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ON SOLVABILITY OF A CLASS OF SINGULAR
INTEGRAL EQUATIONS WITH ROTATION !

NGUYEN MINH TUAN

Abstract. It is well-known that the complete singular integral equations do not
admit solutions in a closed form. However, there exist several special cases of
singular integral equations, which can be solved effectively.

The paper deals with some fundamental properties of integral operators with
shifts and applied to obtain all solutions of equations of the type (1). This class
contains a lot of the equations in [1,8].

Consider singular integral equations of the form
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where my(r,t) are functions satisfying Holder’s condition in both vari-
ables (r,t) € T xT.

We need the following equalities ([4], [5])
SW =WS, SiS =SSk, SpW =W Sk, (3)

PP, BapPrraa PR P R = PRI =P =0, (4)

where 1 1
Pesrg (B8 Qizmvg (o8 ) ByPpifi; By

Denote by Pj,j = 1,2,...,n the projectors induced by operator W, then

( see [8])

Pj = % i —— UWV+1
’ 0 (8)
W = E EJPJ' 3
i=1 .
X:X+®X_, X=®XJ, (6)
i=1
Sy =8P =FS
M, = mpSk + NP = (mkS + Nk)Pk (7)
Ny P; = P;Ng,
where
Xt = P(X), = Q(X), X; = P;(X),
mi(r,t) — m(t,t)
(W)t e / T—1 o(r)dr,

(M) (t) = mi(t,t)e(?),

and my(r,t) are assumed to satisfy the following condition
my(r,t) = mg(err,t) = my(7, 1t).
Note that [4]
(S+Ne)* =1, (8)

if the function
mk(Tat) — mg (tat)
T—1
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admits an analytic continuation in both variables onto D™.

Lemma 1 ([4]). Suppose that K(r,t) admits an analytic continuation
onto Dt in both variables 7,t and K(r,t) = K(ei7,t) = K(r,ert).
Suppose that the function (r — t)"1[K(r,t) — K(t,t)] is continuous in

(r,t) €T xT. Then
1. &+ =L [T L K(r,t)o(r)dr € X for every ¢ € X.

2. &t =0 for every p€ XT.

n—l-—ktk

In what follows for every function a € X, we write (K,p)(t) =
a(t)(t).

Lemma 2. Let a € X be fized. Then for any k,j € {1,2,...,n} there
ezxists b € X such that Ky X C Xy, and PyK,P; = K, P;.

Proof. By equality (5), we obtain

n n

1 1
PLKqPj = ~ Y WK B i X o6 BT alebat) WS P;
v=1 v=1
1 n n
== e;:_l_"a(e,,+1t) Z EZ+1P“PJ'
v=1 p=1
1 n
T (; VZ_:I Eu+1a‘(5u+1t))1’-’1 = ak; (t) Pj,
where
21 5 j—k
akj(t) = ; Z €V+1a(fy+1t). (9)
v=1

Put ay; )= b(t) then P, K,P; = Ky P;. It implies Ky P; C Xi. Lemma
is proved.

Corollary 1. Let a € X. Then for every k,j € {1,2,...,n} the follow-
ing tdentity yrelds

PK,,, = K., P;
where ag;(t) is defined by (9).

Proof. For an arbitrary ¢ € X, we have



392 Nguyen Minh Tuan

1 a0
PiKo,p=—) 7 "W ai;(t)e(t)

v=1
1 1 o
—1- i—k
_ (?; -1 VWV+1)(;Zeiﬁla(ep_,_lt))tp(t)
v=1 p.=1
1 el k
i—k
= ;Z[; €16 u+1a(fu+15u+1t)] u+1fk W tle(t)
v=1 p=1
1 n
= =) a3 T W ()
v=1

which proves the corollary.

Now we deal with the following equation (in X)
Za] )(S + N;)Pjp = f(t), (10)

where
aj € X, (Njp)(t) = / nj(r,t)e(r)dr, j=1,2,..,n.
r

" Lemma 3. Suppose that n;(7,t),5 = 1,2,...,n admit an analytic con-
tinuation onto Dt in both variables 7,t and n;(r,t) = n;(e;7,t) =
n;(r,eit). Then o(t) € X is a solution of (10) if and only if p; =
Pjp, j=1,2,..,n is a solution of the following system

n

Zak, )(S + N,)o; = Pef, k=1,2,. (11)
1=1

where ay;(t) is defined by (9).

Proof. Let (t) be a solution of (10). Acting to both sides of equation
(10) by operators Py, respectively, we get

Z Pea;()(S + N;)Pyp = Pif, k=1,2,..,n.
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According to Lemma 2, the last system can be written as follows
n

Y aki()(S + Nj)Pjo = Pief, k=1,2,..,n

i=1

Put o; = Pjp, j=1,2,..,n, it follows that {p}. is a solution of

(11).

Conversely, suppose that there exists a ¢ € X such that p; =
Pijp,3 =1,2,...,n is a solution of (11). We have

ZPkf ZZ% (S+Nj)Pjp = ZZPkaJ )(S+N;) P

k=1j5=1 k=1j5=1

11n

_Z(Zpk)a, (S + Nj)Pjp = Za, )(S + Nj)Pjp = M.

7=1 k=1 =1

Thus, p(t) is a solution of (10). The lemma is proved.

