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HOLOMORPHIC FUNCTIONS OF UNIFORM TYPE
WITH VALUES IN RIEMANN DOMAINS

THAI THUAN QUANG

Abstract. [t is studied under what conditions every holomorphic function
on a (DFC)-space with values in a Riemann domain over Frechet space 1s of
unsform type. Moreover, necessary as well as sufficient conditions for which every
holomorphsc function on a nuclear Frechet space with values in a Riemann domain
over a Frechet space is of uniform type, are given in terms of the linear topological

invariants (1, 5, DN, DN, introduced by Vogt (18,19, 20,...].

Let E be a locally convex space and X a complex manifold modelled
on a locally convex space. A holomorphic map f from F to X is called
a map of uniform type if f can be factorized holomorphically through
the canonical map w, from E to E, for some continuous semi-norm p
on E. Here for each continuous semi-norm ¢ on E by E, we denote
the canonical Banach space associated to ¢ and by w, we denote the
canonical map from E to E,. Now by H(E, X) and H,(E, X) we denote
sets of holomorphic maps and holomorphic maps of uniform type from
E to X respectively. In the present paper we investigate some necessary
as well as sufficient conditions for which the following equality holds:

H(E,X) = Hy(E, X). (UN)

This problem for vector-valued holomorphic maps, i.e. for the case
where X is a locally convex space was investigated by some authors.
The first result of this problem belongs to Colombeau and Mujica. In
[2] they have shown that the (UN) holds when E is a dual Frechet-
Montel space and X a Frechet space. Next a necessary and sufficient
condition for which (UN) holds in the class of scalar holomorphic func-
tions on a nuclear Frechet space was established by Meise and Vogt
[8]. An important sufficient condition of (UN) for scalar holomorphic
functions on such a space was found by above two authors [8]. Recent-
ly [6], L.M. Hai and T.T.Quang have also considered this problem for
holomorphic maps with values in the projective space associated to a
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Frechet space. However until now, when X does not have a linear struc-
ture, the problem is not investigated. Here we consider this problem
for holomorphic maps with values in Riemann domains.

The paper contains two sections. In the first one we prove Theorem
1.1 on the uniformility of holomorphic functions on a (DFC)-space with
values in a pseudoconvex Riemann domain over a Frechet space. The
result of B.D. Tac and N. T. Nga [17] which shows that every plurisub-
harmonic function on a separable (DFC)-space is of uniform type is also
used to obtain this theorem.

In Section 2 we give a necessary and sufficient condition for which
(UN) holds in the case holomorphic functions on a nuclear Frechet
space with values in a Riemann domain D over a Frechet space B (The-
orem 2.2). We prove that this relation defines subclass which contains
all spaces E with the property n and spaces B with the property DN
(resp. E € (Q), B € (DN)). Here 0,0, DN, DN are linear topological
invariants introduced by Vogt [18,19,20,...].

Finally we shall use standard notations from the theory of locally

convex spaces as presented in the books of Schaefer [14] and Pietsch
13].

1. HOLOMORPHIC FUNCTIONS ON (DFC)-SPACES
WITH VALUES IN RIEMANN DOMAINS
OVER FRECHET SPACES

The following is an extension of the result of Colombeau and Mujica
[2] to the non-vector valued case.

Theorem 1.1. Let D be a Riemann domain over a Frechet space F
and f : E — D be a holomorphic function on a (DFC)-space. Then f
15 of uniform type if one of the following two conditions holds:

(i) D is pseudoconver.

(i) The space H(D) of holomorphic functions on D separates the
points of D.

To prove the theorem we need some auxiliary results. First we
recall the result of B.D.Tac and N.T.Nga [17].

Proposition 1.2. Every plurisubharmonic function on a (DFC)- space
1s of uniform type.
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As Colombeau and Mujica [2] we have

Lemma 1.3. Let G be an open set in a (DFC)-space E and f : G — F
a holomorphic function with F is a Frechet space. Then there ezist a
continuous semi-norm p on E, a balanced convez closed set B in F
and a holomorphic function h on a neighbourhood of wy(G) in E, with
values in F(B), the Banach space spanned by B, such that f = hw,.

Lemma 1.4. FEvery pseudoconver Riemann domain D over a Ba-
nach space B satisfies the weak disc condition. This means that ev-
ery sequence {0,} C H(A,D), converging in H(A*, D), converges in
H(A, D), where H(A, D) and H(A*, D) denote the spaces of holomor-
phic maps from the open unit disc A in C (resp. A* = A\ {0}) into
D equipped with the compact-open topology.

