Vietnam Journal of Mathematics **32**:2 (2004) 127–140

Vietnam Journal of MATHEMATICS © VAST 2004

An Algebraic Condition of an Irreducible Variety in \mathbb{C}^{n^*}

Le Mau Hai and Bui Quoc Hoan

Department of Mathematics, Hanoi Pedagogical Institute, Hanoi, Vietnam

Received August 31, 2002 Revised March 19, 2003

Abstract. The main aim of this paper is to prove that an irreducible variety V in \mathbb{C}^n is an algebraic one if and only if the space H(V) of holomorphic functions on V has property (<u>DNDZ</u>).

1. Introduction

The algebraicity of an irreducible variety V in \mathbb{C}^n was investigated by some authors. The first result in this direction belongs to W.Stoll. In [10] Stoll proved that an irreducible variety V is algebraic if and only if the projective volume of V is finite, i.e $\int_V \left(dd^c \log(1+|z|^2) \right)^n < +\infty$.

Next using methods from Padé approximation Sadulaev gave a beautiful criterion on algebraicity of V. Namely, in [8] he has shown that V is algebraic if and only if there exists a compact subset $K \subset V$ such that the Siciak extremal function L(z, K) associated to K is locally bounded on V. Recently, from some interested results on properties of plurisubharmonic functions of the Lelong class on a complex space. Zeriahi has obtained a generalization of the above result of Sadulaev [15]. At the same time, by relying heavy on the above characterization of Sadulaev, some years ago, Aytuna has proved that V is algebraic if and only if the restriction map $R: H(\mathbb{C}^n) \to H(V)$ has a linearly tame right inverse for the

 $^{^{\}ast}$ This work was supported by the National Basic Reaearch Program in Natural Science, Vietnam.

system of semi-norms on $H(\mathbb{C}^n)$ defined by the increasing sequence of polydiscs in \mathbb{C}^n [1] of the form $\mathbb{D}_k = \{z \in \mathbb{C}^n : ||z|| \le e^k\}, k = 1, 2,$

In this paper by employing the modern theory of Fréchet spaces, mainly, by using the linearly topological invariants (DNDZ) and (\underline{DNDZ}) on graded Fréchet spaces and linearly tame operators between graded Fréchet spaces we establish the algebraicity of an irreducible variety V in \mathbb{C}^n . Namely the main result of the paper is the following.

The Main Theorem. Let V be an irreducible variety in \mathbb{C}^n . The following assertions are equivalent:

(i) V is algebraic.

(ii) H(V) has property (DNDZ).

(iii) H(V) has property (<u>DNDZ</u>).

Our paper is organized as follows. Beside the introduction the paper contains three sections. In Sec. 2 we recall some definitions and fix some notations. Mainly in this section we introduce the linearly topological invariant (\underline{DNDZ}) on graded Fréchet spaces which is a generalization of property (DNDZ) introduced and investigated by Poppenberg (see [4, 5]). In Sec. 3 we give a characterization of property (\underline{DNDZ}) which is also of independent interest. The proof of the main theorem is presented in Sec. 4.

2. Preliminaries

2.1. For the usual notions on Fréchet spaces we refer to [9, 11] and to [4-5, 7, 12] for grading Fréchet spaces.

In the linearly tame category the objects are the graded Fréchet spaces E, F, \ldots , i.e Fréchet spaces equipped with a fixed sequence of semi-norms

$$\|\cdot\|_0 \le \|\cdot\|_1 \le \|\cdot\|_2 \le \dots$$

defining the topology, or equivalently, a fixed fundamental sequence of balanced convex neighborhoods

$$U_0 \supseteq U_1 \supseteq U_2 \supseteq \ldots \supseteq U_n \supseteq \ldots$$

The such sequence is called grading. Graded subspaces and graded quotient spaces are equipped with the induced semi-norms.

The morphisms in this category are linearly tame operators between graded Fréchet spaces. A linear operator $L: E \to F$ is called to be linearly tame if there exist $a \ge 1, b \ge 0$ such that

$$\forall n \ \exists c_n > 0 \ \|Lx\|_n \le c_n \|x\|_{an+b}, \ \forall x \in E.$$

Notice that L is linearly tame if and only if there exist $a \ge 0, b \ge 0$ such that for each $n \ge 1$ L induces continuous linear operators $L_n : E_{an+b} \to F_n$ where E_{an+b} and F_n are Banach spaces associated to the semi-norms $\|\cdot\|_{an+b}$ and $\|\cdot\|_n$ on E and F respectively.

In the case where a = 1, L is said to be tame. The category of graded Fréchet spaces with tame morphisms is called the tame category. A short exact sequence of graded Fréchet spaces

$$0 \longrightarrow E \stackrel{\mathrm{e}}{\longrightarrow} F \stackrel{\mathrm{g}}{\longrightarrow} G \longrightarrow 0$$

is called linearly tame (resp., tame) exact if $e: E \longrightarrow \text{Im} e$ and $\hat{g}: F/\ker g \to G$ are linearly tame isomorphic, where $\hat{g}: F/\ker g \to G$ is the map induced by g.

