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Abstract. The main aim of this paper is to prove that an irreducible variety V in Cn

is an algebraic one if and only if the space H(V ) of holomorphic functions on V has

property (DNDZ).

1. Introduction

The algebraicity of an irreducible variety V in Cn was investigated by some
authors. The first result in this direction belongs to W.Stoll. In [10] Stoll
proved that an irreducible variety V is algebraic if and only if the projective

volume of V is finite, i.e
∫

V

(
ddc log(1 + |z|2)

)n

< +∞.

Next using methods from Padé approximation Sadulaev gave a beautiful
criterion on algebraicity of V . Namely, in [8] he has shown that V is algebraic if
and only if there exists a compact subset K ⊂ V such that the Siciak extremal
function L(z, K) associated to K is locally bounded on V . Recently, from some
interested results on properties of plurisubharmonic functions of the Lelong class
on a complex space. Zeriahi has obtained a generalization of the above result of
Sadulaev [15]. At the same time, by relying heavy on the above characterization
of Sadulaev, some years ago, Aytuna has proved that V is algebraic if and only if
the restriction map R : H(Cn) → H(V ) has a linearly tame right inverse for the
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system of semi-norms on H(Cn) defined by the increasing sequence of polydiscs
in Cn [1] of the form Dk = {z ∈ Cn : ‖z‖ ≤ ek}, k = 1, 2, ....

In this paper by employing the modern theory of Fréchet spaces, mainly,
by using the linearly topological invariants (DNDZ) and (DNDZ) on graded
Fréchet spaces and linearly tame operators between graded Fréchet spaces we
establish the algebraicity of an irreducible variety V in Cn. Namely the main
result of the paper is the following.

The Main Theorem. Let V be an irreducible variety in Cn. The following
assertions are equivalent:

(i) V is algebraic.
(ii) H(V ) has property (DNDZ).
(iii) H(V ) has property (DNDZ).

Our paper is organized as follows. Beside the introduction the paper con-
tains three sections. In Sec. 2 we recall some definitions and fix some notations.
Mainly in this section we introduce the linearly topological invariant (DNDZ) on
graded Fréchet spaces which is a generalization of property (DNDZ) introduced
and investigated by Poppenberg (see [4, 5]). In Sec. 3 we give a characterization
of property (DNDZ) which is also of independent interest. The proof of the
main theorem is presented in Sec. 4.

2. Preliminaries

2.1. For the usual notions on Fréchet spaces we refer to [9, 11] and to [4-5, 7,
12] for grading Fréchet spaces.
In the linearly tame category the objects are the graded Fréchet spaces E, F, . . . ,
i.e Fréchet spaces equipped with a fixed sequence of semi-norms

‖ · ‖0 ≤ ‖ · ‖1 ≤ ‖ · ‖2 ≤ . . .

defining the topology, or equivalently, a fixed fundamental sequence of balanced
convex neighborhoods

U0 ⊇ U1 ⊇ U2 ⊇ . . . ⊇ Un ⊇ . . . .

The such sequence is called grading. Graded subspaces and graded quotient
spaces are equipped with the induced semi-norms.

The morphisms in this category are linearly tame operators between graded
Fréchet spaces. A linear operator L : E → F is called to be linearly tame if
there exist a ≥ 1, b ≥ 0 such that

∀n ∃cn > 0 ‖Lx‖n ≤ cn‖x‖an+b, ∀x ∈ E.

Notice that L is linearly tame if and only if there exist a ≥ 0, b ≥ 0 such that for
each n ≥ 1 L induces continuous linear operators Ln : Ean+b → Fn where Ean+b

and Fn are Banach spaces associated to the semi-norms ‖ · ‖an+b and ‖ · ‖n on
E and F respectively.
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In the case where a = 1, L is said to be tame. The category of graded
Fréchet spaces with tame morphisms is called the tame category. A short exact
sequence of graded Fréchet spaces

0 −→ E
e−→ F

g−→ G −→ 0

is called linearly tame (resp., tame) exact if e : E −→ Im e and ĝ : F/ker g → G
are linearly tame isomorphic, where ĝ : F/ker g → G is the map induced by g.

