Borel Exceptional Values of Meromorphic Functions

Indrajit Lahiri1 and Arindam Sarkar2

1Department of Mathematics, University of Kalyani, West Bengal 741235, India
2Fulia Stationpara, P.O. Fulia Colony, District- Nadia, West Bengal 741402, India

Received April 23, 2003

Abstract. In the paper we discuss the Borel exceptional value of a transcendental meromorphic function and its relation with Picard and Nevanlinna exceptional values.

1. Introduction and Definitions

Let \(f \) be a nonconstant meromorphic function defined in the open complex plane \(\mathbb{C} \cup \{ \infty \} \). We use the standard notations and definitions of the value distribution theory (cf. \([4]\)). Let \(k \) be a positive integer or infinity. We denote by \(N(r, a; f \mid \leq k) \) the counting function of distinct \(a \)-points of \(f \) whose multiplicities do not exceed \(k \). Clearly \(N(r, a; f \mid \leq \infty) \equiv N(r, a; f) \).

We put

\[
\mu_k(a; f) = \limsup_{r \to \infty} \frac{\log^+ N(r, a; f \mid \leq k)}{\log r}, \quad \mu(a; f) = \limsup_{r \to \infty} \frac{\log^+ N(r, a; f)}{\log r},
\]

and

\[
\rho(a; f) = \limsup_{r \to \infty} \frac{\log^+ N(r, a; f)}{\log r}.
\]

If \(f \) is a meromorphic function of order \(\rho \), \(0 \leq \rho \leq \infty \), \(a \in \mathbb{C} \cup \{ \infty \} \) and \(k \) is a positive integer then we say that \(a \) is

(i) an exceptional value in the sense of Borel (evB for short) for \(f \) for distinct zeros of multiplicities not exceeding \(k \) if \(\mu_k(a; f) < \rho \);
(ii) an evB for \(f \) for distinct zeros if \(\mu(a; f) < \rho \);
(iii) an evB for f for the whole aggregate of zeros if $\rho(a; f) < \rho$.

We call a an evB for f for simple zeros if $\rho_1(a; f) < \rho$ and an evB for f for simple and double zeros if $\rho_2(a; f) < \rho$.

The quantity

$$\delta(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)}$$

is called Nevanlinna deficiency of the value $a \in \mathbb{C} \cup \{\infty\}$. If $\delta(a; f) > 0$ then a is called an exceptional value in the sense of Nevanlinna, in short evN. If $\delta(a; f) = 0$ then a is called a normal value in the sense of Nevanlinna, in short nvN.

A value $a \in \mathbb{C} \cup \{\infty\}$ is called an exceptional value for a transcendental meromorphic function in the sense of Picard, in short evP, if f has at most a finite number of a-points.

Let k be a nonnegative integer or infinity. We denote by $N_k(r, a; f)$ the counting function of a-points of f where an a-point of multiplicity ν is counted ν times if $\nu \leq k$ and $1 + k$ times if $\nu > k$.

We put

$$\delta_k(a; f) = 1 - \limsup_{r \to \infty} \frac{N_k(r, a; f)}{T(r, f)}.$$

Then clearly $\delta(a; f) \leq \delta_k(a; f) \leq \delta_{k-1}(a; f) \leq \cdots \leq \delta_1(a; f) \leq \delta_0(a; f) = \Theta(a; f) \leq 1$, where

$$\Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)},$$

is called the ramification index.

Valiron (cf. [9, pp. 72-78]) proved the following generalization of the classical theorem of Borel for entire functions of finite order.

Theorem A. Let f be an entire function of finite order ρ. Then

(i) there exist at most two distinct elements of \mathbb{C} which are evB for f for simple zeros,

(ii) if there exists $a \in \mathbb{C}$ such that a is an evB for f for the joint sequence of simple and double zeros (double zeros being counted twice) then $\rho_1(b; f) = \rho$ for all $b \in \mathbb{C} \setminus \{a\}$,

(iii) there exists at most one element of \mathbb{C} which is an evB for f for the joint sequence of simple and double zeros.

In [7] Singh and Gopalakrishna obtained stronger results than above for meromorphic functions of finite order. Gopalakrishna and Bhosmurth [2] improved the results of Valiron and Singh-Gopalakrishna to meromorphic functions of unrestricted order. The result of Gopalakrishna and Bhosmurth [2] can be stated as follows:

Theorem B. Let f be a meromorphic function of order ρ, $0 \leq \rho \leq \infty$. If there exist distinct elements $a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_q, c_1, c_2, \ldots, c_s$ in $\mathbb{C} \cup \{\infty\}$ such that a_1, a_2, \ldots, a_p are evB for f for distinct zeros of multiplicity $\leq k$, b_1, b_2, \ldots, b_q are evB for f for distinct zeros of multiplicity $\leq l$ and c_1, c_2, \ldots, c_s
are evB for f for distinct zeros of multiplicity \(\leq m\), where \(k, l, m\) are positive integers, then
\[
\frac{pk}{1+k} + \frac{ql}{1+l} + \frac{sm}{1+m} \leq 2.
\]

In the paper we improve Theorem B and discuss the relation between the evB for a meromorphic function and the Nevanlinna deficiency of those values. We also improve some other results on the exceptional values in the sense of Borel.