2.2. Let E and F be graded Fréchet spaces with the gradings defined by fundamental systems of neighborhoods

$$U_1 \supset U_2 \supset \ldots \supset U_n \ldots$$
$$V_1 \supset V_2 \supset \ldots \bigvee V_n \supset \ldots$$

of the zero elements in E and F respectively. Then $E \widehat{\otimes}_{\Pi} F$ is graded by

$$W_1 \supset W_2 \supset \ldots \otimes W_n \supset \ldots$$

where $W_n = \Gamma(U_n \otimes V_n)$ is closure of the balanced convex envelope of $U_n \otimes V_n$ in $E \widehat{\otimes}_{\Pi} F$.

If either E or F is nuclear, we always assume that the canonical maps between Banach spaces associated to U_n and V_n are nuclear. Then $E \widehat{\otimes}_{\Pi} F$ is tamely isomorphic to $E \widehat{\otimes}_{\varepsilon} F$ where $E \widehat{\otimes}_{\varepsilon} F = L(E'_{\beta}, F)$, the Fréchet space of continuous linear maps from the strongly dual space E'_{β} of E to F. This space is graded by

$$|f||_k = \sup\{||f(u)||_k : u \in U_k^0\}.$$

Now we consider the special case where $E = \Lambda(A)$ is the space of sequences defined by the Köthe matrix $A = (a_{j,k})_{j,k \ge 1}$

$$\Lambda(A) = \Big\{ x = (x_j) \subset \mathbb{C}^{\mathbb{N}} : \|x\|_k = \sum_{j \ge 1} |x_j| a_{j,k} < +\infty \quad \forall k \Big\}.$$

In the case where $\Lambda(A)$ is nuclear we always assume that

$$\sum_{j\geq 1} \frac{a_{j,k}}{a_{j,k+1}} < \infty, \quad \forall k \ge 1.$$

Then $\Lambda(A) \widehat{\otimes}_{\Pi} X$ is tamely isomorphic to $\Lambda(A, X)$ given by

$$\Lambda(A, X) = \left\{ x = (x_j) \subset X : \|x\|_k = \sum_{j \ge 1} \|x_j\|_{a_{j,k}} < +\infty \ \forall k \right\}$$

for every Banach space X.

Moreover, $\Lambda(A, X)$ can be graded by

$$|||x|||_k = \sup_{j \ge 1} ||x_j|| a_{j,k}, \quad \forall k \ge 1.$$

If $\{X_j\}_{j\geq 1}$ is a sequence of Banach spaces then $\sqcap_{j\geq 1} X_j$ is graded by

$$\|(x_1,\ldots,x_n,\ldots)\|_k = \sum_{j=1}^k \|x_j\|, \ k \ge 1.$$

Obviously it is tamely equivalent to the grading defined by

Le Mau Hai and Bui Quoc Hoan

$$\|\|(x_1,\ldots,x_n,\ldots)\|\|_k = \sup_{1 \le j \le k} \|x_j\|, \ k \ge 1.$$

2.3. Let E be a graded Fréchet space with the topology defined by an increasing sequence of semi-norms

$$\|\cdot\|_1 \le \|\cdot\|_2 \le \ldots \le \|\cdot\|_n \le \ldots$$

For each $n \ge 1$, put $U_n = \{x \in E : ||x||_n \le 1\}$ and

$$||u||_n^* = \sup \left\{ |u(x)| : x \in U_n \right\}, \ u \in E'_{\beta},$$

where E'_{β} denotes the topological dual space of E equipped with the strong topology β .

Definition 2.3.1. We say that E has property (<u>DNDZ</u>) if there exist $a \ge 1$, $b \ge 0$, $p \ge 0$ and constants $c_{n,m} > 0$ such that for all $n \ge b$ and r > 0

$$U_n^0 \subseteq \bigcap_{m=-p}^{a(n-b)} c_{n,m} r^{m+p} U_{a^2n-am}^0 + \bigcap_{k=p}^{\infty} \frac{c_{n,k}}{r^{k-p}} U_{a^2n+ak}^0 \,. \tag{1}$$

If a can be chosen equal to 1 then in [4] Poppenberg said that E has property (DNDZ).

Remark 1. With E also every graded subspace has property (<u>DNDZ</u>).

Next we recall property (ΩDZ) introduced and investigated by Poppenberg in [5].

Let E be a graded Fréchet space.

E is called to have property (ΩDZ) if there exist $b, p \ge 0$ and constants $c_n, c_{n,k} > 0$ such that for all $n \ge b + p$ and r > 0

$$U_n \subseteq c_n \Big(\bigcap_{i=p}^{n-b} r^{i-p} U_{n-i}\Big) + \bigcap_{k=-p}^{+\infty} \frac{c_{n,k}}{r^{k+p}} U_{n+k}.$$

As in [5] Poppenberg showed that every power series space of infinite type $\Lambda_{\infty}(\alpha)$ has property (ΩDZ) and with E also every graded quotient space of E has property (ΩDZ) .

3. A Characterization of Property (DNDZ)

By relying on the tame splitting theorem of Vogt (see 3.2 in [12]) in [4] Poppenberg has given a nice characterization of graded nuclear Fréchet spaces having property (DNDZ). Namely he proves that a graded nuclear Fréchet space E has property (DNDZ) if and only if there exists some $\varepsilon > 0$ such that E is tamely isomorphic to a graded subspace of s_{ε} (Theorem 4.3 in [3]). In this section we also establish a characterization of property (DNDZ) when E is nuclear in the linearly tame category.

The following result is proved here.