2.2. Let E and F be graded Fréchet spaces with the gradings defined by funda-
mental systems of neighborhoods

U1 ⊃ U2 ⊃ . . . ⊃ Un . . .

V1 ⊃ V2 ⊃ . . . Vn ⊃ . . .

of the zero elements in E and F respectively. Then E⊗̂ΠF is graded by

W1 ⊃ W2 ⊃ . . .Wn ⊃ . . .

where Wn = Γ(Un ⊗ Vn) is closure of the balanced convex envelope of Un ⊗ Vn

in E⊗̂ΠF .
If either E or F is nuclear, we always assume that the canonical maps between

Banach spaces associated to Un and Vn are nuclear. Then E⊗̂ΠF is tamely
isomorphic to E⊗̂εF where E⊗̂εF = L(E′

β , F ), the Fréchet space of continuous
linear maps from the strongly dual space E′

β of E to F . This space is graded by

‖f‖k = sup{‖f(u)‖k : u ∈ U0
k}.

Now we consider the special case where E = Λ(A) is the space of sequences
defined by the Köthe matrix A = (aj,k)j,k≥1

Λ(A) =
{
x = (xj) ⊂ C

N : ‖x‖k =
∑
j≥1

|xj |aj,k < +∞ ∀k
}
.

In the case where Λ(A) is nuclear we always assume that∑
j≥1

aj,k

aj,k+1
< ∞, ∀k ≥ 1.

Then Λ(A)⊗̂ΠX is tamely isomorphic to Λ(A, X) given by

Λ(A, X) =
{
x = (xj) ⊂ X : ‖x‖k =

∑
j≥1

‖xj‖aj,k < +∞ ∀k
}

for every Banach space X .
Moreover, Λ(A, X) can be graded by

|‖x‖|k = sup
j≥1

‖xj‖aj,k, ∀k ≥ 1.

If {Xj}j≥1 is a sequence of Banach spaces then �j≥1Xj is graded by

‖(x1, . . . , xn, . . . )‖k =
k∑

j=1

‖xj‖, k ≥ 1.

Obviously it is tamely equivalent to the grading defined by
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|‖(x1, . . . , xn, . . . )‖|k = sup
1≤j≤k

‖xj‖, k ≥ 1.

2.3. Let E be a graded Fréchet space with the topology defined by an increasing
sequence of semi-norms

‖ · ‖1 ≤ ‖ · ‖2 ≤ . . . ≤ ‖ · ‖n ≤ . . . .

For each n ≥ 1, put Un = {x ∈ E : ‖x‖n ≤ 1} and

‖u‖∗n = sup
{
|u(x)| : x ∈ Un

}
, u ∈ E′

β ,

where E′
β denotes the topological dual space of E equipped with the strong

topology β.

Definition 2.3.1. We say that E has property (DNDZ) if there exist a ≥ 1,
b ≥ 0, p ≥ 0 and constants cn,m > 0 such that for all n ≥ b and r > 0

U0
n ⊆

a(n−b)⋂
m=−p

cn,mrm+pU0
a2n−am +

∞⋂
k=p

cn,k

rk−p
U0

a2n+ak . (1)

If a can be chosen equal to 1 then in [4] Poppenberg said that E has property
(DNDZ).

Remark 1. With E also every graded subspace has property (DNDZ).

Next we recall property (ΩDZ) introduced and investigated by Poppenberg
in [5].

Let E be a graded Fréchet space.
E is called to have property (ΩDZ) if there exist b, p ≥ 0 and constants

cn, cn,k > 0 such that for all n ≥ b + p and r > 0

Un ⊆ cn

( n−b⋂
i=p

ri−pUn−i

)
+

+∞⋂
k=−p

cn,k

rk+p
Un+k .

As in [5] Poppenberg showed that every power series space of infinite type
Λ∞(α) has property (ΩDZ) and with E also every graded quotient space of E
has property (ΩDZ).

3. A Characterization of Property (DNDZ)

By relying on the tame splitting theorem of Vogt (see 3.2 in [12]) in [4] Poppen-
berg has given a nice characterization of graded nuclear Fréchet spaces having
property (DNDZ). Namely he proves that a graded nuclear Fréchet space E has
property (DNDZ) if and only if there exists some ε > 0 such that E is tamely
isomorphic to a graded subspace of sε (Theorem 4.3 in [3]). In this section we
also establish a characterization of property (DNDZ) when E is nuclear in the
linearly tame category.