Definition 1. [1, 8] We put for \(a \in \mathbb{C} \cup \{\infty\}\)
\[
T_o(r, f) = \int_1^r \frac{T(t, f)}{t} dt,
\]
\[
N_o(r, a; f) = \int_1^r \frac{N(t, a; f)}{t} dt, \quad m_o(r, a; f) = \int_1^r \frac{m(t, a; f)}{t} dt,
\]
\[
N_o(r, a; f) = \int_1^r \frac{N(t, a; f)}{t} dt, \quad N_o(r, a; f) = \int_1^r \frac{N(t, a; f \leq k)}{t} dt,
\]
\[
N_o^k(r, a; f) = \int_1^r \frac{N_k(t, a; f)}{t} dt, \quad S_o(r, f) = \int_1^r \frac{S(t, f)}{t} dt \quad \text{etc.}
\]

Further we put for \(a \in \mathbb{C} \cup \{\infty\}\)
\[
\delta_o(a; f) = 1 - \limsup_{r \to \infty} \frac{N_o(r, a; f)}{T_o(r, f)},
\]
\[
\Theta_o(a; f) = 1 - \limsup_{r \to \infty} \frac{N_o(r, a; f)}{T_o(r, f)},
\]
\[
\delta_k^*(a; f) = 1 - \limsup_{r \to \infty} \frac{N_o^k(r, a; f)}{T_o(r, f)}.
\]

Throughout the paper we assume that \(f\) is a transcendental meromorphic function of finite or infinite order \(\rho\) defined in the open complex plane \(\mathbb{C}\).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1.

(i) \[
\limsup_{r \to \infty} \frac{\log T_o(r, f)}{\log r} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}
\]
and
\[
\liminf_{r \to \infty} \frac{\log T_o(r, f)}{\log r} = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}.
\]

(ii) For any \(a \in \mathbb{C} \cup \{\infty\}\) and for any \(k, a\) positive integer or infinity,
\[
\limsup_{r \to \infty} \frac{\log^+ N_o(r, a; f| \leq k)}{\log r} = \limsup_{r \to \infty} \frac{\log^+ N(r, a; f| \leq k)}{\log r}
\]
and
\[
\liminf_{r \to \infty} \frac{\log^+ N_o(r, a; f| \leq k)}{\log r} = \liminf_{r \to \infty} \frac{\log^+ N(r, a; f| \leq k)}{\log r}.
\]

Proof. Since for all large values of \(r\)
\[
T_o(r, f) \leq T(r, f) \log r \quad \text{and} \quad T_o(2r, f) \geq T(r, f) \log 2,
\]
(i) follows easily.

Again since for all large values of \(r\)
\[
N_o(r, a; f| \leq k) \leq N(r, a; f| \leq k) \log r
\]
and
\[
N_o(2r, a; f| \leq k) \geq N(r, a; f| \leq k) \log 2,
\]
(ii) follows easily. This proves the lemma. \(\square\)

Lemma 2. Let \(k\) be a positive integer or infinity. Then for \(a \in \mathbb{C} \cup \{\infty\}\)
\[
\frac{1}{1+k} N_o(r, a; f| \leq k) \leq N(r, a; f| \leq k) \log r
\]
where we assume that \(\frac{1}{1+k} = 1\) and \(\frac{1}{k+1} = 0\) if \(k = \infty\).

Proof. Since we know that (cf. [5])
\[
N(r, a; f) \leq \frac{k}{1+k} N_o(r, a; f| \leq k) + \frac{1}{1+k} N_o(r, a; f),
\]
the lemma follows on integration. This proves the lemma. \(\square\)

Lemma 3. [1] Let \(a_1, a_2, \ldots, a_q\) be \(q(\geq 2)\) distinct elements of \(\mathbb{C} \cup \{\infty\}\). Then for all \(r > 1\)
\[
(q-2)T_o(r, f) \leq \sum_{i=1}^{q} N_o(r, a_i; f) + S_o(r, f),
\]
where
\[
\lim_{r \to \infty} \frac{S_o(r, f)}{T_o(r, f)} = 0 \quad \text{(1)}
\]
through all values of \(r\).