Corollary 2. If {¢:},_15 € X is a solution of (11), then {P;p;},
€ X;, respectively, s a solution of (11).

i=1,n

Proof. Suppose that {;},_15 € X is a solution of (11). Acting to
both sides of equations (11) by operators P, respectively, and using
the result of Corollary 1, we get

Y ak; (8)(S + N;)Pjpj = Pof, k=1,2,..,n
i=1

~Hence {P;p;}, € X; is a solution of (11).

zln

Corollary 3. If {¢:},_15 € X ts a solution of (11), then p = Pip; +
Pypy + ...+ P,py, is a solution of (10).

Due to results of Lemma 3 and Corollaries 2, 3, it is enough to
solve system (11) in X instead of solving (10) in X.

Theorem 1. Suppose that conditions of Lemma 3 are satisfied and
that

detA(t) = det [ay (t)] i PO

Then, for every f € X, the equation (10) has an unique solution of the
form
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n n

o(t) =D (S + Ni)Pibi;(t)P; f (12)
T
where by;(t), k,j=1,2,...,n are defined from the matriz [A(t)] s
[A(t)]—l = [bk,-(t)].
Proof. We rewrite system (11) in the following form

AK® = F,

where

P r——d

k,j=1,n

K = [65(S + )]

¢ = (Sol,p27"-a"90’n); F = (Plf,P'.’f,---,Pnf)-
The equality (8) follows that K is invertible and K~! = K. Hence we

obtain ®=KA'F,ie
or(t) = Z(S + Ny )bk (t)P; f- .
1=

Using Corollary 2, we conclude that every solution of (10) is of the form
(12). The proof is complete.

Now we deal with equation (1) on T

S~ {alt) + b ()(S + N;)P; o = £(0), (13)

=1
where
bj(t) = mj(tat)’ bn(t) == bo(t), Nn = NO,
7,t) — m;(t,t)
T—1

o)) = = [ =4 plr)ds
r

and m(r,t) satisfy the condition
m;(e17,t) = mj(1, e1t) = my(7,t).

As Lemma 3 and Corollaries 2 and 3, one can prove the following results



On solvability of a class of singular integral equations with rotation 395

Lemma 4. Suppose that n;(r,t) = (1 —t) 1 [m;(r,t) — m;(t,t)] j =
1,2,...,n admit an analytic continuation onto D in both variables and
suppose that

n;(e17,t) = n;(1, €1t) = n;(r,t).

Then o(t) € X 1s a solution of (18) if and only if p; = Pjp, (j =
1,2,...,n) is a solution of the following system

Z[ak, ) + bij (£) (S + Nj)]Pjso —Pf, k=1,2,..,n. (14)

=

Corollary 4. Suppose that condition of Lemma 4 are satisfied. If
{©i}i=17 15 a solution of (14) in X, then ¢; = {Pip:};_17 15 a solution
of (14) in X;.

Corollary 5. If {p:},_ T € X 15 a solution of (14), then p = Py +
Pypy + ...+ Prpy, 15 a solution of (13).

Write
® = (P1p, P2p,..., Prp);

F = (Pif, Pof, ..., Puf);

Al) = [ar®)]
Bt = [by(0)],
bk; () (m; (7, t) — m; (t,t)]

T—1

_—

kj=1,n

L(r,t) = [

and L= [bk]'(t)N]'] -

k,j=1,n
S = [6k,-8] ol
k,j=1,n
are function-matrices and operator-matrices. Then the system (14) can
be written in the form
A(t)® + B(t)(S®) + Ld =F. (15)
Denote by H(D* x D) the set of all two-variable functions I(z,w)

admiting an analytic continuation onto Dt x D% in both variables and
satisfying the following condition
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l(err,t) = l(r,eqt) =1(r,t) onT.
Denote by Hyxn(Dt x D%) the set of all function-matrices of order
n X n their elements belonging to H(D* x D%).
" Lemm 5. Suppose that the matrices D (t) = [A(t) :i:B(t)] are tnvert-
tble and
=1

[4) + B(t)]  L(r,t) € Huxn(D* x D). (16)

Then the system (15) can be represented in the following form
(A()I + B(t)S)(I + M) = F,

where M is an integral operator with the kernel

E%M(r,t) — [A(t) + B(t)] ' L(r,1).

Proof. According to (16) and Lemma 1, we get SM = M.
Hence (AI + BS) (I + M) = Al + BS + L, which proves the lemma.

Denote by I'(z),z € DT the canonical matrix of the following sys-
tem (see [6])

AU + BSU =0. (17)
Denote by o, ¢ = 1,2,...,n the partial indexes of (17). One can assume

that o > a2 > ... > am 20> amy1 > ... 2> on. Let

mt=ar+a+ -+ am M= |ampr]|+o o+ e

Lemma 5 and [6] together imply the following theorem

Theorem 2. Suppose that the assumptions of Lemma 5 are satisfied.
Then the system (15) ts solvable if and only if

/F(T)Tf(T)Q(T—i—i)dr v, (18)

r

where T*(t) is the transposed matriz of T (t),
-1 -1
r(0) = [r*@] Dy'0=[r"@] p='e)

Q1) = (@1(8), Q2(t), -+ @n(®),
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Q( 1 )—_ 0 fj=12,...,m
TNt ZLO‘:"IIij(H—i)'k tfy=m+1,..,n.

If the conditions (18) are satisfied, every solution of system (15) is
of the form

® = (I — M)(AoF + BoSTF + B,P),

where

1 o, f1=12,...,n
PJ(Z—{-t): oy ) N —k . .
2alicki(t+4)7% ifj=1,2,...,m,

Cck; are arbitrary complex numbers.
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