Theorem 3.1. Let E be a graded nuclear Fréchet space. Then E has property (<u>DNDZ</u>) if and only if E is linearly tame isomorphic to a graded subspace of s.

In order to prove Theorem 3.1 we need some following propositions and auxiliary lemmas.

Proposition 3.2. Let $0 \longrightarrow \ell^{\infty}(I) \widehat{\otimes}_{\Pi} s \xrightarrow{e} \widetilde{E} \xrightarrow{q} E \longrightarrow 0$ be a linearly tame exact sequence of graded Fréchet spaces. If E has property (<u>DNDZ</u>) then q has a linearly tame right inverse.

Proof. Without loss of generality we may assume that the gradings of $\ell^{\infty}(I)\widehat{\otimes}_{\Pi} s$ and E are induced by the grading of \tilde{E} and E satisfies property (<u>DNDZ</u>) for b = p = 0. Hence there exist $c_{n,m} > 0$ such that

$$U_{n}^{0} \subseteq \bigcap_{m=0}^{a_{n}} c_{n,m} r^{m} U_{a^{2}n-a_{m}}^{0} + \bigcap_{k=0}^{\infty} \frac{c_{n,k}}{r^{k}} U_{a^{2}n^{2}+ak}^{0}$$
$$\subseteq \bigcap_{p \in A_{n}} \widetilde{c}_{n,p} r^{an-\frac{p}{a}} U_{p}^{0} + \bigcap_{q \in B_{n}} \widetilde{c}_{n,q} r^{an-\frac{q}{a}} U_{q}^{0},$$

where

$$A_n = \{a^2 n - ka : 0 \le k \le na\},\B_n = \{a^2 n + ka : k \ge 0\}.$$

For each $(i,j) \in I \times \mathbb{N}$ consider the coefficient functional on $\ell^{\infty}(I) \widehat{\otimes}_{\Pi} s$ given by

$$f_{ij}([x_{ij}:I\times\mathbb{N}])=x_{ij}, \ [x_{ij}:I\times\mathbb{N}]\in\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s.$$

Since $||f_{ij}||_n^* = j^{-n} = e^{-n\alpha_j}$, $\alpha_j = \log j$, $j \ge 1$ then according to the Hahn-Banach theorem we can extend f_{ij} to $F_{ij} \in \widetilde{E}'$ such that

$$\|F_{ij}^{(n)}\|_n^* = e^{-n\alpha_j}.$$

We notice that

$$\begin{aligned} \|F_{ij}^{(n+1)} - F_{ij}^{(n)}\|_{n+1}^* &\leq \|F_{ij}^{(n)}\|_{n+1}^* + \|F_{ij}^{(n)}\|_{n+1}^* \\ &\leq \|F_{ij}^{(n+1)}\|_{n+1}^* + \|F_{ij}^{(n)}\|_n^* = e^{-(n+1)\alpha_j} + e^{-n\alpha_j} \\ &< 2e^{-n\alpha_j} \end{aligned}$$

for all $i \in I, j \ge 1$.

On the other hand, we have $F_{ij}^{(n+1)} - F_{ij}^{(n)} = 0$ on $\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s$ then we may choose $G_{ij}^{(n)} \in 2e^{-n\alpha_j}U_{n+1}^0 \subset E'$ such that

$$G_{ij}^{(n)} \circ q = F_{ij}^{(n+1)} - F_{ij}^{(n)}.$$

Next we choose an increasing sequence $1 \le c_n \le c_{n+1}$ such that

Le Mau Hai and Bui Quoc Hoan

$$D_p = 2^p c_p^p \sup_n \frac{\tilde{c}_{n,p}}{c_n} < +\infty$$

for all $p \in A_n \cup B_n$.

Since

$$U_{n+1}^{0} \subset \left(\bigcap_{p \in A_{n+1}} \widetilde{c}_{n+1,p} r^{a(n+1) - \frac{p}{a}} U_{p}^{0}\right) + \left(\bigcap_{q \in B_{n+1}} \widetilde{c}_{n+1,q} r^{a(n+1) - \frac{q}{a}} U_{q}^{0}\right)$$

it follows that

at

$$2e^{-n\alpha_{j}}U_{n+1}^{0} \subset \left(\bigcap_{p \in A_{n+1}} 2e^{-n\alpha_{j}}\widetilde{c}_{n+1,p}r^{a(n+1)-\frac{p}{a}}U_{p}^{0}\right)$$

$$+ \left(\bigcap_{q \in B_{n+1}} 2e^{-n\alpha_{j}}\widetilde{c}_{n+1,q}r^{a(n+1)-\frac{q}{a}}U_{q}^{0}\right).$$

Take $r = \frac{1}{2^a c_{n+1}^a} e^{\frac{\alpha_j}{a}}$ and choose $g_{ij}^{(n)} \in 2e^{-n\alpha_j} \tilde{c}_{n+1,p} \cdot \frac{1}{2^{a^2(n+1)-p}} \cdot \frac{1}{c_{n+1}^{a^2(n+1)-p}} e^{\left((n+1) - \frac{p}{a^2}\right)\alpha_j} U_p^0$

for $p \in A_{n+1}$ such that $G_{ij}^{(n)} \in 2e^{-n\alpha_j} \bigcap_{p \in A_{n+1}} \widetilde{C}_{n+1,p} r^{a(n+1)-\frac{p}{a}} U_p^0 + g_{ij}^{(n)}$.