Lemma 4. [8] If \(f\) is transcendental meromorphic then
\[
\lim_{r \to \infty} \frac{T_o(r, f)}{(\log r)^2} = \infty.
\]
Lemma 5. (cf. [8]) For \(a \in \mathbb{C} \cup \{ \infty \} \) we get \(\delta(a; f) \leq \delta_0(a; f), \delta_k(a; f) \leq \delta_k^0(a; f) \) and \(\Theta(a; f) \leq \Theta_0(a; f) \).

Lemma 6. If \(f \) is a transcendental meromorphic function then
\[
\limsup_{r \to \infty} \frac{N_o(r, 0; f')}{T_o(r, f)} \leq 2 - \Theta(\infty; f) - \sum_{b \in \mathbb{C}} \delta(b; f).
\]

Proof. Let \(b_1, b_2, \ldots, b_p \) be distinct finite complex numbers. Then on integration we get from Littlewood’s inequality and the first fundamental theorem
\[
\sum_{\nu=1}^p m_o(r, b_\nu; f) \leq m_o(r, 0; f') + S_o(r, f)
\]

and so by Lemma 4 we obtain
\[
\sum_{\nu=1}^p m_o(r, b_\nu; f) \leq T_o(r, f') - N_o(r, 0; f') + S_o(r, f).
\]
Since \(T_o(r, f') \leq T_o(r, f) + \overline{N}_o(r, f) + S_o(r, f) \), it follows from above that
\[
\sum_{\nu=1}^p m_o(r, b_\nu; f) + N_o(r, 0; f) \leq T_o(r, f) + \overline{N}_o(r, f) + S_o(r, f)
\]
and so by (1) we get
\[
\sum_{\nu=1}^p \delta_\nu(b_\nu; f) + \limsup_{r \to \infty} \frac{N_o(r, 0; f')}{T_o(r, f)} \leq 2 - \Theta_0(\infty; f).
\]
Since \(p \) is arbitrary, it follows in view of Lemma 5 that
\[
\limsup_{r \to \infty} \frac{N_o(r, 0; f')}{T_o(r, f)} \leq 2 - \Theta(\infty; f) - \sum_{b \in \mathbb{C}} \delta(b; f).
\]
This proves the lemma.

3. Main Results

In this section we discuss the main results of the paper.

Theorem 1. Let \(f \) be a meromorphic function of order \(\rho, 0 \leq \rho \leq \infty \). If there exist distinct elements \(a_1, a_2, \ldots, a_p, b_1, b_2, \ldots, b_q, c_1, c_2, \ldots, c_s \) in \(\mathbb{C} \cup \{ \infty \} \) such that \(a_1, a_2, \ldots, a_p \) are evB for \(f \) for distinct zeros of multiplicity \(\leq k \), \(b_1, b_2, \ldots, b_q \) are evB for \(f \) for distinct zeros of multiplicity \(\leq l \) and \(c_1, c_2, \ldots, c_s \) are evB for \(f \) for distinct zeros of multiplicity \(\leq m \), where \(k, l, m \) are positive integers or infinity, then
\[
\frac{pk}{1+k} + \frac{ql}{1+l} + \frac{sm}{1+m} + \frac{1}{1+k} \sum_{i=1}^{p} \delta_k(a_i; f) \\
+ \frac{1}{1+l} \sum_{j=1}^{q} \delta_l(b_j; f) + \frac{1}{1+m} \sum_{t=1}^{s} \delta_m(c_t; f) \leq 2.
\]

Proof. From Lemmas 2 and 3 we get

\[
(p + q + s - 2)T_o(r, f) \leq \frac{k}{1+k} \sum_{i=1}^{p} N_o(r, a_i; f | \leq k) + \frac{1}{1+k} \sum_{i=1}^{p} N_o^0(r, a_i; f) \\
+ \frac{l}{1+l} \sum_{j=1}^{q} N_o(r, b_j; f | \leq l) + \frac{1}{1+l} \sum_{j=1}^{q} N_o^0(r, b_j; f) \\
+ \frac{m}{1+m} \sum_{t=1}^{s} N_o(r, c_t; f | \leq m) + \frac{1}{1+m} \sum_{t=1}^{s} N_m^0(r, c_t; f) \\
+ S_o(r, f).
\]

Since \(a_i, b_j, c_t\) are evB for \(f\) for distinct zeros of multiplicities not exceeding \(k, l\) and \(m\) respectively, by Lemma 1 there exists a number \(\alpha(0 < \alpha < \rho)\) such that

\[\overline{N}_o(r, a_i; f | \leq k) < r^\alpha, \overline{N}_o(r, b_j; f | \leq l) < r^\alpha\text{ and } \overline{N}_o(r, c_t; f | \leq m) < r^\alpha\]

for all large values of \(r\).