The following result is proved here.
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Theorem 3.1. Let E be a graded nuclear Fréchet space. Then E has prop-
erty (DNDZ) if and only if E is linearly tame isomorphic to a graded subspace
of s.

In order to prove Theorem 3.1 we need some following propositions and
auxiliary lemmas.

Proposition 3.2. Let 0 −→ �∞(I)⊗̂Πs
e−→ Ẽ

q−→ E −→ 0 be a linearly tame
exact sequence of graded Fréchet spaces. If E has property (DNDZ) then q has
a linearly tame right inverse.

Proof. Without loss of generality we may assume that the gradings of �∞(I)⊗̂Πs

and E are induced by the grading of Ẽ and E satisfies property (DNDZ) for
b = p = 0. Hence there exist cn,m > 0 such that

U0
n ⊆

an⋂
m=0

cn,mrmU0
a2n−am

+
∞⋂

k=0

cn,k

rk
U0

a2n2+ak

⊆
⋂

p∈An

c̃n,pr
an− p

a U0
p +

⋂
q∈Bn

c̃n,qr
an− q

a U0
q ,

where
An = {a2n − ka : 0 ≤ k ≤ na},
Bn = {a2n + ka : k ≥ 0}.

For each (i, j) ∈ I ×N consider the coefficient functional on �∞(I)⊗̂Πs given by

fij

(
[xij : I × N]

)
= xij , [xij : I × N] ∈ �∞(I)⊗̂Πs.

Since ‖fij‖∗n = j−n = e−nαj , αj = log j, j ≥ 1 then according to the Hahn-
Banach theorem we can extend fij to Fij ∈ Ẽ′ such that

‖F (n)
ij ‖∗n = e−nαj .

We notice that

‖F (n+1)
ij − F

(n)
ij ‖∗n+1 ≤ ‖F (n)

ij ‖∗n+1 + ‖F (n)
ij ‖∗n+1

≤ ‖F (n+1)
ij ‖∗n+1 + ‖F (n)

ij ‖∗n = e−(n+1)αj + e−nαj

≤ 2e−nαj

for all i ∈ I, j ≥ 1.
On the other hand, we have F

(n+1)
ij − F

(n)
ij = 0 on �∞(I)⊗̂Πs then we may

choose G
(n)
ij ∈ 2e−nαj U0

n+1 ⊂ E′ such that

G
(n)
ij ◦ q = F

(n+1)
ij − F

(n)
ij .

Next we choose an increasing sequence 1 ≤ cn ≤ cn+1 such that
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Dp = 2pcp
p sup

n

c̃n,p

cn
< +∞

for all p ∈ An ∪ Bn.

Since

U0
n+1 ⊂

( ⋂
p∈An+1

c̃n+1,pr
a(n+1)− p

a U0
p

)
+

( ⋂
q∈Bn+1

c̃n+1,qr
a(n+1)− q

a U0
q

)

it follows that
2e−nαjU0

n+1 ⊂
( ⋂

p∈An+1

2e−nαj c̃n+1,pr
a(n+1)− p

a U0
p

)

+
( ⋂

q∈Bn+1

2e−nαj c̃n+1,qr
a(n+1)− q

a U0
q

)
.

Take r =
1

2aca
n+1

e
αj
a and choose

g
(n)
ij ∈ 2e−nαj c̃n+1,p.

1
2a2(n+1)−p

.
1

c
a2(n+1)−p
n+1

e

(
(n+1)− p

a2

)
αj

U0
p

for p ∈ An+1 such that G
(n)
ij ∈ 2e−nαj

⋂
p∈An+1

C̃n+1,pr
a(n+1)− p

a U0
p + g

(n)
ij .

Hence

‖g(n)
ij ‖∗p ≤ 2c̃n+1,p.

