Vietnam Journal of MATHEMATICS © VAST 2004

Siu-Yeung's Lemma in the p-Adic Case

Nguyen Thanh Quang and Phan Duc Tuan

Department of Mathematics, Vinh University, Vinh, Nghe An, Vietnam

Received September 31, 2003 Revised March 15, 2004

Abstract. In this paper, by using p-adic Nevanlinna-Cartan Theorem, we prove a p-adic version of Siu-Yeung's Lemma and its application in the study of the unique range sets for meromorphic functions.

1. Introduction

Let us start by recalling Borel's Lemma in the complex case:

Borel's Lemma. Let $f_1, \ldots, f_n, n \geq 3$ be non-zero holomorphic functions on \mathbb{C} such that

$$f_1 + \cdots + f_n = 0.$$

Then the functions $\{f_1, \ldots, f_{n-1}\}$ are linearly dependent.

It is well-known that Borel's Lemma plays an important role in the study of hyperbolic spaces. For different purposes some generalizations of the Lemma are given. We mention here a recent result of Siu and Yeung.

Siu-Yeung's Lemma. [9] Let $g_j(x_0, ..., x_n)$ be a homogeneous polynomial of degree δ_j for $0 \le j \le n$. Suppose there exists a holomorphic map $f: \mathbb{C} \to \mathbb{P}^n(\mathbb{C})$ so that its image lies in

$$\sum_{j=0}^{n} x_{j}^{k-\delta_{j}} g_{j}(x_{0}, \dots, x_{n}) = 0,$$

and $k > (n+1)(n-1) + \sum_{j=0}^{n} \delta_j$. Then there is a nontrivial linear relation among $x_1^{k-\delta_1}g_1(x_0,\ldots,x_n),\ldots,x_n^{k-\delta_n}g_n(x_0,\ldots,x_n)$ on the image of f.

In this paper, by using p-adic Nevanlinna-Cartan Theorem, we prove a p-adic version of Siu-Yeung's Lemma. We then apply the result to give a unique range sets for p-adic meromorphic functions.

2. Siu-Yeung's Lemma in the p-Adic Case

Let p be a prime number, \mathbb{Q}_p the field of p-adic number, and \mathbb{C}_p be the p-adic completion of the algebraic closure of \mathbb{Q}_p . The absolute value in \mathbb{Q}_p is normalized so that $|p|_p = p^{-1}$. We use the notation $h(f,t) = -h^+(f,t)$ for the height function and N(f,t) for the counting function of a p-adic entire function f (for details, see [4, 5]).

Lemma 2.1. [5] Let ϕ, ϕ_1, ϕ_2 be p-adic holomorphic functions. Then we have

- 1) $h^+(\phi,t) = N(\phi,t) + O(1),$
- 2) $N(\phi_1 + \phi_2, t) \le \max\{N(\phi_1, t), N(\phi_2, t)\} + 0(1),$
- 3) $N(\phi_1\phi_2, t) = N(\phi_1, t) + N(\phi_2, t)$.

Lemma 2.2. Let $g(x_0, ..., x_n)$ be a homogeneous polynomial of degree d and $f_0, f_1, ..., f_n$ be p-adic holomorphic functions. Then

$$N(g(f_0, \dots, f_n), t) \le d \max_{0 \le j \le n} N(f_j, t) + 0(1).$$

Proof. We first prove if $x_0^{\alpha_0} \cdots x_n^{\alpha_n}$ is a monomial of degree d then

$$N(f_0^{\alpha_0} \cdots f_n^{\alpha_n}, t) \le d \max_{0 \le j \le n} N(f_j, t).$$

We have

$$\begin{split} N(f_0^{\alpha_0} \cdots f_n^{\alpha_n}, t) &= N(f_0^{\alpha_0}, t) + \cdots + N(f_n^{\alpha_n}, t) \\ &= \alpha_0 N(f_0, t) + \cdots + \alpha_n N(f_n, t) \\ &\leq (\alpha_0 + \cdots + \alpha_n) \max_{0 \leq j \leq n} N(f_j, t) = d \max_{0 \leq j \leq n} N(f_j, t). \end{split}$$

On the other hand, $g(x_0, ..., x_n)$ is the sum of the monomials of degree d, therefore from Lemma 2.1 we obtain the proof of Lemma 2.2.

Theorem 2.1. (p-adic Nevanlinna–Cartan Theorem [5]) Let H_1, \ldots, H_q be q hyperplanes in general position, and let f be a non-degenerate holomorphic curve in $\mathbb{P}^n(\mathbb{C}_p)$. Then we have

$$(q-n-1)h^+(f,t) \le \sum_{j=1}^q N_n(foH_j,t) + \frac{n(n+1)}{2}t + 0(1),$$

where 0(1) is bounded when $t \to -\infty$.

