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ON A GERM-GRAIN MODEL!

DAO HUU HO

Abstract. A germ-grain model containsng only confluent disks is considered.
The intensity of the point process characterizing this model and the corresponding
area fraction are given.

1. INTRODUCTION

Let (N, N) be a measurable space where N is a family of subsets
of R? and XN is the smallest o-algebra on N. Let & = {X,, n > 1} be
a point process in R2.

Recall that a point process ® is a measurable mapping of the prob-
ability space (02, A, P) into (N, N) if N is a family of all subsets ¢ of
R? satisfying the following two conditions:

(i) The set ¢ is locally finite (i.e. each bounded subset of R? con-
tains only a finite number of the X,,).

(ii) The set is simple (so X; # X, if ¢ # 7).

Then each ¢ in N can be regarded as a closed subset of R2. An
element ¢ of N can also be regarded as a measure on R? so that ¢(B)
is the number of points of ¢ in B.

A point process can be considered either as random sets of discrete
points or as random measures counting the numbers of points lying in
spatial regions. Corresponding to this we have two different notations:

X € ® asserts that the point X belongs to the random sequence ®.

®(B) = n asserts that the set B contains n points of ®.

Let ® = {X,} be the stationary Poisson process of intensity A.
Process ® is divided into several parts (subprocesses). These subpro-
cesses are denoted by ®(K) = {X,(,K)}‘, k =1,2,3,.... Sulprocesses
&(K) are defined as follows:
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{X.(1)} is obtained by sampling a Poisson process of intensity A
and deleting any point which is distanced within 2R from any other
point, independently whether or not this point has already been deleted.
Tt is the first Hard-Core process of Matern (cf. [1]).

() = {Xn(z)} is obtained from a Poisson process of intensity A
by retaining all pairs of points such that each of which is the unique
neighbour of the other one within distance 2R.

®(3) = {Xn(s)} is obtained from a Poisson process of intensity
A retaining of all triplets of points for which the circles of radius 2R
centered at each of this triplet contain only points of this triplet.

Processes ®(¥) can be understood as following:

Let {X,} be a Poisson process of intensity A. If X; and X; are
distanced from each other less than 2R, we connect them by a segment.
Then we get a graph model, which consists of points (called verties of
a graph) and connected segments (called sides of a graph). By this
definition, the process () = {Xn(l)} is a set of graphs with one vertex
(none side) (cf. Fig.1(a)), the process 3 = {X,®} is a set of graphs
with 2 verties (one side (cf. Fig.1(b)), the process 3G = {X,®}isa
set of graphs with 3 verties (2 sides (cf. Fig.1(c)) or 3 sides (cf. Fig.1
(d)), the process () = {X,™} is a set of graphs with 4 verties (3 or

4 sides (cf. Fig.1(e), (), (g), (h)),---

(d) = 2R
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“ Figure 1. Types of a graph model
At each point X, of the process & we put a circle of radius R

centered at X,. Then we get a Boolean germ-grain model (points X,
are germs, circles are grains). This model is stationary and isotropic
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(cf. [1)).
If points X,®) of processes ®(*) (k=1, 2, 3, 4...) are germs we
get germ-grain submodels type k (k =1, 2, 3, 4...) from the Boolean

model.
o0

Let C = |J (X, + b(0, R)) be the Boolean model, where X, = ®
n=1
are the germs, the circle of radius R centered at the origin 0, b(0,R) is

the primary grain. Then the submodel of type K will be

C(K) = U(X’(IK) +5(0,R)), k=1,2,3,4,..

n

Recall that an intensity A(¥) (k = 1, 2, 3...) is the mean number of
points of process {Xn(k)} per unit area fraction p(® (k = 1, 2, 3..) of
germ-grain model and C(¥) is the mean of the area of C(¥) in the unit
area (cf. [1]).

Example. The area fraction of Boolean model C is p = 1 — e~ *"R*
(cf. [1]). Tt is of interest to find the intensities A(¥) of the processes ®(¥)
and the area fractions p(¥) of the models C(¥),

In this paper A(2) and p(?) will be calculated.

Now we give a practical example of the above submodels:

A field of a membrane with red flood cells passing through its pores.
The pore diameter is 5 4 (pore length about 11 x). The diameter of the
average red cell is 7.5 4. To pass through a single pore the redcell has
to deform (like a plastic bag not too full of water). If a cell meets a
confluent pore it may not have to deform at all, it can just plop through.