2p

2a2(n+1)
.

cp
n+1

c
a2(n+1)
n+1

e

(
1− p

a2

)
αj

≤ 2c̃n+1,p.
2p

2(n+1)
.
cp
n+1

cn+1
n+1

e

(
1− p

a2

)
αj

≤ 2pcp
p.

c̃n+1,p

cn+1
.2−n.

cp
n+1

cp
pcn

n+1

e

(
1− p

a2

)
αj

≤ Dp2−ne(1− p

a2 )αj

for p ∈ An+1.
On the other hand,

G
(n)
ij ∈ 2e−nαj U0

n+1

and
G

(n)
ij − g

(n)
ij ∈ 2e−nαj

⋂
q∈Bn+1

c̃n+1,qr
a(n+1)− q

a U0
q .

Hence, we have

‖G(n)
ij − g

(n)
ij ‖∗q ≤ Dq2−ne

(
1− q

a
2

)
αj for q ∈ Bn+1.

Now we notice that the series
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gij =
∞∑

n=0

g
(n)
ij

converges in
E′

0 =
{

u ∈ E′ : ‖u‖∗0 = sup{|u(x)| : ‖x‖0 ≤ 1} < +∞
}

because ∞∑
n=0

‖g(n)
ij ‖∗0 ≤ D0e

αj

∞∑
n=0

2−n < +∞.

Hence gij ∈ E′ for all i ∈ I, j ≥ 1. Put

ϕij = F
(0)
ij + gij .q = F

(k+1)
ij −

{ k∑
n=0

(G(n)
ij − g

(n)
ij ) −

∞∑
n=k+1

g
(n)
ij

}
◦ q.

We have

‖ϕij‖∗a2(k+1) ≤ ‖F (k+1)
ij ‖∗a2(k+1) +

k∑
n=0

‖G(n)
ij − g

(n)
ij ‖∗a2(k+1)

+
∞∑

n=k+1

‖g(n)
ij ‖∗a2(k+1)

≤ ‖F (k+1)
ij ‖∗k+1 + Da2(k+1)

k∑
n=0

2−ne(1−(k+1))αj

+
∞∑

n=k+1

Da2(k+1)2−ne(1−(k+1))αj

≤ e−(k+1)αj + Da2(k+1)e
−kαj

∞∑
n=0

2−n

≤
(
1 + 2Da2(k+1)

)
e−kαj .

Hence
|ϕij(x)| ≤ (

1 + 2Da2(k+1)

)
e−kαj ‖x‖a2(k+1)

for x ∈ Ẽ.
Define

ϕ(x) =
[
ϕij(x) : (i, j) ∈ I × N

]
, x ∈ Ẽ.

Now we show that ϕ(x) ∈ �∞(I)⊗̂Πs for x ∈ Ẽ and ϕ is linearly tame left inverse
of e. Indeed,

‖ϕ(x)‖k = sup
i

∑
j≥1

|ϕij(x)|ekαj

≤
(
1 + 2Da2(2k+1)

)
‖x‖a2(2k+1)

∑
j≥1

e−kαj

≤ (
(1 + 2Da2(2k+1)

) ∑
j≥1

1
jk

)
‖x‖2ka2+a2

≤ D̃a2(2k+1)‖x‖2ka2+a2 .
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Hence ϕ is linearly tame. Moreover,

ϕe
(
[xij : I × N]

)
=

[
ϕij(e[xij : I × N])

]
=

[
F

(k+1)
ij

(
e[xij : I × N] −

{ k∑
n=0

(G(n)
ij − g

(n)
ij ) −

∞∑
n=k+1

g
(n)
ij

}

· q(e[xij : I × N]) : I × N

)]
=

[
fij([xij : I × N]) : I × N

]
=

[
xij : I × N

]
= id

�∞(I)⊗̂Πs
.

Proposition 3.2 is proved. �

Lemma 3.3. [11] There exists a tame exact sequence

0 → s → s → w → 0. (3)

Tensoring the above tame exact sequence with an arbitrary Banach space we
get the following.

Lemma 3.4. For every Banach space B there exists a tame exact sequence

0 → s⊗̂ΠB → s⊗̂ΠB → BN → 0. (4)

Proposition 3.5. Let E be a graded Fréchet space. Then there exists an index
set I and a tame embedding e : E → [�∞(I)]N, where [�∞(I)]N is graded by the
system of semi-norms

‖x‖n = sup
1≤k≤n

‖xk‖, xk ∈ �∞(I), x = (xk) ∈ [�∞(I)]N.