Hence

$$\begin{split} \|g_{ij}^{(n)}\|_{p}^{*} &\leq 2\widetilde{c}_{n+1,p} \cdot \frac{2^{p}}{2^{a^{2}(n+1)}} \cdot \frac{c_{n+1}^{p}}{c_{n+1}^{a^{2}(n+1)}} e^{\left(1-\frac{p}{a^{2}}\right)\alpha_{j}} \\ &\leq 2\widetilde{c}_{n+1,p} \cdot \frac{2^{p}}{2^{(n+1)}} \cdot \frac{c_{n+1}^{p}}{c_{n+1}^{n+1}} e^{\left(1-\frac{p}{a^{2}}\right)\alpha_{j}} \\ &\leq 2^{p} c_{p}^{p} \cdot \frac{\widetilde{c}_{n+1,p}}{c_{n+1}} \cdot 2^{-n} \cdot \frac{c_{n+1}^{p}}{c_{p}^{p} c_{n+1}^{n}} e^{\left(1-\frac{p}{a^{2}}\right)\alpha_{j}} \\ &\leq D_{p} 2^{-n} e^{\left(1-\frac{p}{a^{2}}\right)\alpha_{j}} \end{split}$$

for $p \in A_{n+1}$.

On the other hand,

$$G_{ij}^{(n)} \in 2e^{-n\alpha_j} U_{n+1}^0$$

and

$$G_{ij}^{(n)} - g_{ij}^{(n)} \in 2e^{-n\alpha_j} \bigcap_{q \in B_{n+1}} \widetilde{c}_{n+1,q} r^{a(n+1) - \frac{q}{a}} U_q^0.$$

Hence, we have

$$\|G_{ij}^{(n)} - g_{ij}^{(n)}\|_q^* \le D_q 2^{-n} e^{\left(1 - \frac{q}{a}^2\right)} \alpha_j \quad \text{for} \quad q \in B_{n+1}.$$

Now we notice that the series

$$g_{ij} = \sum_{n=0}^{\infty} g_{ij}^{(n)}$$

converges in

$$E'_{0} = \left\{ u \in E' : \|u\|_{0}^{*} = \sup\{|u(x)| : \|x\|_{0} \le 1\} < +\infty \right\}$$

because

$$\sum_{n=0}^{\infty} \|g_{ij}^{(n)}\|_{0}^{*} \le D_{0}e^{\alpha_{j}}\sum_{n=0}^{\infty} 2^{-n} < +\infty.$$

Hence $g_{ij} \in E'$ for all $i \in I, j \ge 1$. Put

$$\varphi_{ij} = F_{ij}^{(0)} + g_{ij} \cdot q = F_{ij}^{(k+1)} - \left\{ \sum_{n=0}^{k} (G_{ij}^{(n)} - g_{ij}^{(n)}) - \sum_{n=k+1}^{\infty} g_{ij}^{(n)} \right\} \circ q.$$

We have

$$\begin{split} \|\varphi_{ij}\|_{a^{2}(k+1)}^{*} &\leq \|F_{ij}^{(k+1)}\|_{a^{2}(k+1)}^{*} + \sum_{n=0}^{k} \|G_{ij}^{(n)} - g_{ij}^{(n)}\|_{a^{2}(k+1)}^{*} \\ &+ \sum_{n=k+1}^{\infty} \|g_{ij}^{(n)}\|_{a^{2}(k+1)}^{*} \\ &\leq \|F_{ij}^{(k+1)}\|_{k+1}^{*} + D_{a^{2}(k+1)} \sum_{n=0}^{k} 2^{-n} e^{(1-(k+1))\alpha_{j}} \\ &+ \sum_{n=k+1}^{\infty} D_{a^{2}(k+1)} 2^{-n} e^{(1-(k+1))\alpha_{j}} \\ &\leq e^{-(k+1)\alpha_{j}} + D_{a^{2}(k+1)} e^{-k\alpha_{j}} \sum_{n=0}^{\infty} 2^{-n} \\ &\leq \left(1 + 2D_{a^{2}(k+1)}\right) e^{-k\alpha_{j}}. \end{split}$$

Hence

$$|\varphi_{ij}(x)| \le (1 + 2D_{a^2(k+1)})e^{-k\alpha_j} \|x\|_{a^2(k+1)}$$

for $x \in \widetilde{E}$.

Define

$$\varphi(x) = \Big[\varphi_{ij}(x) : (i,j) \in I \times \mathbb{N}\Big], \ x \in \widetilde{E}.$$

Now we show that $\varphi(x) \in \ell^{\infty}(I) \widehat{\otimes}_{\Pi} s$ for $x \in \widetilde{E}$ and φ is linearly tame left inverse of e. Indeed,

$$\begin{split} \|\varphi(x)\|_{k} &= \sup_{i} \sum_{j \ge 1} |\varphi_{ij}(x)| e^{k\alpha_{j}} \\ &\leq \left(1 + 2D_{a^{2}(2k+1)}\right) \|x\|_{a^{2}(2k+1)} \sum_{j \ge 1} e^{-k\alpha_{j}} \\ &\leq \left((1 + 2D_{a^{2}(2k+1)}) \sum_{j \ge 1} \frac{1}{j^{k}}\right) \|x\|_{2ka^{2} + a^{2}} \\ &\leq \widetilde{D}_{a^{2}(2k+1)} \|x\|_{2ka^{2} + a^{2}}. \end{split}$$