Proof. Given {o,} C H(A,D) such that 0, — ¢ in H(A*, D). Put

Bo = Clspan U 6o, (A)
n>1

where 6 : D — B is a locally biholomorphic map defining D as a Rie-
mann domain over B. Since By is a separable Banach space there exists
a continuous linear map S from £! onto By. Consider the commutative
diagram

~

~ S
Dy —— Dy

T

S
! —— B,

where Do = 071(Bo);00 = 0|Do,5o = {! xp, Dy and 0~0,§ are the
canonical projections.

It follows that Do is also pseudoconvex with the b1holomorphlsm
00 Hence Do is a domain of holomorphy [12]. This implies that Do
satisfies the weak disc condition. On the other hand, since the map

S:H(A,LY) - H(A, Bo)

induced by S is open, there exists a sequence {B.}C H (A, £') such that
B — Bin H(A,¢') and S8, = 0o, for n > 1. Consider Bn € H(A, Do)

given by »
Br(t) = (Bn(t), on(t))
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fort € A. Then 8, — (8,0) in H(A*, 50). Consequently this sequence
converges to (8,0) in H(A, Do). Hence 0, — 0 in H(A, Do).

Now we can prove Theorem 1.1 as follows

(i) Assume that D is pseudoconvex.

a) Since f(E) is separable, we can cover it by a sequence of open
subsets V; of D such that ¢ : V; — q(V;) is homeomorphic with 7 > 1,
where ¢ : D — F is a locally biholomorphic map defining D as a
Riemann domam over F. By Lemma 1.3 for each j > 1 there exist a
continuous semi-norm g; in E, a closed, balanced convex set B; in F
and a holomorphic function h; on a neighbourhood U of w,, (U;) with
U; = f7Y(V;), in E,; such that f |wsii=ihiwgp: Slnce E is a (DFC)-
space we can find a continuous semi-norm g on E such that wo(Uj)
is open in E/Kerp for j > 1. Moreover, for each j > 1 there exists
C; > 0 such that g > Cje;j. This implies that the maps hi(7 > 1)
deﬁne a holomorphic map h from a neighbourhood G of E / Kerg in E,
into ¢~1(F(B)), where

B = Clconv U e;B;
21
with € \ 0 such that B is compact.

Put D(B) = ¢~!(F(B)). Consider the domain of existence Dy, of
h over E,. Then, Dy is contained in E, as an open subset, because
E/Kerp is dense in E,.

b) We show that Dj, is pseudoconvex. It suffices to prove that Dy
satisfies the weak disc condition [15]. Given {0,} C H(A, D) such
that 0, — o in H(A*, Dy). Since D and hence D(B) is pseudoconvex,
the sequence {ho,} converges to ho in H (A,D(B)), by Lemma 1.4.
Choose a neighbourhood U of (ho)(0) such that

q:U =q(U)
and € > 0, N € N such that
hon(eA) C U
for every n > N. For each n > N define a holomorphic function

eA — lirilzi{ld H> (W, F(B))
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by
5a(t)(2) = h(on(t) + 2)
and
g:eA* — lixl?zi{lde(Wk,F(B))
by

5(t)(z) = h(on(t) + 2)

where {Wj}r>; is a basis of neighbourhoods of 0 € E,. It follows that
the sequence {G,} converges to & in H(sA*,lir,gi{ld H®> (W, F(B))).

Indeed, given K a compact set in eA* and hence o(K) is a compact set
in Dy. Then there exists V C G such that h is uniformly continuous
on o(K) +V, i.e. for every 6§ > O there exists V(§) C V such that for
z,y €o(K)+V,z—y € V(6), we have

lI~(z) = h(y)ll < 6.

For each £ > 1 and r > 0 put

o, (4 {f € H® (W, F(B)) : || fllw, < '}}

and consider {U;} with [ : N — N, defined by

U{ = Clconv ( U J.k(Uk,l(k))
k>1
where j; : H® (W, F(B)) — li1,1c:1>i{1dH°°(Wk,F(B)) is the canonical

embedding. It is easy to see that {U;} is a basis of neighbourhoods of 0
in liril>i{1d H*> (W, F(B)). Given a U; in lirlfl>i{1d H>(Wy, F(B)). Take

ko such that Wy, € V and Ny sufficiently large such that

O'n(t) = O'(t) C Wk,

on(t) — o(t) cv(l(;o))

for every n > Ng and all t € K.
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Thus for all n > Ny we get o,(t),0(t) € H® (Wi, F(B)) for allt € K
and

sup sup ||k(on(t) +z) — h(o(t) + z)|| < L

teK zeW, I(ko)
i.e. .
sup sup [[3a(t)(z) ~ 5(1) (@) < -
teKzeWy, ( 0)

Then &, (t) —F(t) C Uk,,i(k,) for allt € K. Thus we infer that {o, } con-
verges to o in H(eA*, lir’£1>i{1d H> (W, F(B))) and hence & can be ex-

tended holomorphically_to eA and {G,} converges to ¢ in
H(eA,lixl?)i{lde(Wk,F(B))). Since {Gn(%2)} is bounded in

1iII£1 >ind H% (W), F(B)) and the inductive limit is regular [14] there ex-
1

ists k; such that
on(t) € H*® (Wi, , F(B))
for every |t| < €/2 and every n > No.