Theorem 2.2. (Siu-Yeung's Lemma in the p-adic case) Let $g_j(x_0, \ldots, x_n)$ be a homogeneous polynomial of degree δ_j for $0 \leq j \leq n$. Suppose there exists a

holomorphic map $f: \mathbb{C}_p \to \mathbb{P}^n(\mathbb{C}_p)$ so that its image lies in

$$\sum_{j=0}^{n} x_j^{k-\delta_j} g_j(x_0, \dots, x_n) = 0,$$

and

$$k \ge (n+1)(n-1) + \sum_{j=0}^{n} \delta_j.$$

Then the following functions are linearly dependent on \mathbb{C}_p if they have no common zeros:

$$f_1^{k-\delta_1}g_1(f_0,\ldots,f_n),\ldots,f_n^{k-\delta_n}g_n(f_0,\ldots,f_n).$$

Proof. By the hypothesis we have

$$\sum_{j=0}^{n} f_{j}^{k-\delta_{j}} g_{j}(f_{0}, \dots, f_{n}) = 0.$$

Assume to the contrary that the functions

$$f_1^{k-\delta_1}g_1(f_0,\ldots,f_n),\ldots,f_n^{k-\delta_n}g_n(f_0,\ldots,f_n)$$

are linearly independent, we define a holomorphic curve g in $\mathbb{P}^{n-1}(\mathbb{C}_p)$ by setting

$$g = (f_1^{k-\delta_1}g_1(f_0, \dots, f_n), \dots, f_n^{k-\delta_n}g_n(f_0, \dots, f_n)).$$

Then g is linearly non-degenerate. Consider the following hyperplanes in general position in $\mathbb{P}^{n-1}(\mathbb{C}_p)$:

$$H_1 = \{x_1 = 0\}, \dots, H_n = \{x_n = 0\}, H_{n+1} = \{x_1 + \dots + x_n = 0\}.$$

It follows from Theorem 2.1 that

$$h^+(g,t) \le \sum_{j=1}^{n+1} N_{n-1}(goH_j,t) + \frac{(n-1)n}{2}t + 0(1).$$

By Lemma 2.1 we have

$$h^{+}(g,t) = \max\{h^{+}(f_1^{k-\delta_1}g_1(f_0,\ldots,f_n),t),\ldots,h^{+}(f_n^{k-\delta_n}g_n(f_0,\ldots,f_n),t)\}$$

= \text{max}\{N(f_1^{k-\delta_1}g_1(f_0,\ldots,f_n),t),\ldots,N(f_n^{k-\delta_n}g_n(f_0,\ldots,f_n),t)\}+0(1).

Therefore

$$\max \left\{ N(f_1^{k-\delta_1} g_1(f_0, \dots, f_n), t), \dots, N(f_n^{k-\delta_n} g_n(f_0, \dots, f_n), t) \right\}$$

$$\leq \sum_{j=1}^{n+1} N_{n-1}(g_0 H_j, t) + \frac{(n-1)n}{2} t + O(1). \tag{1}$$

For $j = 1, \ldots, n$ we have

$$\begin{split} N_{n-1}(goH_j,t) &= N_{n-1}(f_j^{\delta_j}g_j(f_0,\ldots,f_n),t) \\ &\leq N_{n-1}(f_j^{k-\delta_j},t) + N_{n-1}(g_j(f_0,\ldots,f_n),t) \\ &\leq (n-1)N_1(f_j^{k-\delta_j},t) + N_{n-1}(g_j(f_0,\ldots,f_n),t) \\ &= (n-1)N_1(f_j,t) + N_{n-1}(g_j(f_0,\ldots,f_n),t) \\ &\leq (n-1)N(f_j,t) + N_{n-1}(g_j(f_0,\ldots,f_n),t) \\ &\leq (n-1)\max_{0\leq j\leq n} N(f_j,t) + N_{n-1}(g_j(f_0,\ldots,f_n),t) \\ &\leq (n-1)\max_{0\leq j\leq n} N(f_j,t) + N(g_j(f_0,\ldots,f_n),t). \end{split}$$

For j = n + 1 we still have

$$\begin{split} N_{n-1}(goH_{n+1},t) &= N_{n-1}(-f_0^{k-\delta_0}g_0(f_0,\ldots,f_n),t) \\ &= N_{n-1}(f_0^{k-\delta_0}g_0(f_0,\ldots,f_n),t) \\ &\leq N_{n-1}(f_0^{k-\delta_0},t) + N_{n-1}(g_0(f_0,\ldots,f_n),t) \\ &\leq (n-1)N_1(f_0^{k-\delta_0},t) + N_{n-1}(g_0(f_0,\ldots,f_n),t) \\ &= (n-1)N_1(f_0,t) + N_{n-1}(g_0(f_0,\ldots,f_n),t) \\ &\leq (n-1)N(f_0,t) + N_{n-1}(g_0(f_0,\ldots,f_n),t) \\ &\leq (n-1)\max_{0\leq j\leq n} N(f_0,t) + N_{n-1}(g_0(f_0,\ldots,f_n),t) \\ &\leq (n-1)\max_{0\leq j\leq n} N(f_j,t) + N(g_0(f_0,\ldots,f_n),t). \end{split}$$