So from (2) we obtain for all large values of \(r\)

\[
(p + q + s - 2)T_o(r, f) \leq O(r^\alpha) + \frac{1}{1+k} \sum_{i=1}^{p} N_o^0(r, a_i; f) + \frac{1}{1+l} \sum_{j=1}^{q} N_o^0(r, b_j; f) \\
+ \frac{1}{1+m} \sum_{t=1}^{s} N_m^0(r, c_t; f) + S_o(r, f).
\]

(3)

Now for \(\varepsilon(>0)\) arbitrary we get from (3) for all large values of \(r\)

\[
(p + q + s - 2)T_o(r, f) \leq O(r^\alpha) + \frac{1}{1+k} \{p - \sum_{i=1}^{p} \delta_k^0(a_i; f) + \varepsilon\}T_o(r, f) \\
+ \frac{1}{1+l} \{q - \sum_{j=1}^{q} \delta_l^0(b_j; f) + \varepsilon\}T_o(r, f) \\
+ \frac{1}{1+m} \{s - \sum_{t=1}^{s} \delta_m^0(c_t; f) + \varepsilon\}T_o(r, f) + S_o(r, f).
\]

(4)

Now we choose a number \(\beta\) such that \(\alpha < \beta < \rho\). Then in view of Lemma 1 there exists a sequence of values of \(r\) tending to infinity such that
Borel Exceptional Values of Meromorphic Functions

\[T_o(r, f) > r^\alpha. \]

(5)

Since \(\varepsilon(>0) \) is arbitrary, it follows from (4) in view of (1) and (5) that

\[
\frac{pk}{1+k} + \frac{ql}{1+l} + \frac{sm}{1+m} + \frac{1}{1+k} \sum_{i=1}^{p} \delta^i_k(a_i; f) \\
+ \frac{1}{1+l} \sum_{j=1}^{q} \delta^j_l(b_j; f) + \frac{1}{1+m} \sum_{t=1}^{s} \delta^t_m(c_t; f) \leq 2
\]

from which the theorem follows by Lemma 5. This proves the theorem. \(\blacksquare \)

We now discuss some consequences of Theorem 1.

Consequence 1.1. For \(k = 1 \) we get

\[
p + \sum_{i=1}^{p} \delta_1(a_i; f) \leq 4.
\]

This shows that there exist at most four elements of \(\mathbb{C} \cup \{ \infty \} \) which are evB for \(f \) simple zeros. If there exist four evB for \(f \) for simple zeros then all these values are nvN for \(f \).

If \(f \) has an evB for simple zeros which is also an evN for \(f \) then \(f \) has at most three evB for simple zeros.

If \(a_1, a_2 \) are two evP for \(f \) then no element of \(\mathbb{C} \cup \{ \infty \} \{a_1, a_2\} \) is an evB for \(f \) for simple zeros.

Consequence 1.2. For \(k = 1, p = 1, l = 3 \) we get

\[
\frac{3q}{4} + \frac{1}{2} \delta_1(a_1; f) + \frac{1}{2} \sum_{j=1}^{q} \delta_3(b_j; f) \leq \frac{3}{2}.
\]

(6)

This shows that if \(f \) has one evB for simple zeros, say \(a_1 \), then there exist at most two elements in \(\mathbb{C} \cup \{ \infty \} \{a_1\} \) which are evB for \(f \) for distinct zeros of multiplicity \(\leq 3 \).

Further it follows from (6) that if \(f \) has an evB for simple zeros and two other evB for distinct zeros of multiplicity \(\leq 3 \) then all these values are nvN for \(f \).

Consequence 1.3. For \(k = 1, p = 1, l = 2 \) we get

\[
\frac{2q}{3} + \frac{1}{2} \delta_1(a_1; f) + \frac{1}{3} \sum_{j=1}^{q} \delta_2(b_j; f) \leq \frac{3}{2}.
\]

(7)

This shows that if \(f \) has one evB for simple zeros, say \(a_1 \), then there exist at most two elements in \(\mathbb{C} \cup \{ \infty \} \{a_1\} \) which are evB for \(f \) for distinct simple and double zeros.

If \(a_1 \) is an evB for \(f \) for simple zeros and \(b_1, b_2 \) are evB for \(f \) for distinct simple and double zeros, it follows from (7) that
\[3\delta_1(a_1; f) + 2\delta_2(b_1; f) + 2\delta_2(b_2; f) \leq 1.\]

Hence \(\delta_1(a_1; f) \leq 1/3, \ \delta_2(b_1; f) \leq 1/2, \ \delta_2(b_2; f) \leq 1/2\) and if the equality holds for any one then the other two are \(\text{nvN}\) for \(f\). In particular none of these exceptional values is an \(\text{evP}\) for \(f\).