Hence φ is linearly tame. Moreover,

$$\begin{aligned} \varphi e\Big([x_{ij}:I\times\mathbb{N}]\Big) &= \left[\varphi_{ij}(e[x_{ij}:I\times\mathbb{N}])\right] \\ &= \left[F_{ij}^{(k+1)}\Big(e[x_{ij}:I\times\mathbb{N}] - \Big\{\sum_{n=0}^{k}(G_{ij}^{(n)} - g_{ij}^{(n)}) - \sum_{n=k+1}^{\infty}g_{ij}^{(n)}\Big\} \right. \\ &\quad \cdot q(e[x_{ij}:I\times\mathbb{N}]):I\times\mathbb{N}\Big) \\ &= \left[f_{ij}([x_{ij}:I\times\mathbb{N}]):I\times\mathbb{N}\right] \\ &= \left[x_{ij}:I\times\mathbb{N}\right] = id_{\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s} \,. \end{aligned}$$

Proposition 3.2 is proved.

Lemma 3.3. [11] There exists a tame exact sequence

$$0 \to s \to s \to w \to 0. \tag{3}$$

Tensoring the above tame exact sequence with an arbitrary Banach space we get the following.

Lemma 3.4. For every Banach space B there exists a tame exact sequence

$$0 \to s \widehat{\otimes}_{\Pi} B \to s \widehat{\otimes}_{\Pi} B \to B^{\mathbb{N}} \to 0.$$
⁽⁴⁾

Proposition 3.5. Let *E* be a graded Fréchet space. Then there exists an index set *I* and a tame embedding $e : E \to [\ell^{\infty}(I)]^{\mathbb{N}}$, where $[\ell^{\infty}(I)]^{\mathbb{N}}$ is graded by the system of semi-norms

$$||x||_n = \sup_{1 \le k \le n} ||x_k||, x_k \in \ell^{\infty}(I), x = (x_k) \in [\ell^{\infty}(I)]^{\mathbb{N}}.$$

Proof. Let $\{\|\cdot\|_k\}_{k\geq 1}$ be a system of semi-norms defining the grading on E. For each $k\geq 1$, put $I_k = U_k^0$ and define $I = \bigsqcup_{k\geq 1} I_k$. According to Hahn-Banach

theorem, for $x \in E$, we have

$$||x||_k = \sup\{|u(x)| : u \in I_k\}.$$

Let $e_k : E \to \ell^{\infty}(I_k)$ be given by

$$\ell_k(x) = \left[u(x) : u \in I_k \right].$$

Then

 $||e_k(x)||_{\ell^{\infty}(I_k)} = ||x||_k$ for all $x \in E$.

Define the map $e: E \to \sqcap_{k \ge 1} \ell^{\infty}(I_k)$ by setting

$$e(x) = [e_k(x) : k \ge 1],$$

where $\sqcap_{k>1} \ell^{\infty}(I_k)$ is graded by the system of semi-norms

$$||x||_n = \sup_{1 \le k \le n} ||x_k||_k$$

for $x = (x_k) \in \prod_{k \ge 1} \ell^{\infty}(I_k), x_k \in \ell^{\infty}(I_k)$ and $||x_k||_k = ||x_k||_{\ell^{\infty}(I_k)}$. Then $||e(x)||_n = ||[e_k(x) : k \ge 1]||_n = \sup_{1 \le k \le n} ||e_k(x)||_k$ $= \sup\{||x||_k : 1 \le k \le n\} = ||x||_n.$

Hence, e is a tame embedding. On the other hand, $I = \bigsqcup_{k \ge 1} I_k$ and from the gradings defined on $\sqcap_{k \ge 1} \ell^{\infty}(I_k)$ and $[\ell^{\infty}(I)]^{\mathbb{N}}$, the form

$$\widetilde{e}[f_k:\mathbb{N}] = [\widetilde{e}_k(f_k):\mathbb{N}],$$

where

$$\widetilde{e}_k(f_k)(i) = \begin{cases} f_k(i) & \text{if } i \in I_k, \\ 0 & \text{if } i \notin I_k. \end{cases}$$

defines a tame embedding from $\sqcap_{k=1}^{\infty} \ell^{\infty}(I_k)$ into $[\ell^{\infty}I_k)]^{\mathbb{N}}$.

For the proof of Theorem 3.1 we need the following

Definition 3.6. [12] The graded Fréchet space E admits a family of smoothing operators if there exist linear operators $T_{\theta}: E \to E, \theta > 0$, and $p \ge 0, c_{m,n} > 0$ such that for all $\theta > 0$ and $x \in E$

$$\|T_{\theta}x\|_{n} \le c_{m,n}\theta^{n+p-m} \|x\|_{m} \quad if \ m \le n+p$$

$$\|x - T_{\theta}x\|_{n} \le c_{m,n}\theta^{n+p-m} \|x\|_{m} \quad if \ m > n+p.$$

Proposition 3.7. $\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s$ has property (<u>DNDZ</u>) for all index set I.