The confluent pores in this membrane are germ-grain submodels
considered in this paper.

It is well-known that for process {X,(,,l)}, AN =2 = ) exp(—47AR2).

Process {X,"} has a maximum intensity of (4meR%)~! as A is
varied (cf. [2],][3]).

For the model of type 1 C(1) the area fractien is p(!) = \rR?
exp(—4mAR?) (cf. [3]).

2. MAIN RESULT

Theorem 2.
1. Let X be the intensity of stationary Poisson pracess. Then the
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intensity A\(2) of process ®(?) is

m
(2) 2 p2 —8ATR? & ol hemd
A\ = 8TA“R*e —————sinudu

e4)\R2 sin u
27/3

2. The area fraction of model C(2) with the germs being process
®(2) gnd the grains being confluent double circles is

2
84)\R u

5
R L LIS — 2 peor2r(T)
D R7sna sinu du Ee }

m
p® = e—BAszAZﬂ,4R8{24 /

2m/3

where Ee*72r(T) {5 the expectation of e*72R(T) and T is the random
variable with probability distribution:

B e o t $2 Y t2
Prob{T<E}=1+;{2(§—1)arccosﬁ—ﬁ(1+—2§—2) 1_:1—E§}

(0 <t < 2R).
Proof. First of all we introduce some concepts and notation:
b(X, R) is the circle of radius R centered at X
by = v2(b(0,2R)) = 7(2R)?,

by = v9(b(0,4R)) = w(4R)?,

v, is the Lebesgue measure in R2.
A probability distribution P of the point process ® is defined as
follows:

PY)=P(@®eY)=P{we:®(w)eY}), YeN.

-The Palm distribution at X of P is a distribution defined on [N, N|
by
Px(Y)=P(®€Y |x), YEN,

which is the conditional probability of (® € Y') that given that ® has
a point at X. If ® is a stationary then

P(®@eY |x)=P(®€Yx|o),
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where Yx = {p, =p+z € N:p € N}.
The Palm distribution at 0 of P is

Po(Y)=P(@EY |o), Y €N.

It is obvious that Po(Y) = Px(Yx), VX.
The reduced Palm distribution is defined as follows:

Pol(Y) = P(@—{0} €Y [lo), Y€ N,

Px!(Y)=P(@®—-{X}eY |x), YEN.

For a stationary Poisson process we get Px! = P, VX (cf.{1]).

Now we construct an intensity measure A@, For p € N and X €
R2, denote Q(p,z) = U b(Y,2R) N p. For a point process
YeEb(X,2R)Ne
®, Q(®,X) is defined similarly. Then AE'Q) is the mean number of
points of ®(2) in a Borel set B C RZ,ie.

A(D) = B{e(3) = EX Ia(X) La(Xy),

where A = {X € ® : ®(b(X,2R)) =1, Q(®,X) = {X}} and I4(X) is

the indicator function of set A.
Using the refined Campbell theorem (cf. {1]) we get

r |
AEB)) =2 / / I5)(2) I (p,, (b(z,2R) =2} (Q(p(ey 2)={X,¥ }} Po(dp) dz

R2N

= A// I(8)(2)I{p(b(0,2R)=2)}(Q(p,0)=(0,v }} FPo(dp) dz
R2N ]

= Av(z)(B) Po{0(6(0,2R)) = 2, Q(»,0) = {0,Y}}

= Av(z)(B) Po{p(b(0,2R)) = 1, Q(p0,0) = {Y'}}

= Av(3)(B)P{p(b(0,2R)) = 1, Q(p,0) = {Y}}

= Av(z)(B)P{®(b(0,2R)) =1, Q(2,0) = {Y}}

where oo = © — {0}.
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In order to calculate P{®(b(0,2R)) = 1, Q(®,0) = {Y'}} we con-
sider the circle of radius 4R centered at 0. Suppose in the 5(0, 4 R) there
are k points of process ® (k = 2, 3...). These k points are uniformly
distributed in 5(0,4R). Denote domain D = b(0,4R) — (b(0,2R) U D),
where D = (b(0,2R) U b(Y,2R) \ b(0,2R) (cf. Fig.2).