Consequence 1.4. For \(k = 2, \ p = 1, \ l = 3, \ q = 1, \ m = 1\) we get

\[
s + \frac{2}{3}\delta_2(a_1; f) + \frac{1}{2}\delta_3(b_1; f) + \sum_{i=1}^{s} \delta_1(c_i; f) \leq \frac{7}{6}. \tag{8}\]

This shows that if \(f\) has one \(\text{evB}\), say \(a_1\), for distinct simple and double zeros and has one \(\text{evB}\), say \(b_1\), for distinct zeros of multiplicity \(\leq 3\) then \(f\) has at most one \(\text{evB}\) for simple zeros.

If \(f\) has one \(\text{evB}\), say \(c_1\), for simple zeros then we see from (8) that

\[4\delta_2(a_1; f) + 3\delta_3(b_1; f) + 6\delta_1(c_1; f) \leq 1.\]

Hence \(\delta_2(a_1; f) \leq 1/4, \ \delta_3(b_1; f) \leq 1/3, \ \delta_1(c_1; f) \leq 1/6\) and if the equality holds for any one then the other two are \(\text{nvN}\) for \(f\). In particular none of these exceptional values is an \(\text{evP}\) for \(f\).

Consequence 1.5. For \(k = 2\) we get

\[
\frac{2p}{3} + \frac{ql}{1 + l} + \frac{1}{3} \sum_{i=1}^{p} \delta_2(a_i; f) + \frac{1}{1 + l} \sum_{j=1}^{q} \delta_1(b_j; f) \leq 2. \tag{9}\]

This shows that

\[p + \frac{1}{2} \sum_{i=1}^{p} \delta_2(a_i; f) \leq 3.\]

So \(f\) has at most three \(\text{evB}\) for distinct simple and double zeros. Also if there exist three \(\text{evB}\) for \(f\) for distinct simple and double zeros then all the three exceptional values are \(\text{nvN}\) for \(f\). Further in this case (9) shows that there exists no other element of \(\mathbb{C} \cup \{\infty\}\) which is an \(\text{evB}\) for \(f\) for simple zeros.

If there exists an \(\text{evB}\) for \(f\) for distinct simple and double zeros which is also an \(\text{evN}\) then \(f\) has at most two \(\text{evB}\) for distinct simple and double zeros.

Consequence 1.6. For \(k = 2, \ p = 1, \ l = 1\) we get

\[
q + \frac{2}{3}\delta_2(a_1; f) + \sum_{j=1}^{q} \delta_1(b_j; f) \leq \frac{8}{3}. \tag{10}\]

From (10) it follows that if there exists an element of \(\mathbb{C} \cup \{\infty\}\) which is an \(\text{evB}\) for \(f\) for distinct simple and double zeros then there exist at most two other elements of \(\mathbb{C} \cup \{\infty\}\) which are \(\text{evB}\) for \(f\) for simple zeros.

If \(a_1\) is an \(\text{evB}\) for \(f\) for distinct simple and double zeros, \(b_1, b_2\) are \(\text{evB}\) for \(f\) for simple zeros then we get from (10)

\[2\delta_2(a_1; f) + 3\delta_1(b_1; f) + 3\delta_1(b_2; f) \leq 2.\]
This shows that no one of b_1, b_2 can be an evP for f. Further it follows that if a_1 is an evP for f then b_1, b_2 are nvN for f.

Consequence 1.7. For $k = 5$, $p = 1$, $l = 2$, $q = 1$, $m = 1$ we get

$$s + \frac{1}{3} \delta_5(a_1; f) + \frac{2}{3} \delta_2(b_1; f) + \sum_{i=1}^{q} \delta_1(c_i; f) \leq 1.$$

This shows that if a_1 is an evB for f for distinct zeros of multiplicity ≤ 5 and $b_1(\neq a_1)$ is an evB for f for distinct simple and double zeros then there exists at most one element c_1, say, of $\mathbb{C} \cup \{\infty\} \setminus \{a_1, b_1\}$ which is an evB for f for simple zeros. If f actually has an evB simple zeros then all the exceptional values a_1, b_1, c_1 are nvN for f. Consequently if any one of a_1 and b_1 is an evN then there exist no element of $\mathbb{C} \cup \{\infty\} \setminus \{a_1, b_1\}$ which is an evB for f for simple zeros.

