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ON A GERM.GRAIN MODEL 1

DAO HUU HO

Abetract. A gerrn-grcin mdel containirq onlg conflwnt disks is corwidercd.
The intewity ol the pint prccesc char@teizing this mdel and the coneslnnding
arca fm,ction an, giaen.

1. INTRODUCTION

Let (N, J/) be a measurable space where N is a family of subsets
of R2 and J/ is the smallest o-algebra on N. Let O : {Xn, n. 2 1} be
a point process in R2.

Recall that a point process O is a measurable mapping of the prob-
ability space (O,.,4, P) into (N, J/) if N is a family of all subsets <p of
R2 satisfying the following two conditions:

(i) The set (p is locally finite (i.e. each bounded subset of R2 con-
tains only a finite number of the X,).

( i i )  The set is simple (ro X; * Xi, i f  i  + j).

Then each rp in N can be regarded as a closed subset of R2. An
element g of N can also be regarded as a measure on R2 so that p(B)
is the number of points of 9 in B.

A point process can be considered either as random sets of discrete
points or as random measures counting the numbers of points lying in
spatial regions. Corresponding to this we have two different notations:

X g O asserts that the point X belongs to the random sequence O.
O(B) : z asserts that the set B contains rl points of iD.

Let O : {X"} be the stationary Poisson process of intensity ).
Process O is divided into several parts (subprocesses). These subpro-

cesses are denoted by O(K)  :  {XtK)} ,  k  :  1 ,2,3, . . . .  Sulprocesses
O(K) are defined as follows:

r This work was supported in part by the National Basis Research Program in
Natural Sciences. Vietnam.
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{xr(1)} is obtained by sampling a Poisson process of intensity )

and deleting any point which is distanced within 2R ftom any other

point, independently whether or not this point has already been deleted'

it ir th" first Hard-Core process of Matern (cf' [t])'

6(z) : {X^Q) } is obtained from a Poisson process of intensity }

by retaining all pairs of points such that each of which is the unique

neighbour of the other one within distance 2R'

O(B) _ {X,(sl1 is obtained from a Poisson process of intensity

.\ retaining oi all triplets of points for which the circles of radius 2R

centered at each of this triplet contain only points of this triplet.

Processes O(k) can be understood as following:

Let {Xr} be a Poisson process of intensity }. If x; and X, are

distanced from each other less than 2R,we connect them by a segment.

Then we get a graph model, which consists of points (called verties of

a graph) .nd .ontrected segments. (called sides of a graph). By this

definition, the proces, 6(t) : {X,(l)1 is a set of graphs with one vertex

(none side) (cf- Fig. 1(a)), the procesr 6(z) : {XnQ)).is a set of graphs

with 2 rr"r i i" ,  (orr" r i i" ' (cf. Fig.l(b)), the procest 6(s) : {X.(3)} is a

set of graphs with 3 verties (2 sides (cf. Fig.l(c)) or 3 sides (cf. Fig.l

(d)), the process q(a) : {X"lt]} is a set of graphs with 4 verties (3 or

4 s ides (c f .  F ig . l (e) ,  ( f ) ,  (s) '  (h) ) ' " '

Figure I. Types of a graPh model

At each point xn of the process o we put a circle of radius .R

centered at, Xo. Then we get a Boolean germ-grain model (points X"

are germs, circles are grains). This model is stationary and isotropic

( b )

a

(d)
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(cr. It]).
If points 16r(t) of processes O(e) (k : l, 2, J,

get germ-grain submodels type k (k - l, Z, S, 4...)
model.

Let C : U (X" + b(0, n)) be the Boolean model, where X,, : O
n : l

are the germs, the circle of radius fi centered at the origin 0, b(0, R) is
the primary grain. Then the submodel of type K will be

g(K)  :  U (x l " l  +b (o ,n ) ) ,  e  : r ,2 ,8 ,4 , . . .

Recall that an it t ]r i tv 1(r) (/c = 1,2,8...) is the mean number of
points of process {X,(tl} per unit area fraction p(&) (ft : 1, 2, 8...) of
germ-grain model and c(k) is the mean of the area of g(t) 6 the unit
area (cf. [1]).

Example. The area fraction of Boolean model C is p: | - 
"-\rR2(cf. [1]). It is of interest to find the intensities .\(t) of the processes o(&)

and the area fractions p(k) of the models g(*).

In this paper )(2) and p(2) will be calculated.
Now we give a practical example of the above submodels:
A field of a membrane with red flood cells passing through its pores.

The pore diameter is 5 p (pore length about ll p,). The diameter of the
average red cell is 7.5 p. To pass through a single pore the redcell has
to deform (like a plastic bag not too full of water). If a cell meets a
confluent pore it may not have to deform at all, it can just plop through.