Observe that o can be extended holomorphically to €A and 0, — o
in H(A, E,). It remains to check that ¢(0) € D. We have 7, (0)(z) =
h(0,(0)+z) for every z € Wy, and n > Np. This yields that ¢(0) € D.

c) Let p(2) = —logd(z,0D4) for z € Dy. By b) the function ¢ is
plurisubharmonic on D}, containing E/Kerp. From Proposition 1.2 we
can find a continuous semi-norm g; > g on E and a plurisubharmonic
function ¢ on E,, such that pw, = Yw,, .

It remains to check that Imw,,, C Dy where w, ,: E,, — E, is

the canonical map. Otherwise there exists z € E,, such that w, ,(2) €
dDy,. Let {z,} C E/Kerg; with z, — z. Then

+oo = lim g olam) = lim ¥(en) < $(2) < oo

This is impossible and hence Imw,, , € Dj.

(ii) Assume now that H(D) separates the points of D. By (i) there
exist a continuous semi-norm ¢ on E and a holomorphic function A
from E, into 5, the envelope of holomorphy of D, such that f = hw,.
Obviously h(E,) C CID. Choose a continuous function ¢ on D such
that ©~1(0) = CID \ D. Consider the continuous function ;17 on E.
As in Proposition 1.2 there exists a continuous semi-norm ¢; > g on E

such that }
sup{|m| :01(2) < r} < 00



Holomorphic functions of uniform type... 433

for every r > 0. Then hw,, ,(E,, ) € D. Indeed, in the converse case
there exists z € E,, such that hw,, ,(2) € D, i.e. phw, ,(z) = 0.
Take a sequence {z,} C E/Kerp; with 2z, — 2. Then

|:n21}=sup{|

00 >sup{|

(zn)|:n21}=

1
©f(2n) phwpo

This contradiction shows that hw,, , is holomorphic on E,, and hence
(ii) is proved.
The theorem has thereby been proved.

2. HOLOMORPHIC FUNCTIONS ON NUCLEAR FRECHET
SPACES WITH VALUES IN RIEMANN DOMAINS
OVER FRECHET SPACES

Let E be a Frechet space with a fundamental system of semi-norms
{Illle}. For each subset B of E we define a semi-norm ||.||; on E*, the
strongly dual space of E, with values in [0, +00] by

|lullp = sup{lu(z)] : = € B}.

Instead of ||.||;;, we write |.||%, with
U, P
={ze€ E:|z|, <1}.

Using these notations we define: F has the property

d>0VEkKdC >0
WL 1 < el
() : Vpﬂq‘v’k d>03C>0
(DN):3p3d>0V g3k, C>0
(DN):3pVq3k, d, C>0

>
a
} R < Ol el

The above properties have been introduced and investigated by
Vogt [18,19,20,...]. Hereafter, to be brief, whenever E has the property
Q (resp. (1) we write E € (1) (resp. E € (Q0)).

In this section we shall find necessary and sufficient condition for

which relation (UN) holds when E is a nuclear Frechet space and X
is a Riemann domain over a Frechet space (Theorem 2.2). It is also a
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characterization for nuclear Frechet spaces having the properties Q, Q.
We begin with recalling [5] a result of L.M.Hai which is also useful
in proving Theorem 2.2. The main tools to obtain this result are an
interpolation argument as well as methods and results from the theory
of nuclear Frechet spaces.

Proposition 2.1. Let E and F be Frechet spaces and E, nuclear. Then
H,(E,F)=H(E,F)

if one of the following conditions holds

(i) E € (Q) and F € (DN),

(ii) E € (Q) and F € (DN).
Theorem 2.2. A nuclear Frechet space E has the property ) (resp. ﬁ)
if every holomorphic function on E with values in a Riemann domain
D over a Frechet space B having the property DN (resp. DN ) which
satisfies one of following two conditions:

(i) D s pseudoconvez,
(ii) H(D) separates the points of D,

1s of uniform type.

It suffices to prove in the case E € (ﬁ) and B € (DN). We need
the following lemma.