Theorem 2. If there exist $a \in \mathbb{C} \cup \{\infty\}$ and positive integers k and q such that

$$(1 + k) \Theta(a; f) + \sum_{b \neq a} \delta(b; f) > 2 - k(q - 1)$$

then there exist at most q elements of $\mathbb{C} \cup \{\infty\} \setminus \{a\}$ which are evB for f for distinct zeros of multiplicity not exceeding k.

Proof. We assume, without loss of generality, that $a = \infty$. If possible suppose that there exist $q + 1$ elements $a_1, a_2, \ldots, a_{q+1}$ in \mathbb{C} which are evB for f for distinct zeros of multiplicity $\leq k$. Then by Lemma 1 there exists $\alpha(\alpha < \rho)$ such that for all large values of r

$$\overline{N}_o(r, a_i; f | \leq k) < r^\alpha$$

for $i = 1, 2, \ldots, q + 1$.

Since for $b \in \mathbb{C}$, a zero of $f - b$ of multiplicity $m(> 1)$ is a zero of f' of multiplicity $m - 1$, we clearly have

$$\sum_{i=1}^{q+1} \overline{N}(r, a_i; f) \leq \sum_{i=1}^{q+1} \overline{N}(r, a_i; f | \leq k) + \frac{1}{k} N(r, 0; f')$$

which on integration gives

$$\sum_{i=1}^{q+1} \overline{N}_o(r, a_i; f) \leq \sum_{i=1}^{q+1} \overline{N}_o(r, a_i; f | \leq k) + \frac{1}{k} N_o(r, 0; f').$$

Hence by Lemma 3 we get for all large values of r

$$qT_o(r, f) \leq \sum_{i=1}^{q+1} \overline{N}_o(r, a_i; f) + \overline{N}_o(r, \infty; f) + S_o(r, f)$$

$$\leq \sum_{i=1}^{q+1} \overline{N}_o(r, a_i; f | \leq k) + \frac{1}{k} N_o(r, 0; f') + \overline{N}_o(r, \infty; f) + S_o(r, f)$$

$$\leq (q + 1)r^\alpha + \frac{1}{k} N_o(r, 0; f') + \overline{N}_o(r, \infty; f) + S_o(r, f)$$
and so by (1)

\[q \leq (q + 1) \liminf_{r \to \infty} \frac{r^\alpha}{T_\alpha(r, f)} + \frac{1}{k} \limsup_{r \to \infty} \frac{N_\alpha(r, 0; f')}{T_\alpha(r, f)} + \limsup_{r \to \infty} \frac{N_\alpha(r, \infty; f)}{T_\alpha(r, f)}. \quad (11) \]

By Lemma 1 there exists \(\beta, \alpha < \beta < \rho \), such that for a sequence of values of \(r \) tending to infinity we get \(T_\alpha(r, f) > r^\beta \). So it follows that \(\liminf_{r \to \infty} \frac{r^\alpha}{T_\alpha(r, f)} = 0 \).

Hence we get from (11) by Lemma 6 and Lemma 5

\[q \leq \frac{1}{k} \left(2 - \Theta(\infty; f) - \sum_{b \neq \infty} \delta(b; f) \right) + 1 - \Theta(\infty; f) \]

\[\leq \frac{1}{k} \left(2 - \Theta(\infty; f) - \sum_{b \neq \infty} \delta(b; f) \right) + 1 - \Theta(\infty; f), \]

i.e.,

\[(1 + k)\Theta(\infty; f) + \sum_{b \neq \infty} \delta(b; f) \leq 2 - k(q - 1), \]

which is a contradiction. This proves the theorem.

\[\square \]

Remark 1. Gopalakrishna and Bhosmurth [2] proved Theorem 2 for functions of finite order by a different method using the notion of proximate order.

Now we discuss some consequences of Theorem 2.

Consequence 2.1. For \(k = 1, q = 3 \) we see that if \(\Theta(a; f) > 0 \) for some \(a \in \mathbb{C} \cup \{ \infty \} \) then there exist at most three elements of \(\mathbb{C} \cup \{ \infty \} \setminus \{ a \} \) which are evB for \(f \) for simple zeros.

Hence it follows that if there exist distinct elements \(a_1, a_2, a_3, a_4 \) in \(\mathbb{C} \cup \{ \infty \} \) which are evB for \(f \) for simple zeros then \(\Theta(a; f) = 0 \) for all \(a \in \mathbb{C} \cup \{ \infty \} \setminus \{ a_1, a_2, a_3, a_4 \} \).

So in view of the consequence 1.1 it follows that if \(f \) has four distinct evB for simple zeros then \(f \) has no evN.

