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Abstract. In this paper we extend a result on the existence of the limit dy =
lim ||Dmf||11,/m and the equality dy = sup{|¢| : & € suppf} to n-dimensional
m— 00

case and for Lorentz spaces.

1. Introduction and Preliminaries

Let @ : [0,00) — [0,00) be a non-zero concave function, which is non-decreasing

and ®(0) = ®(0+) = 0. We put ®(c0) = tlim ®(t). For an arbitrary measurable
— 00

on R™ function f we define

oo

171w =/<1>(Af(y>)dy,

0

where Af(y) = mes{x € R" : |f(z)| >y}, (y > 0). If the space Ng(R™) consists
of measurable functions f, such that ||f||n, < oo then Ng(R™) is a Banach
space. Denote by Mg (R™) the space of measurable functions g such that

1 ,
lgllre = sup{m/m(xﬂd:c A CR”, 0 <mes A< oo} < 0.
A
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Then Mg (R™) is a Banach space, too [7, 6]. The Ng(R™) and Mg (R™) are called
Lorentz spaces.

We have the following results.
Lemma 1. [7] If f € No(R™), g € Mo(R™) then fg € L1(R™) and
[1r@gt@)ds < 7l lgl

R™

Lemma 2. [7] If f € Ms(R"™) then

£l = swp_| [ fa)gta)da

llgllvg <1
TR

Using Lemma 2, it is easy to prove the following:

Lemma 3. If f € Ms(R"™),g € L1(R™) then f* g € Mgs(R™) and
I * gllae < 1f[Iazallgllz,-

Let m € Zy. Denote by Wy, o the usual Sobolev space, i.e., the set of all
f € S’ such that

1 llma = (3 11D FIB) " < 00

lo|<m

We have the topological equality H(,,) = Wy, 2 (see [5, 7.9]), where

Hm) = {f €S 1 fllm) = (/(1 + |€|2)m|f(§)|2dg)1/2 - OO}

Rn

and f = F'f is the Fourier transform of f.

2. Results

Theorem 1. Let P(&) be a polynomial with constant coefficients, f € Mg(R™)
and let suppf be bounded. Then there always exists the limit

dr = lim ||P™(D)f|lp,
and moreover,

dg = sup |P(§)].
§€suppf

Note that Theorem 1 is an extension of a result obtained in [1], which is very
helpful for us to study imbedding theorems for Sobolev spaces of infinite order
[2-4].
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Proof of Theorem 1
We shall begin by showing that

lim [[P™(D)f|Iy" > sup [P(€)], (1)

m-—0o0 sp(f)

where we denote suppf by sp(f) for simplicity.

Let £° € sp(f) such that |P(£°)| = sup |P(§)|. Without loss of generality we
sp(f)
may assume that P(£°) > 0. Further, we fix a number 0 < ¢ < P(£°)/4 and

choose a domain G such that £° € G and
(P& > P(E%) —€ £€G. (2)

Fix 0,19 € C5°(G) such that € € suppdf and < of, w9 ># 0. And let
¥ € C§°(G) and 9 = 1 in some neighborhood of suppiy. Then for any m > 1
we get

| <of,io > | = < 0P ()P (o)), tol-
(o) F (), e ()P
— | < P ()0()F(), P (il
= | < FY(P™of), F(P~™iy) >
— | < P"(D)(v f), Fi, > |,

Y

where W, (§) = P~ (&)wo(§). Therefore, by Lemmas 1 and 3 we get for all
m>1

| < of @0 > | < IP™(D)flaga 1ol 2, || Fdmm] v, (3)
Next we prove
||F’me||N<I> < C(P(go) —2¢)7", m2> 2n’. (4)
Actually, let |a| < 2n?. Since P({) # 0 in G and the Leibniz formula, we get
Do (P =2 i@ gy ie©DPTE), (5)

B<a

! . "
DPpP~™(¢) = > %DV P& ...D"" P7L(¢).
Sy ameg ooy (6)

Therefore,

|2 Fiyn (z)] = | / e~ EDY (P (€ (€)) dé|

o!
< S (7)
ﬁ;cﬁl _ﬁ)v+~§m=ﬁ71!'”7 |

x / | D Fig(€) D7 PHE) .. D P (E)|de
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for all x € R™. On the other hand, we have

o! - n2
2 ey T

1] m|
ypeigym=p 7

Further, let m > 2n%. We remark that for 4! + --- +~™ = 3, there are at
least m — | 3| > m — 2n? multi-indices among !, ...,7™ equal zero. Therefore,
by (2), (5) - (7) and @y € C§°(G), we obtain a constant C; = C1 (P, g, 2n?)
such that for all m > 2n?