Proof. By [12] s admits a family of smoothing operators $\{T_{\theta} : \theta > 0\}$ satisfying conditions in Definition 3.6. Consider the family

$$\widehat{T}_{\theta}: \ell^{\infty}(I)\widehat{\otimes}_{\Pi}s \longrightarrow \ell^{\infty}(I)\widehat{\otimes}_{\Pi}s,$$
$$[x_i, I] \longmapsto [T_{\theta}x_j, I],$$

where x_i and $T_{\theta}x_i$ belong to s for all $i \in I$. We have

$$\|\widehat{T}_{\theta}[x_{i}, I]\|_{n} = \|[T_{\theta}x_{i}, I]\|_{n} = \sup_{i} \|T_{\theta}x_{i}\|_{n}$$

$$\leq c_{m,n}\theta^{n+p-m} \sup_{i} \|x_{i}\|_{m} = c_{m,n}\theta^{n+p-m}\|[x_{i}, I]\|_{m}$$

for $m \le n + p$. Similarly,

$$\begin{split} \| [x_i, I] - \widehat{T}_{\theta} [x_i, I] \|_n &= \| [x_i - T_{\theta} x_i, I] \|_n \\ &= \sup_i \| x_i - T_{\theta} x_i \|_n \le c_{m,n} \theta^{n+p-m} \sup_i \| x \|_i \\ &\le c_{m,n} \theta^{n+p-m} \| [x_i, I] \|_m \quad \text{for } m > n+p. \end{split}$$

Hence, by [4] $\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s$ has property (DNDZ) and, hence, (\underline{DNDZ}) . Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1.

Sufficiency is clear.

Now we establish the necessity condition.

From Proposition 3.5 there exists an index set I such that E is tamely embedded into $[\ell^{\infty}(I)]^{\mathbb{N}}$. Now Lemma 3.3 admits a tame exact sequence of the form

$$0 \to \ell^{\infty}(I)\widehat{\otimes}_{\Pi}s \xrightarrow{e} \ell^{\infty}(I)\widehat{\otimes}_{\Pi}s \xrightarrow{q} [\ell^{\infty}(I)]^{\mathbb{N}} \to 0.$$

Put $\widetilde{E} = q^{-1}(E)$. Then we have a tame exact sequence

$$0 \to \ell^{\infty}(I) \widehat{\otimes}_{\Pi} s \xrightarrow{e} \widetilde{E} \xrightarrow{q} E \to 0$$

with the graded subspace \tilde{E} of $\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s$. Since E has property (<u>DNDZ</u>) and from Proposition 3.2 we deduce that q has a linearly tame right inverse. Hence E is linearly tame isomorphic to a graded subspace of $\ell^{\infty}(I)\widehat{\otimes}_{\Pi}s$.By [4] E has property (DNDZ) and from a result of Poppenberg (see [4]) we deduce that there exists $\varepsilon > 0$ such that E is tamely isomorphic to a graded subspace of s_{ε} . However, s_{ε} is linearly tame isomorphic to s and, consequently, E is linearly tame isomorphic to a graded subspace of s.

Now from the above characterization of property (\underline{DNDZ}) we prove the main result of the paper.

4. Proof of the Main Theorem

First we describe gradings of Fréchet spaces $H(\mathbb{C}^n)$ and H(V) where V is an irreducible subvariety in \mathbb{C}^n . For each $k \ge 1$, put

$$\overline{B}_k = \{ z \in \mathbb{C}^n : \|z\| \le e^k \}, \quad \overline{D}_k = \overline{B}_k \cap V,$$

where

$$||z|| = \sup\{|z_j| : 1 \le j \le n\}, \ z = (z_1, \dots, z_n) \in \mathbb{C}^n.$$

Assume that $H(\mathbb{C}^n)$ and H(V) are spaces of holomorphic functions on \mathbb{C}^n and V respectively. These spaces are graded by

$$||f||_k = \sup\{|f(z)| : z \in \overline{B}_k\}, \ f \in H(\mathbb{C}^n)$$

and

$$||g||_k = \sup\{|g(z)| : z \in \overline{D}_k\}, \ g \in H(V),$$

respectively.

Now we need to use the following result of Djakov and Mitiagin (see [2]) on the structure of polynomial ideals in the proof of (i) \Rightarrow (ii) of the main theorem.

Let V be an algebraic variety in \mathbb{C}^n . Then there exist polynomials Q_1, \ldots, Q_p that generate the ideal

$$I^*(V) = \left\{ P \in \mathbb{C}[z_1, \dots, z_n] : P|_V \equiv 0 \right\}$$

and vector $B = (b_1, \ldots, b_n)$ and continuous linear operators

$$R_i: H(\mathbb{C}^n) \to H(\mathbb{C}^n), \ 0 \le i \le p$$

such that

- (a) $f = R_0(f) + \sum_{i=1}^p R_i(f)Q_i$ for all $f \in H(\mathbb{C}^n)$; (b) $\ker R_0 = \{f \in H(\mathbb{C}^n) : f|_V = 0\}, R_0^2 = R_0;$
- (c) for every $r \ge 1$

$$|R_i f|_{rB} \le |f|_{rB}, \ i = 0, \dots, p,$$

where if

$$f = \sum_{\alpha \in \mathbb{Z}_+^n} c_\alpha z^\alpha$$

is a holomorphic function on \mathbb{C}^n and $c = (c_1, \ldots, c_n)$ then we set

$$|f|_c = \sum_{\alpha \in \mathbb{Z}^n_+} |c_\alpha| c^\alpha.$$

Now we prove the implication (i) to (ii) of the Main Theorem.