Consequence 2.2. For \(k = 1, q = 2 \) we see that if

\[2\Theta(a; f) + \sum_{b \neq a} \delta(b; f) > 1 \]

for some \(a \in \mathbb{C} \cup \{ \infty \} \) then there exist at most two elements of \(\mathbb{C} \cup \{ \infty \} \setminus \{ a \} \) which are evB for \(f \) for simple zeros. In particular, this holds if there exists an \(a \in \mathbb{C} \cup \{ \infty \} \) such that \(\Theta(a; f) > 1/2 \).

It, therefore, follows that if there exist distinct elements \(a_1, a_2, a_3, a_4 \) in \(\mathbb{C} \cup \{ \infty \} \) which are evB for \(f \) for simple zeros then \(\Theta(a_i; f) \leq 1/2 \) for \(i = 1, 2, 3, 4 \).

Hence in view of Consequence 2.1 we see that if \(a_1, a_2, a_3, a_4 \) are evB for \(f \) for simple zeros then \(\Theta(a; f) = 0 \) if \(a \neq a_i (i = 1, 2, 3, 4) \) and \(\Theta(a_i; f) \leq 1/2 \) for \(i = 1, 2, 3, 4 \).
We know that ∞, a_1, a_2, a_3 are four distinct evB for the Weierstrass elliptic function $P(z)$ for simple zeros where a_1, a_2, a_3 are given by

$$\{P'(z)\}^2 = (P(z) - a_1)(P(z) - a_2)(P(z) - a_3).$$

In view of Lemma 5 [6] we see that $\Theta(\infty; P) = \Theta(a_1; P) = \Theta(a_2; P) = \Theta(a_3; P) = 1/2$. So the above estimation is sharp.

Consequence 2.3. For $k = 2, q = 2$ we see that if $\Theta(a; f) > 0$ for some $a \in \mathbb{C} \cup \{\infty\}$ then f has at most two evB for distinct simple and double zeros. So if a_1, a_2, a_3 are three evB for f for distinct simple and double zeros then $\Theta(a; f) = 0$ for all $a \in \mathbb{C} \cup \{\infty\} \setminus \{a_1, a_2, a_3\}$.

Hence in view of Consequence 1.5 it follows that if f has three evB for distinct simple and double zeros then f has no evN.

Consequence 2.4. For $k = 2, q = 1$ we see that if

$$3\Theta(a; f) + \sum_{b \neq a} \delta(b; f) > 2$$

for some $a \in \mathbb{C} \cup \{\infty\}$ then there exists at most one element of $a \in \mathbb{C} \cup \{\infty\} \setminus \{a\}$ which is an evB for f for distinct simple and double zeros. In particular, this holds if there exists an $a \in \mathbb{C} \cup \{\infty\}$ such that $\Theta(a; f) > 2/3$.

It, therefore, follows that if there exist distinct elements a_1, a_2, a_3 in $\mathbb{C} \cup \{\infty\}$ which are evB for f for distinct simple and double zeros then $\Theta(a_i; f) \leq 2/3$ for $i = 1, 2, 3$.

Hence in view of Consequence 2.3 we see that if a_1, a_2, a_3 are evB for f for distinct simple and double zeros then $\Theta(a_i; f) = 0$ if $a \neq a_i (i = 1, 2, 3)$ and $\Theta(a_i; f) \leq 2/3$ for $i = 1, 2, 3$.

The following example shows that the above estimation is sharp.

Example 1. (cf. [4, p. 45]) We set

$$z = \phi(z) = \int_0^w (t - a_1)^{-2/3}(t - a_2)^{-2/3}(t - a_3)^{-2/3}dt$$

where a_1, a_2, a_3 are distinct finite complex numbers. The inverse function can be analytically continued over the whole plane as a single valued meromorphic function by Schwarz’s reflection principle and the resulting function $w = f(z)$ is doubly periodic. Also we can verify that a_1, a_2, a_3 are evB for f for distinct simple and double zeros and $\Theta(a_i; f) = 2/3$ for $i = 1, 2, 3$. Further we note that f has no evN.

Singh and Gopalakrishna [7] proved the following theorem.

Theorem B. Let f be a meromorphic function of finite order. If a and ∞ are evB for f for distinct zeros for some $a \in \mathbb{C}$ then for each integer $k(\geq 1)$ $f^{(k)}$ has no evB for simple zeros in $\mathbb{C} \setminus \{a\}$.
Improving Theorem B Gopalakrishna and Bhoosnurmath [3] proved the following result.

Theorem C. Let \(f \) be a meromorphic function of finite hyperorder, i.e.,
\[
\limsup_{r \to \infty} \frac{\log \log T(r, f)}{\log r} < \infty.
\]
If 0 and \(\infty \) are evB for \(f \) for distinct zeros then any homogeneous differential polynomial \(P \) generated by \(f \) has no evB for simple zeros in \(\mathbb{C} \cup \{ \infty \} \setminus \{0, \infty\} \).