|2 Fid, ()] < (2m)?" Cy (P(€2) — €)™+,

where
Oy = max{(P(gO)_e)'ﬁ“w/|Da—ﬁw0(5)mlp—1(5)...DW‘B‘P—l(g)\dg :
G

herefore, since
P(&°) —2
li (2 )2n2( (5 ) €

T PE) ) "

we obtain a constant Cy = Cy(€) such that

sup |z¢F i, (z)| < Co(P(E°) —2¢)™™
;CER"

for all |a| < 2n? and m > 2n?.
Therefore

xs;lﬂgl(l 4+ 237). (1 4 22™) | Fad ()| < C3(P(£°) — 2¢)™™ (8)

for all m > 2n2.
Hence
C3(P(£°) —2¢)™™

| Fbpy, ()| < (1 + I%”)(l + I%n)

for all m > 2n2,x € R™.
So, putting g(z) = [(1 + 23")...(1 + 22")] ! we obtain

oo [e )

|FWm|ne = [ @(Apa,, (v))dy < C3(P(€°) —2¢)™™ [ @(Ag(y))dy.
/ /

On the other hand, we have
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1
(1+237)...(1 4 22n)

@(mes{x eR"™: > y})dy

\8

/ q)()\g(y))dy =

0

IN

>y, =1, ...,n})dy
j

o2y -1 )

1
)

0
1
/<I>( {zr eR": !
mes T 1+1’2n
0
1

IN
O O O~

<I>(2” dy

1

IN

because ®(t) < t®(1) for all ¢ > 1. Thus we have proved (4)
[[Fiomllne < C(PE7) = 26)7™, m > 20,
where C' depends on e. Combining (3) - (4), we obtain
lim [|P™(D)f|[yy" > P(€) — 2¢ .
m—o0

Letting € — 0, we get (1).
To complete the proof, it remains to show that
T ||[P™(D)f|ly;" < sup |P(E)]- ()
meee sp(f)
Given € > 0. We choose a domain G D sp(f) and a function ¢ € C§°(G)
such that ¥ = 1 in some neighborhood of sp(f) and

sup |P(€)] < sup |P(€)| +e . (10)
G sp(f)
By Lemma 3 we have
1P (D) fllars = 1F~ (£ P™ (€) F(©))llara < IIF_I(w(E)Pm(fE))||L1||f||1\(4¢ |
11
for all m > 0.
Putting hp, (&) = (&) P™(§),m > 1 and £ = [n/2] + 1, we get from Holder’s
inequality that

NE ™ |2y = ([P R |1, = /(Iflm(f)IQ)l/Qdf
R

< / o (€)2(1 + (€2 ) 2 / (1+ 1€[2) ) "? = Callhmallco)
RW,

R
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where Cy < oo is independent of m. Therefore, by (11) and the topological
equality Hy = Wy 2, we get

1P (D) flIme < Csllhmllell fllarg, m =1 (12)

On the other hand, it follows from the Leibniz formula that

o - O[' a—p 8 pm
D (€) = ﬁ;—m(a_ DT HEODIPE), (13)
pPpre = Y %Dvlp(g)...m”}?(g) (14)
M= DAREEE A

Further, we again notice that for |3 < ¢ < m and ! + -+ ++™ = (3, there are
at least m — |8] > m — ¢ multi-indices among !, ...,7™ equal zero. Therefore,
combining (10) and (12) - (14), we obtain a constant Cs = Cg(¢), P, £) such that

1P (D) fl[ s < 0506(SgpIP(«E)I)m_eIIfIIM@

< 0506(51(1?) [P+ )™ |l ata
sp

for all m > ¢. Hence

Jm |IP" (D)l < sup [PO)] +e
Sp

Letting € — 0, we get (9). The proof of Theorem 1 is complete. n

Remark 1. Theorem 1 still holds when we replace P(D) by the following pseu-
dodifferential operator:

A(D)f = F~a(§)Ff(€),

where a(€) is an arbitrary function in C*°(R™).

3. An Application

Let us now apply Theorem 1 to obtain certain Paley-Wiener-Schwartz theorems.

Theorem 2. Let f € Ma(R™), bj #0,5=1,---,n and r > 0. Then sp(f) is
2 2

contained in the ellipsoid {§ eR™: i—% R % < 7“2} if and only if

1 1

lim (—D2+---+—

,,:OOH b3 ! b2

Further, let P(£) be a polynomial, K C R",r > 0, B(0,r) the ball of radius

r centered at zero, o = (01,...,04),0; > 0and A, ={{ e R" : |§;| < 0j,j =
1,...,n}.

D2) " f|yr <t
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We put
QUE.P) = {¢ €+ [P(©)] < sup |P(a) )

Q(K,P,O’) = Q(K,P) NAg,
Q(K,P,T) - Q(K,P)B(O,T)

Clearly, K C Q(K, P),Q(K, P) can be noncompact although K is compact,
and Q(K, P),Q(K, P,c) and Q(K, P,r) can be nonconvex.

Using Theorem 1, we have the following results:

Theorem 3. Let f € Mg(R™). Then sp(f) C Q(K, P, o) if and only if
Dl (127D D)fllisy" < supic [P(E)].

1/m )
H <o;,j=1,...,n

2) lim H f

m— 00

Theorem 4. Let f € Mg(R™). Then sp(f) C Q(K, P,r) if and only if
D) Tim [[P(D)fllyy" < supx [P,

2) hm ||Amf||1/m <72
— 00

where A is the Laplaczan
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