a solution
y(t) = Y (t) yo of (2) such that |z(t) — y(t)| = O(1) as t — oo.

We have then

|2(t) — vol < Y71 (®)] |=(t) — w(t)] < M |=(t) — y(t)] = o(1) .

This shows that z(t) — yo as t — oco. Thus the system (7) is in
asymptotic equilibrium.
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As a corollary of the Theorems (4) and (5) we have:

Theorem 6. Suppose that every solution of (2) is bounded on J and

t
inf / trA(r)dr > —oo. (8)
tho 0

Then, the system (1) and (2) are asymptotically equivalent if and
only if the system (7) is in asymptotic equilibrium.

In fact, the inequality (8) and the boundedness of solutions of (2)
on J imply the boundedness of |Y ~!(¢)| on J.

Basing on Theorem 4 we can obtain different conditions for the
asymptotic equivalence of (1) and (2).

Theorem 7. Let the conditions of Theorem 6 be satisfied. Fig, =)
is the same as in Theorem 1 or in Theorem 2. Then (1) and (2) are
asymptotically equivalent.

Proof. In this case the function ®(t, 2) = Y ~1(t) F(t, Y (t)z) satisfies
the conditions of Theorem 1 or Theorem 2, respectively. Therefore the
system (7) is in asymptotic equilibrium. By Theorem 4 the system (1)
and (2) are asymptotically equivalent.

Remark. The condition (8) in the Theorem 6 may be replaced by the
weaker condition:

[Y~'(t)] <M forany t € J.
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