If \(P \) is generated by \(f' \) then the result holds if \(a \) and \(\infty \) are evB for \(f \) for distinct zeros for some \(a \in \mathbb{C} \).

We improve Theorem C by completely withdrawing the order restriction on \(f \).

Theorem 3. If 0 and \(\infty \) are evB for \(f \) for distinct zeros then any homogeneous differential polynomial \(P \) generated by \(f \) has no evB for simple zeros in \(\mathbb{C} \setminus \{0\} \).

If \(P \) is generated by \(f' \) then the result holds if \(a \) and \(\infty \) are evB for \(f \) for distinct zeros for some \(a \in \mathbb{C} \).

Proof. First we note that under the hypothesis of the theorem the order of \(P \) is equal to the order of \(f \) (cf. [3 Theorem 1]). Let \(n \) be the degree of \(P \).

Since 0 and \(\infty \) are evB for distinct zeros for \(f \), by Lemma 1 we get for all large values of \(r \)
\[
N_0(r, 0; f) < r^\alpha \quad \text{and} \quad N_0(r, \infty; f) < r^\alpha,
\]
where \(\alpha < \rho \).

Also for all large values of \(r \) we get
\[
nT_o(r, f) \leq T_o(r, P) + N_o(r, \frac{P}{f^n}) + S_o(r, f)
\]
\[
= T_o(r, P) + O(N_0(r, 0; f) + N_0(r, \infty; f)) + S_o(r, f)
\]
\[
= O(r^\alpha) + T_o(r, P) + S_o(r, f),
\]
i.e.,
\[
\{n + o(1)\}T_o(r, f) \leq T_o(r, P) + O(r^\alpha). \tag{12}
\]
We see that
\[
N(r, 0; P) \leq N(r, \frac{f^n}{P}) + N(r, 0; f)
\]
\[
\leq T(r, \frac{P}{f^n}) + N(r, 0; f) + S(r, f)
\]
\[
= N(r, \frac{P}{f^n}) + N(r, 0; f) + S(r, f)
\]
and so
Now for \(b \in \mathbb{C}\backslash\{0\} \) we get from Lemmas 2 and 3

\[
T_o(r, P) \leq N_o(r, 0; P) + N_o(r, \infty; P) + N_o(r, b; P) + S_o(r, P) \\
\leq N_o(r, 0; P) + N_o(r, \infty; f) + \frac{1}{2} N_o(r, b; P \leq 1) \\
+ \frac{1}{2} N_o^b(r, b; P) + S_o(r, P) + S_o(r, f) \\
\leq O(r^\alpha) + \frac{1}{2} N_o(r, b; P \leq 1) + \frac{1}{2} T_o(r, P) + S_o(r, P) + S_o(r, f),
\]

i.e.,

\[
\frac{1}{2} T_o(r, P) \leq O(r^\alpha) + \frac{1}{2} N_o(r, b; P \leq 1) + S_o(r, P) + S_o(r, f). \quad (13)
\]

If possible, suppose that \(b \) is an evB for \(P \) for simple zeros. Then from (13) we get for all large values of \(r \)

\[
\frac{1}{2} T_o(r, P) \leq O(r^\alpha) + \frac{1}{2} N_o(r, b; P \leq 1) + S_o(r, P) + S_o(r, f). \quad (14)
\]

Since \(\rho \) is the order of \(P \), by Lemma 1 it follows that for \(\alpha < \beta < \rho \) there exists a sequence \(\{r_n\} \) of values of \(r \) tending to infinity such that

\[
T_o(r_n, P) > r_n^\beta \text{ for } n = 1, 2, 3, \ldots.
\]

Hence for \(r = r_n \) we get from (12) and (14)

\[
\frac{1}{2} T_o(r_n; P) \leq o(T_o(r_n; P)),
\]

which is a contradiction. So no element of \(\mathbb{C}\backslash\{0\} \) is an evB for \(P \) for simple zeros.

The second part of the theorem is obvious because if \(P \) is generated by \(f' \) then \(P \) is also generated by \(g' \) where \(g = f - a \) for any \(a \in \mathbb{C} \). This proves the theorem. \(\blacksquare \)

Remark 2. Theorem 3 does not hold for a non-homogeneous differential polynomial. For, let \(f = \exp(z) \) and \(P = f' + 1 \). Then \(0 \) and \(\infty \) are evB for \(f \) for distinct zeros but \(1 \) is an evB for \(P \) simple zeros.

References