Proof. Let {‖ · ‖k}k≥1 be a system of semi-norms defining the grading on E.
For each k ≥ 1, put Ik = U0

k and define I =
⊔
k≥1

Ik. According to Hahn-Banach

theorem, for x ∈ E, we have

‖x‖k = sup{|u(x)| : u ∈ Ik}.
Let ek : E → �∞(Ik) be given by

�k(x) =
[
u(x) : u ∈ Ik

]
.

Then
‖ek(x)‖�∞(Ik) = ‖x‖k for all x ∈ E.

Define the map e : E → �k≥1�
∞(Ik) by setting

e(x) =
[
ek(x) : k ≥ 1

]
,
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where �k≥1�
∞(Ik) is graded by the system of semi-norms

‖x‖n = sup
1≤k≤n

‖xk‖k

for x = (xk) ∈ �k≥1�
∞(Ik), xk ∈ �∞(Ik) and ‖xk‖k = ‖xk‖�∞(Ik). Then

‖e(x)‖n = ‖[ek(x) : k ≥ 1]‖n = sup
1≤k≤n

‖ek(x)‖k

= sup{‖x‖k : 1 ≤ k ≤ n} = ‖x‖n.

Hence, e is a tame embedding. On the other hand, I =
⊔

k≥1 Ik and from the
gradings defined on �k≥1�

∞(Ik) and [�∞(I)]N, the form

ẽ[fk : N] =
[
ẽk(fk) : N

]
,

where

ẽk(fk)(i) =
{

fk(i) if i ∈ Ik,

0 if i /∈ Ik.

defines a tame embedding from �∞
k=1�

∞(Ik) into [�∞Ik)]N.
For the proof of Theorem 3.1 we need the following

Definition 3.6. [12] The graded Fréchet space E admits a family of smoothing
operators if there exist linear operators Tθ : E → E, θ > 0, and p ≥ 0, cm,n > 0
such that for all θ > 0 and x ∈ E

‖Tθx‖n ≤ cm,nθn+p−m‖x‖m if m ≤ n + p

‖x − Tθx‖n ≤ cm,nθn+p−m‖x‖m if m > n + p.

Proposition 3.7. �∞(I)⊗̂Πs has property (DNDZ) for all index set I.

Proof. By [12] s admits a family of smoothing operators {Tθ : θ > 0} satisfying
conditions in Definition 3.6. Consider the family

T̂θ : �∞(I)⊗̂Πs −→ �∞(I)⊗̂Πs,

[xi, I] �−→ [Tθxj , I],

where xi and Tθxi belong to s for all i ∈ I.
We have

‖T̂θ[xi, I]‖n = ‖[Tθxi, I]‖n = sup
i

‖Tθxi‖n

≤ cm,nθn+p−m sup
i

‖xi‖m = cm,nθn+p−m‖[xi, I]‖m

for m ≤ n + p.
Similarly,

‖[xi, I] − T̂θ[xi, I]‖n = ‖[xi − Tθxi, I]‖n

= sup
i

‖xi − Tθxi‖n ≤ cm,nθn+p−m sup
i

‖x‖i

≤ cm,nθn+p−m‖[xi, I]‖m for m > n + p.
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Hence, by [4] �∞(I)⊗̂Πs has property (DNDZ) and, hence, (DNDZ).
Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1.
Sufficiency is clear.

Now we establish the necessity condition.
From Proposition 3.5 there exists an index set I such that E is tamely

embedded into [�∞(I)]N. Now Lemma 3.3 admits a tame exact sequence of the
form

0 → �∞(I)⊗̂Πs
e→ �∞(I)⊗̂Πs

q→ [�∞(I)]N → 0.