The confluent pores in this membrane are germ-grain submodels
considered in this paper.

It  is well-known that for process {X[t) ] ,  1(r) :1(r) : . \  exp(-4r]Er).
Process {X,(tl} has a maximum intensity of ( treBz)-l as } is

varied (cf. [2], [3]).
For the model of type 1 5r(t) the area fraction is p(t) : \trR2

exp(-4zrlR'?) (cf. [s]).

2. MAIN RESULT

Theorem 2.
1. Let \ be the intensity of stetionary Poisson preccss. Then the
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4...) are germs we
from the Boolean
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intensity ),(2) ol process q(z) ;t
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the random

1(z)  :  g r \2  R2 e-8 \ rR2 i  "n^* 'u  o rn  o ,

, ! , "V*sinud'u

2. The aru, fraction of model C(2) w;th the germs being process
QQ) and. the grains being confl'uent d,ouble circles is

1f

p ( , ) : " _8 \ l rR2 \2 l r aR8 { ,n i #s i nud 'u_ f , n , ^ , , * t , l y
2r/s

where Ee\tzn(T) is the erpectation of e^tzn(r) , and T is
uariable with probability d,istrihution:

.  t .  I  r  . t 2  t  t  *
P r o b { ?  .  

E } :  
1 *  

; \ r ( ; -  
1 )  a r c c o s  

* - ; ( t +  , F )

( o < r  < 2 R ) .

Proof. First of all we introduce some concepts and notation:
b(X,R) is the circle of radius R centered at X

br : uz(b(O, 2R)) : n(2R)2,

bz : uz(6(0,4R)) : n(4R)2 ,

u2 is the Lebesgue measure in .R2.
A probability distribution P of the point process O is defined as

follows:

P ( Y )  :  P ( i D  € Y ) :  P ( { ,  €  o :  o ( o )  €  Y } ) ,  Y  e  N  .

The Palm distribution at X of P is a distribution defined on [N, J/]
by

PxV) :  P (o  €  I ' l l x ) ,  Y  e  N  ,
which is the conditional probability of (O e Y) that given that O has
a point at X. If O is a stationary then

s 2 r
4R, I

P(o e Y l lx)  :  P(o e Yx l lo)  ,
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where Yx :  {g ,  :  g  + n€ N :  P € N} .

The Palm distribution at 0 of P is

P o ( Y )  : P ( o e  Y l l o ) '  Y e N '

It is obvious that Po(Y) : Px(Yx), VX.

The reduced Palm distribution is defined as follows:

P o ! ( Y )  : P ( o - { 0 } e  Y l l o ) '  Y e N '

Pxt(Y) :  P(o -  tx )  €  v  l lx ) '  Y €  N '

For a stationary Poisson process we get Psgl: P,VX (cf. [t]).

Now we construct an intensity measure A(2). For P e N and X g

R2, denote Q(p,x) : U b(Y'ZR) n9. For a point process
Y€b(x,2B)np

O, 8(O, X) is defined similarly. Then O[?], * the mean number of

points of O(2) in a Borel set B C R2, i .e.

o[A : Eto[?)] : EDIn(x;) Ie(x;\ ,

where .A, : {X € O : O(6(X, 2R)) : 1, Q(O,X) : {X}} and fa(X) is

the indicator function of set A.

Using the refined Campbell theorem (cf. [t]) we get
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ola : ^ 
I I  

I  p1r;) I  re1,1 (b(t,zn):zD I {q(e<a,x,)={X,y ))Ps(d'P)d'n
R 2 N

f f
:  ^ 

J J 
Ip1@)I g(b(0,2n)):2))/{e(s,,o):{o,v11Po(dP)dn

R 2 N

:  , \u1z)  @)Po{v(b(O,2R))  :2 ,  Q(e,0)  :  {0 '  v } }
- )u1z) @)ri t{e@(o,2,R)) :  L, Q(po,0) :  {v}}
- . \u1z) @)e{e(U(o,2R)) :  L, Q(e,o) :  {Y}}
-  )u1z ) (B )P{o (b (o ,2R) )  :1 ,  Q(o ,0 )  :  { v } }

where  po : ,p  -  {0 ) .
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In  order  to  ca lcu late P{O(b(0 '2R))  :1 ,  8(O,0)  -  {y} }  we con-
sider the circle of radius 4R centered at 0. Suppose in the b(O,4R) there

are k points of process O (ft : 2,3...). These /c points are uniformly

distr ibuted in b(0, 4.R). Denote domain D : b(0,4R) - (b(o,2R) u D),
where D : (b(o,2R) v b(Y,2R) \ b(0,2R) (cf. Fig. 2).