Lemma 2.3. Let B be a Frechet space and B € (DN). Then
¢(B) =

{(€)eer C C= : [[(&)lp = Y [éblexp|bll, < o for every p>1}
beB

also has the property DN.
Proof. Since B € (DN),3 p,V ¢,3 k,d,C > 0 such that

lbllg* < Clibllellelly

for all b € B. Upon iterating we get

; it ot
IBllg < €T [[b]1 g™ {iB]|
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for all b € B. We have the following estimation:

Iele = 3 Léslexp 8lly < 3 166l exp[C 3ol & )15+

bcB beB
1
< expCl’r;d Z 1§b|eXP[1+—d”b”k + 1 -f—d”b” ]
beB
< exp CTH Y (6|77 exp 1 [b]1) ] 2
beB
_dud
x [~ (1&| ™ exp 1erllbll R
beB
1 Tord Ha
=exp CT+ () |&]exp [|b]lx) ™7 (D |€s] exp ||B]],) T+
beB beB

— exp CT (&) LT (&) |2+

for all (&) € €*(B). Hence ¢!(B) € (DN).

Now we prove Theorem 2.2.

Given f a holomorphic function on E with values in D, where D
is as in the theorem and E a nuclear Frechet space with the property

Q. Since f(E) is separable without loss of generality we may assume
that B is separable. Take a continuous linear map S from £!(B) onto
B with ¢'(B) € (DN), by Lemma 2.3, and consider the commutative
diagram:

Al s
D s D < E
f
r 0l idl
s of
21(B) » B « E

as in Lemma 1.6.

Applying Proposition 2.1 to f, we can find p € N and a holomor-
phic function h on E, such that hw, = 0f. Since E is nuclear, there
exists ¢ > p such that the canonical map wg, : E; — E, is nuclear.
Thus there exist nuclear maps f : £! — E, and o : E; — (' such that
Ba = wgp. Consider the holomorphic function hf from £! into B. This
function is bounded on every bounded set in ¢!. By using Taylor se-
ries expansion at zero, it is easy to see that there exists a holomorphic
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function g : £! — £!(B) such that Sg = hf. Now define a holomorphic
function f; : E — D by

f1(z) = (gawq(z), f(=))

for x € E. Then f is of uniform type if [,1 so is. Hence without loss
of generality we may assume that D = D and B = ¢*(B). Since D
satisfies (i) or (ii) the canonical map

T:D— F=:][[{Cs:fe HD)}

where Cy = C for f € H(D), is a homeomorphism onto the image
[7]. Consider the holomorphic function hy = Tf : E — F. Let W be
a neighbourhood of zero in E such that f(W) is contained in an open
subset U of D for which § : U = 6(U). Choose a neighbourhood V of
6f(0) such that T(6|y)~?! is bounded on V. Then Tf is bounded on
a neighbourhood of 0 € E. By an argument as Meise and Vogt [8] we
can find p € N and a holomorphic function g, on E, with values in F
such that
h1 = g1wp.

This yields from the relation g;(E/Ker||.||p) C ImT that g, induces a
holomorphic function g : E/Ker|.||, = D. Extend g to a holomorphic
function g on a neighbourhood of E/Ker||.||, in E,. Let 0}, be the
domain of existence of g.

(i) O, is a domain of holomorphy. Since the topology of E is defined
by Hilbert semi-norms without loss of generality we may assume that
.E, is a Hilbert space. Choose ¢ > p such that the canonical map
wgp : Eq — E, is compact. Let 7 denote the linear metric topology on
H(Q,) generated by the uniform convergence on sets:

: 1
K, = {wqp(z) 2] < 7ywgp(2) € g, dist(wgp(2), 00,) > "}-

r

Note that the canonical map [H(Q,),7] — H(E) is continuous and

H(E)bor = limkind Hb(Ek)

(see [8]). Here H(E)y,, denotes the bornological space associated to
H(E) and for every k > 1, Hy(Ey) denotes the Frechet space of holo-
morphic functions on Ej which are bounded on every bounded set in
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Ey. Therefore, we can find k > ¢ such that H(Q,) C Hy(E). It re-
mains to check that Imwg, C ;. In the converse case there exists
z € Ey, such that wgy(z) € d0,. Choose a sequence {z,} C E/Ker||.||x
which converges to z. Since E, is a Hilbert space we can find f € H(Q,)
such that

sup | fwip(2n)] = o0.

This is impossible because fw, € H(E}).

(ii) Arguments are similar as in the part (ii) of the proof of the
Theorem 1.1.

The Theorem 2.2 is completely proved.
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