Figure 2. Domain D is the dashed region

We have

P{2(b(0,2R)) = 1, Q(‘I> 0) ={Y}}

22 Ab
ZZC—M 2 / / /(b dydy,dy;...dyk—1

k=1 b(0,2R) D

0 Ak dy '
. oy 4 k-1
= Ze (lc—l)!bl / by {vz(D)}

k=1 b(0,2R)

=R 2k dy "
=.Ze Abz (k—l)!bl / Z‘l‘lb2“‘2bl+72R(|Y|)]k ;

et b(0,2R)
= Ze g (k-—l)'blE(b2_2bl +’72R(|Y|)) 1

k=1 it

—Aby - Ak—l e
= Abje EZ k=1)! (b2 — 2by +72r(|Y]))
k=1 |

= Abye~ b2 Eerba—2bi+m2r (1Y)
= Abye~2 b1 AR (YD) )

where Y is a random variable with the uniform distribution in 5(0, 2R)
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and yog(t) = 8R2a,rccos— — %\/ 16R? — t2,0 <t < 4R (cf.[1]).

Then we have

A8R arccosl‘—Rl vg(dy)

2 y/16R2-1¥17 4T R?

b(0,2R)

Enr(Y)) =

/’rd / eASR“arccos;ﬁ tdt 5 7 ‘64AR2u - ;
== w 2 = WSIHU, u.
J J er3V/16R?—t2 4TR J e AR

E]

By (1) and (2) we have

H 4AR2u
—8AwR?
A®)(B) = 87A2R%vy(B)e 3" /msmudu.
2n
3
Therefore the intensity A(?) is
[ 4AR%u
— 2 .
A(2) B 87r)\2R2e Bk / ;—msm udu,,
i

and the proof of the first part of Theorem is complete.
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(2)

It is known that, for the stationary and isotropic germ-grain model,

in particular, for C (2)

p® = Evy(c®nCy) = P(X e C¥) = P0e CP) = 1-P(0 € C?)

where Cj is the unit square (cf. [1]).

We will calculate p(2) = P(0 € C(?)). For the model C(?) to cover
the origin O the point 0 has to belong to a grain of C(2), The origin
0 can belong either to one circle or to two circles of a grain of C(2)

(Fig. 3).

4 )

Figure 8. The point 0 belongs to a grain of model C(2).
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Then we get
p® = P{®(b(0, R)) = 1, ®(b(X,2R) \ b(0, R)) =1, X € b(0, R),
&(b(Y,2R) \ 12r(|Y — X)) =0, Y € b(X,2R) \ b(0, B)}
+ P{®(b(0, R)) = 2, ®(b(X,2R) \ b(0, R)) =0, X € b(0, R),
®(b(Y,2R) \ v2r([Y — X)) =0, Y € (0, R)}

p® = e ™R’ \rRZe 3 "R 331 B2 / ve(dz)
z€b(0,R)
X e~ AT —m2r (Y = X))y, (dy)
vEB(X,2R)\b(0,R)

+ e—/\1rR2 MC—SAsz /

51 vo(dz)

::Eb(O,R)
« e—)\(4ﬂ'R2—’72R(|Y“xl))v2(dy)

YEL(X,2R)\b(0,R)

—8ArR? vo(dz) e 2r (Y —X]))
p(2) = ~8ATR? )24 B8 / e sz(dy)
z€b(0,R) yEb(X,2R)\b(0,R)

= 21 vo(dx e A2r (Y —X1))
+e S8ATR -2-A27I'4R8 / ;_(122) / . — vz(dy

z€b(0,R) yeb(o R)

M2r (Y X))
4 e 8ATR® \2, 4R8 12 / WR2 / Soolfiny o = va (dy)

zeb(0,R) yEb(X,2R)

E vz(dz) e 2r (Y =X]))
2 / mR? wR2 vz(dy)}

z€b(0,R) yeb(0,R)

. e41rR2u 5 :
= ¢ BATR )\27r4R8{24/ I RZsnau sinudu — —Ee’\”R(T)} ,
\ e sin u 2
2n
3
where Ee*72r(T) js the expectation of e*12r(T) and T is the random
variable with the probability distribution

Tl 1 = & @ $2 12
Prob{T < E} = 1+;{2(ﬁ—1)arccos———é—§(l+m) 1-— Z—RE}
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(0 <t < 2R) (cf.[3]).
This completes the proof of the theorem.
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