Figure 2. Domain D is the dashed region

We have

P{o(b(o, znD :1, Q(o,o) :  {r}}
@ (\br)k^, t  t  r  1:te-\b,fr-"f J I l6oodafiaz...dyn-tk:l uPiznl b D
o o  

l l c  ,  I  d u -  .  - - ' -:De-\b'Gi4" 
I t'r{'r(D)}o-'

ft: l , 
a(olza)

oo 
1't , f d.u-- t e-\b' tri 4a' I frb'-2t" + r'n(lrl)lk-'

l c : l  U(O,ZR)

@  r l c
: t e-\b' 

f O.u"(b, 
- 2b1 -trr"(lr l))o-t

& : 1

:  . \b re - )b ,  
-  S  ' \e - r  t ' l  -  2b t  * r r " ( l y l ) ) * - ttDr:r6-l)t (u' - zu' * 1zn(lYl))n

:  )b re- )Dz B" \ (bz-zb '  * rzn  ( lY l ) )

:  \bte-2\b1 B"\12e(lYl)  (1)

where Y is a random variable with the uniform distribution in b(0, ZR)



On a germ-grain model

and ?2R(t) :8n2arccos# - i \ f f i ,0 ( t  < 4R (cr.  [ t ] ) .
Then we have

o4\R2u

FR';il 
sinudu ' (2)

Br\ tznf lv l ) :  t  
, l882arccos# y@

I  .+\RR -t"p 4rR2
D(o,2A) '  

-

^(2)(B) : Btr\zR2u2(B)e-a^**' i ::::::-., sinudu.
I eaXn' sin u '

Therefore the intensity ,\(2) is

tr(z) : 8r\2 R2e-8)rE2 

'f 
'o^"" oi- n,4

{ * s i n u d ' u '

and the proof of the first part of Theorem is complete.
It is known that, for the stationary and isotropic germ-grain model,

in particular, for C(2),

p (2 )  :  Ea2 (CQ)nCo)  :  p (X  6  C ' ( z )y  :  p (0  €C@)  _  r_p (0  €C@)

where'C6 is the unit square (cf. [t]).
We will calculate pQ) : P(0 € CQ\.For the model gQ) 6 cover

the origin 0 the point 0 has to belong to a grain o1 gQ). The origin
0 can belong either to one circle or to two circles of a grain o1 gQ)
(Fig.  a) .

Figure J. The point 0 belongs to a grain of model C(2).



Then we get
p(2) -  P{O(b(o,  R))  :  1,  O(b(X,2R) \  6(0 '  R))  :  r ,  X € b(0' .R) '

o(b(v,2,?)  \  ua( lY -  Xl) )  :  o,Y e b(X,2R) \  6(0 '  R))
+ P{o(b(0,  R))  :  2,  Q(b(X'  2R) \  6(0 '  n))  :  0,  X € b(0,  R),

o(6(Y,2 .R)  \  nn( lY  -  X l ) )  :o ,Y  €  6 (0 ,n ) )

p(,\ :  ,-\rR2 \trRze-l\ t l2 3SnP2 t a2@,r)

,ea1o,n;

x t ,-\(4rR2 
-tzn(lY -xl)) o"@y)

J
v€b(x '2R) \b (o 'R)

* e_\rlz 
(xr#2)2 

e-.3)rB2 
I 

a2(d,r)
z€b(0 , .R)

x t "-\(4rR2 
-tzn(lY -xl))or@a)

J
Y€b(X,2R)\D(0 'R)

c € b ( 0 , 8 ) v€b(x,2R)\b(o,R)

r€b (o ,R ) y€b (o ,R )

z € b ( 0 , 8 ) ceb(x,2R)

Dao Huu Ho

" \12a( lY  

-x l ) )

3nR2

the random

p(2) : " -8 \ rR2g\2naRB 
I  #  I

uz(dy)

* e - B \ , r R 2 l r x , n n n " l # l ! # u z ( d y )

* , - 8 \ , r R 2 x 2 n a n ' { r z l # 1 4 # , , ( d y )

- ,  I # 1 1 ] # " @ o \
c€b(o,R) Y€b(o, .R)  \ ,  ' '

-  
" -8 \ rRz  

^2 t raRB '  
T  

"4 rR2u  inud ,u -2 r " ^ r r * ( " ) I  -\rn I ;I^F ";"" 
s--- -- - 2- - 

'  
I ,

3

where Br\tzn(r) is the expectation o1 
"\tzn(T) 

and ? is
variable with the probability distribution

.  t ,  1 t  a 2  t  t r ,  *
P r o b { T  .  

E ) : 1 * ; \ r G - l ) a r c c o s  * - p ( t +  m )
12 .l

4R, I
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( o < r  < 2 R )  ( c f . [ s ] ) .
This completes the proof of the theorem.
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