Put Ẽ = q−1(E). Then we have a tame exact sequence

0 → �∞(I)⊗̂Πs
e→ Ẽ

q→ E → 0

with the graded subspace Ẽ of �∞(I)⊗̂Πs. Since E has property (DNDZ) and
from Proposition 3.2 we deduce that q has a linearly tame right inverse. Hence
E is linearly tame isomorphic to a graded subspace of �∞(I)⊗̂Πs.By [4] E has
property (DNDZ) and from a result of Poppenberg (see [4]) we deduce that
there exists ε > 0 such that E is tamely isomorphic to a graded subspace of
sε. However, sε is linearly tame isomorphic to s and, consequently, E is linearly
tame isomorphic to a graded subspace of s. �

Now from the above characterization of property (DNDZ) we prove the
main result of the paper.

4. Proof of the Main Theorem

First we describe gradings of Fréchet spaces H(Cn) and H(V ) where V is an
irreducible subvariety in Cn. For each k ≥ 1, put

Bk =
{
z ∈ C

n : ‖z‖ ≤ ek
}
, Dk = Bk ∩ V,

where
‖z‖ = sup{|zj | : 1 ≤ j ≤ n}, z = (z1, . . . , zn) ∈ C

n.

Assume that H(Cn) and H(V ) are spaces of holomorphic functions on Cn and
V respectively. These spaces are graded by

‖f‖k = sup{|f(z)| : z ∈ Bk}, f ∈ H(Cn)

and
‖g‖k = sup{|g(z)| : z ∈ Dk}, g ∈ H(V ),

respectively.
Now we need to use the following result of Djakov and Mitiagin (see [2]) on

the structure of polynomial ideals in the proof of (i) ⇒ (ii) of the main theorem.
Let V be an algebraic variety in Cn. Then there exist polynomials Q1, . . . , Qp

that generate the ideal
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I∗(V ) =
{
P ∈ C[z1, . . . , zn] : P |V ≡ 0

}
and vector B = (b1, . . . , bn) and continuous linear operators

Ri : H(Cn) → H(Cn), 0 ≤ i ≤ p

such that
(a) f = R0(f) +

∑p
i=1 Ri(f)Qi for all f ∈ H(Cn);

(b) kerR0 = {f ∈ H(Cn) : f |V = 0}, R2
0 = R0;

(c) for every r ≥ 1

|Rif |rB ≤ |f |rB, i = 0, . . . , p,

where if
f =

∑
α∈Zn

+

cαzα

is a holomorphic function on Cn and c = (c1, . . . , cn) then we set

|f |c =
∑

α∈Zn
+

|cα|cα.

Now we prove the implication (i) to (ii) of the Main Theorem.
Let V be an algebraic variety in Cn. Consider the restriction map R :

H(Cn) → H(V ). If f ∈ H(V ) , by Cartan Theorem B,we can choose an entire
function G ∈ H(Cn) such that R(G) = f . Consider the map E : H(V ) → H(Cn)
given by

E(f) = R0(G).

From (b) E is a well defined continuous linear extension operator and RE(f) = f
for all f ∈ H(V ). We show that E is a tame right inverse of R. An important
feature of the operators Ri, 0 ≤ i ≤ p of the above mentioned result is that for
any r > 1 they can be considered as continuous linear operators on H(�rB)
satisfying

(d) g = R0(g) +
p∑

i=1

Ri(g)Qi for all g ∈ H(�rB);

(e) kerR0 = {g ∈ H(�rB) : g|V ∩
rB = 0},
where �rB is the polydisc around zero with polyradii rB (see [2, Corollary 3]).
Now for a fixed k > 1 we consider the restriction operator from H(�kB) to
H(�kB ∩ V ). Here H(�kB) and H(�kB ∩ V ) are graded by systems of semi-
norms

‖F‖sB = sup
z∈
sB

|F (z)|, s < k, F ∈ H(�kB)

and
‖f‖
sB∩V = sup

z∈
sB∩V
|f(z)|, s < k, f ∈ H(�kB ∩ V ),

respectively.
Since this restriction operator is a surjection, by the open map theorem ,we

can find a c0 = c0(k) such that for every f ∈ H(V ) with ‖f‖
kB∩V ≤ 1 there
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exists an Fk ∈ H(�kB) such that Fk|V ∩
kB
= f |V ∩
kB

and ‖Fk‖



(
k− ε

2

)
B
≤ c0

with some 0 < ε < k independent of k. Then E(f)|
kB
= R0(Fk) on �kB .