Let V be an algebraic variety in \mathbb{C}^n . Consider the restriction map \mathcal{R} : $H(\mathbb{C}^n) \to H(V)$. If $f \in H(V)$, by Cartan Theorem B, we can choose an entire function $G \in H(\mathbb{C}^n)$ such that $\mathcal{R}(G) = f$. Consider the map $\mathcal{E} : H(V) \to H(\mathbb{C}^n)$ given by

$$\mathcal{E}(f) = R_0(G).$$

From (b) \mathcal{E} is a well defined continuous linear extension operator and $\mathcal{RE}(f) = f$ for all $f \in H(V)$. We show that \mathcal{E} is a tame right inverse of \mathcal{R} . An important feature of the operators $R_i, 0 \leq i \leq p$ of the above mentioned result is that for any r > 1 they can be considered as continuous linear operators on $H(\Delta_{rB})$ satisfying

(d)
$$g = R_0(g) + \sum_{i=1}^{p} R_i(g)Q_i$$
 for all $g \in H(\triangle_{rB})$;
(e) $\ker R_0 = \{g \in H(\triangle_{rB}) : g|_{V \cap \triangle_{rB}} = 0\},$

where \triangle_{rB} is the polydisc around zero with polyradii rB (see [2, Corollary 3]). Now for a fixed k > 1 we consider the restriction operator from $H(\triangle_{kB})$ to $H(\triangle_{kB} \cap V)$. Here $H(\triangle_{kB})$ and $H(\triangle_{kB} \cap V)$ are graded by systems of seminorms

$$||F||_{sB} = \sup_{z \in \Delta_{sB}} |F(z)|, s < k, F \in H(\Delta_{kB})$$

and

$$||f||_{\triangle_{sB} \cap V} = \sup_{z \in \triangle_{sB} \cap V} |f(z)|, s < k, f \in H(\triangle_{kB} \cap V),$$

respectively.

Since this restriction operator is a surjection, by the open map theorem ,we can find a $c_0 = c_0(k)$ such that for every $f \in H(V)$ with $||f||_{\triangle_{kB} \cap V} \leq 1$ there

exists an $F_k \in H(\triangle_{kB})$ such that $F_k|_{V \cap \triangle_{kB}} = f|_{V \cap \triangle_{kB}}$ and $||F_k||_{\triangle \left(k - \frac{\varepsilon}{2}\right)B} \leq c_0$ with some $0 < \varepsilon < k$ independent of k. Then $\mathcal{E}(f)|_{\triangle_{kB}} = R_0(F_k)$ on \triangle_{kB} . Hence,

$$\begin{aligned} \|\mathcal{E}(f)\|_{k-\varepsilon} &= \|R_0(F_k)\|_{\triangle (k-\varepsilon)B} \le |R_0(F_k)|_{\triangle (k-\varepsilon)\Delta} \\ &\le |F_k|_{\triangle (k-\varepsilon)B} \le C_1 \|F_k\|_{\triangle (k-\frac{\varepsilon}{2})B} \le C_0 C_1 \|f\|_{\triangle_{kB} \cap V}, \end{aligned}$$

where $C_1 = \sum_{|\alpha| \ge 0} \left(\frac{k-\varepsilon}{k-\frac{\varepsilon}{2}}\right)^{\alpha} < \infty.$

Hence \mathcal{E} is a tame right inverse of \mathcal{R} and H(V) is tamely embedded into $H(\mathbb{C}^n) = \Lambda_{\infty}((k^{\frac{1}{n}}))$. However, $\Lambda_{\infty}((k^{\frac{1}{n}}))$ has property (DNDZ) [4] and, therefore H(V) has property (DNDZ).

(ii) \implies (iii) is clear. Now the Main Theorem is proved if we show the implication (iii) to (i).

Let H(V) has property (<u>DNDZ</u>). Consider the restriction map $R: H(\mathbb{C}^n) \to H(V)$. First we show that the map $\widehat{R}: H(\mathbb{C}^n)/\ker R \to H(V)$ which is

induced by R, is tamely isomorphic. For each $k \ge 1$, consider the restriction $R_k : H(B_k) \to H(D_k)$. By Cartan Theorem B, R_k is surjective and, hence, it is open. This yields that there exist a compact set K_{m_k} and a constant $C_k^{(1)} > 0$ satisfying

$$\overline{D}_{k-1} \subset K_{m_k} \subset D_k$$

and

$$C_k^{(1)}\widetilde{W}(K_{m_k}) \subset R_k(W(\overline{B}_{k-1})).$$

Hence,

$$\widetilde{W}(\overline{D}_k) \subset \widetilde{W}(K_{m_k}) \subset \frac{1}{C_k^{(1)}} R_k \Big(W(\overline{B}_{k-1}) \Big) \subset C_k^{(2)} \widetilde{W}(\overline{D}_{k-1}),$$

where $C_k^{(2)} > 0$ and

$$\widetilde{W}(\overline{D}_{k}) = \{ f \in H(V) : ||f||_{\overline{D}_{k}} \leq 1 \}, \\
\widetilde{W}(K_{m_{k}}) = \{ f \in H(V) : ||f||_{K_{m_{k}}} \leq 1 \}, \\
\widetilde{W}(\overline{B}_{k-1}) = \{ f \in H(\mathbb{C}^{n}) : ||f||_{\overline{B}_{k-1}} \leq 1 \}, \\
\widetilde{W}(\overline{D}_{k-1}) = \{ f \in H(V) : ||f||_{\overline{D}_{k-1}} \leq 1 \}.$$