Hence,

‖E(f)‖k−ε = ‖R0(Fk)‖
(k−ε)B ≤ |R0(Fk)|
(k−ε)

≤ |Fk|
(k−ε)B ≤ C1‖Fk‖
(k− ε

2 )B ≤ C0C1‖f‖
kB∩V ,

where C1 =
∑
|α|≥0

( k − ε

k − ε
2

)α

< ∞.

Hence E is a tame right inverse of R and H(V ) is tamely embedded into
H(Cn) = Λ∞

(
(k

1
n )

)
. However, Λ∞

(
(k

1
n )

)
has property (DNDZ) [4] and, there-

fore H(V ) has property (DNDZ).
(ii) =⇒ (iii) is clear.

Now the Main Theorem is proved if we show the implication (iii) to (i).
Let H(V ) has property (DNDZ). Consider the restriction map R : H(Cn)

→ H(V ). First we show that the map R̂ : H(Cn)
/
kerR → H(V ) which is

induced by R, is tamely isomorphic. For each k ≥ 1, consider the restriction
Rk : H(Bk) → H(Dk). By Cartan Theorem B, Rk is surjective and, hence, it is
open. This yields that there exist a compact set Kmk

and a constant C
(1)
k > 0

satisfying

Dk−1 ⊂ Kmk
⊂ Dk

and
C

(1)
k W̃ (Kmk

) ⊂ Rk(W (Bk−1)).

Hence,

W̃ (Dk) ⊂ W̃ (Kmk
) ⊂ 1

C
(1)
k

Rk

(
W (Bk−1)

)
⊂ C

(2)
k W̃ (Dk−1),

where C
(2)
k > 0 and

W̃ (Dk) = {f ∈ H(V ) : ‖f‖Dk
≤ 1},

W̃ (Kmk
) = {f ∈ H(V ) : ‖f‖Kmk

≤ 1},
W̃ (Bk−1) = {f ∈ H(Cn) : ‖f‖Bk−1

≤ 1},
W̃ (Dk−1) = {f ∈ H(V ) : ‖f‖Dk−1

≤ 1}.

This yields that the gradings
{
W̃ (Dk)

}
k≥1

and
{
R

(
W̃ (Bk)

)}
k≥1

on H(V )

are tamely equivalent. However if H(V ) is graded by
{
R

(
W̃ (Bk)

)}
k≥1

then

R̂ : H(Cn)
/

kerR → H(V ) is tamely isomorphic. Hence the exact sequence

0 → J(V ) e→ H(Cn) R→ H(V ) → 0

is tame exact, where
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J(V ) = {f ∈ H(Cn) : f |V = 0}.
Let JV denote the coherent ideal subsheaf of the sheaf HCn of germs of holomor-
phic functions on Cn. By [3] there exists a surjective morphism θ : H�1

Cn → JV ,
where H�1

Cn is the sheaf of germs of �1 -valued holomorphic fucntions on Cn.
Theorem Cartan’s B implies that θ induces a continuous linear map θ̂ from
H(Cn, �1) onto J(V ). Moreover for each n ≥ 1 , θ induces continuous linear
maps θ̂n from H(Bn, �1) onto J(Dn). As in the above argument, θ̂ induces a

tamely isomorphism from H(Cn, �1)
/
ker θ̂ onto J(V ). Because H(Cn, �1)

tame∼=
H(Cn)⊗̂Π�1

tame∼= Λ∞(α)⊗̂Π�1 = Λ∞(α, �1) where α = (αk), αk = k
1
n then

H(Cn, �1) and, hence, J(V ) has property (ΩDZ) (see [5]). On the other hand,
H(V ) has property (DNDZ) then Theorem 3.1 implies that H(V ) is linearly
tame isomorphic to a subspace of s. Hence, if H(V ) is considered as a graded
subspace of s, then H(V ) has property (DNDZ) and we obtain a linearly tame
exact sequence

0 → J(V ) → H(Cn) R→ H(V ) → 0.

Using an argument as in [6, p. 157] and Proposition 3.4 in [5, p. 130] we claim
that R has a linearly tame right inverse. By [1] V is algebraic. �
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