This yields that the gradings $\left\{\widetilde{W}(\overline{D}_k)\right\}_{k\geq 1}$ and $\left\{R\left(\widetilde{W}(\overline{B}_k)\right)\right\}_{k\geq 1}$ on H(V) are tamely equivalent. However if H(V) is graded by $\left\{R\left(\widetilde{W}(\overline{B}_k)\right)\right\}_{k\geq 1}$ then $\widehat{R}: H(\mathbb{C}^n) / \ker R \to H(V)$ is tamely isomorphic. Hence the exact sequence

$$0 \to J(V) \xrightarrow{e} H(\mathbb{C}^n) \xrightarrow{R} H(V) \to 0$$

is tame exact, where

$$J(V) = \{ f \in H(\mathbb{C}^n) : f|_V = 0 \}.$$

Let J_V denote the coherent ideal subsheaf of the sheaf $H_{\mathbb{C}^n}$ of germs of holomorphic functions on \mathbb{C}^n . By [3] there exists a surjective morphism $\theta : H_{\mathbb{C}^n}^{\ell^1} \to J_V$, where $H_{\mathbb{C}^n}^{\ell^1}$ is the sheaf of germs of ℓ^1 -valued holomorphic functions on \mathbb{C}^n . Theorem Cartan's B implies that θ induces a continuous linear map $\hat{\theta}$ from $H(\mathbb{C}^n, \ell^1)$ onto J(V). Moreover for each $n \geq 1$, θ induces continuous linear maps $\hat{\theta}_n$ from $H(B_n, \ell^1)$ onto $J(D_n)$. As in the above argument, $\hat{\theta}$ induces a tamely isomorphism from $H(\mathbb{C}^n, \ell^1)/\ker \hat{\theta}$ onto J(V). Because $H(\mathbb{C}^n, \ell^1) \stackrel{\text{tame}}{\cong}$

 $H(\mathbb{C}^n)\widehat{\otimes}_{\Pi}\ell^1 \stackrel{\text{tame}}{\cong} \Lambda_{\infty}(\alpha)\widehat{\otimes}_{\Pi}\ell^1 = \Lambda_{\infty}(\alpha,\ell^1)$ where $\alpha = (\alpha_k), \alpha_k = k^{\frac{1}{n}}$ then $H(\mathbb{C}^n,\ell^1)$ and, hence, J(V) has property (ΩDZ) (see [5]). On the other hand, H(V) has property (\underline{DNDZ}) then Theorem 3.1 implies that H(V) is linearly tame isomorphic to a subspace of s. Hence, if H(V) is considered as a graded subspace of s, then H(V) has property (DNDZ) and we obtain a linearly tame exact sequence

$$0 \to J(V) \to H(\mathbb{C}^n) \xrightarrow{\mathbf{R}} H(V) \to 0.$$

Using an argument as in [6, p. 157] and Proposition 3.4 in [5, p. 130] we claim that R has a linearly tame right inverse. By [1] V is algebraic.

Acknowledgement. The authors wish to thank Propessor Nguyen Van Khue for suggesting the problems and for useful comments during the preparation of this paper.

References

- A. Aytuna, Linear tame extension operators from closed subvarieties C^d, Proc. Amer. Math. Soc. 123 (1995) 759–763.
- P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, *Studia Math.* 68 (1980) 84–104.
- J. Leiterer, Banach Coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978) 91–109.
- M. Poppenberg, Characterization of the subspaces of (s) in the tame category, Arch. Math. 54 (1990) 274–283.
- M. Poppenberg, Characterization of the quotient spaces of (s) in the tame category, Math. Narch. 150 (1991) 127–141.
- M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995) 141–161.
- M. Poppenberg, A sufficient condition of type (Ω) for tame splitting of short exact sequences of Fréchet spaces, *Manuscripta Math.* **72** (1994) 257–274.
- A. Sadulaev, A criterion for the algebraicity of analytic sets, In: On Holomorphic Functions of Several Complex Variables, 107-122. Akad. Nauk. SSSR Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk, 1976 (Russian).
- 9. H. H. Schaefer, Topological Vector Spaces, Berlin-Heidelberg, New York, 1971.

- W. Stoll, The growth of the area of a transcendental analytic set, I & II, Math. Ann. 156 (1964) 47–78, 144–170.
- D. Vogt, Subspaces and quotient spaces of (s), In Functional Analysis: Surveys and Recent Results, North. Holland Math. Stud. 27 (1977) 166–187.
- 12. D. Vogt, Tame spaces and power series spaces, Math. Z. 196 (1987) 523-536.
- D. Vogt, Frechtraume, zwischen denen jede stetige linear Abbildung beschrankt ist, J. Reine. Angew Math. 345 (1983) 182–200.
- 14. D. Vogt, On two classes of F-spaces, Arch. Math. 45 (1985) 255–266.
- A. Zeriahi, A criterion of algebraicity for Lelong classes and analytic sets, Acta Math. 184 (2000) 113–143.