We set for simplicity

$$\max_{0 \le j \le n} N(f_j, t) = N(f_{i_0}, t).$$

Then we have

$$N(f_{i_0}^{k-\delta_{i_0}}g_{i_0}(f_0,\ldots,f_n),t) = N(f_{i_0}^{k-\delta_{i_0}},t) + N(g_{i_0}(f_0,\ldots,f_n),t)$$

= $(k-\delta_{i_0})N(f_{i_0},t) + N(g_{i_0}(f_0,\ldots,f_n),t).$

From this and (1) we obtain

$$(k - \delta_{i_0})N(f_{i_0}, t) + N(g_{i_0}(f_0, \dots, f_n), t) \le (n - 1)(n + 1)N(f_{i_0}, t)$$

+
$$\sum_{j=0}^{n} N(g_j(f_0, \dots, f_n), t) + \frac{(n - 1)n}{2}t + 0(1).$$

Thus

$$(k - \delta_{i_0})N(f_{i_0}, t) \le (n - 1)(n + 1)N(f_{i_0}, t) + \sum_{\substack{j=0\\j \ne i_0}}^{n} N(g_j(f_0, \dots, f_n), t) + \frac{(n - 1)n}{2}t + 0(1).$$

On the other hand, by Lemma 2.2 we have

$$N(g_j(f_0,\ldots,f_n),t) \le \delta_j \max_{0 \le j \le n} N(f_j,t).$$

Hence

$$(k - \delta_{i_0})N(f_{i_0}, t)$$

$$\leq (n - 1)(n + 1)N(f_{i_0}, t) + \sum_{\substack{j=0\\j \neq i_0}}^{n} \delta_j N(f_{i_0}, t) + \frac{(n - 1)n}{2}t + 0(1).$$

So

$$\left(k - \sum_{j=0}^{n} \delta_j - (n-1)(n+1)\right) N(f_{i_0}, t) \le \frac{(n-1)n}{2} t + O(1).$$

By the hypothesis $k \geq (n+1)(n-1) + \sum_{j=0}^{n} \delta_j$ we have a contradiction when $t \to -\infty$.

3. Applications

For a nonconstant meromorphic function f on \mathbb{C}_p and a set $S \subset \mathbb{C}_p \cup \{\infty\}$, we define

$$E_f(S) = \bigcup_{a \in S} \{(m, z) | f(z) - a = 0, \text{ with multiplicity } m\}.$$

A set S is called a unique range set for p-adic meromorphic functions (URSM) if for any pair of nonconstant meromorphic functions f and g, the condition $E_f(S) = E_g(S)$ implies $f \equiv g$. Recently, URSM with finitely many elements have been found by Hu-Yang ([2, 3]). In this section we give a new class of unique range sets for p-adic meromorphic functions. For the proof of the result, we need the following lemma.

Lemma 3.1. [2] Let f be a nonconstant meromorphic function on \mathbb{C}_p and a_1, \ldots, a_q be distinct numbers in \mathbb{C}_p . Then

$$(q-1)T(r,f) \le \overline{N}(r,f) + \sum_{j=1}^{q} \overline{N}\left(r, \frac{1}{f-a_j}\right) - \log r + O(1).$$

Furthermore,

$$\sum_{a \in \mathbb{C}_p \cup \{\infty\}} \delta_f(a) < 2,$$

where

$$\delta_f(a) = 1 - \lim_{r \to \infty} \sup \frac{\overline{N}\left(r, \frac{1}{f - a}\right)}{T(r, f)}.$$

Theorem 3.1. Suppose that n and m are two positive integers such that $n \ge 8 + 4m$. Let

$$S = \{ z \in \mathbb{C}_p \, | \, z^n + az^{n-m} + bz^{n-2m} + c = 0 \},$$

where $a,b,c\in\mathbb{C}_p^*$ such that $a^2-4b\neq 0$ and the algebraic equation

$$z^n + az^{n-m} + bz^{n-2m} + c = 0,$$

has no mutiple roots. Then S is a unique range set for p-adic meromorphic functions.

Proof. Let a_1, a_2, \ldots, a_n be the distinct roots of the equation $z^n + az^{n-m} + bz^{n-2m} + c = 0$. Let f, g be nonconstant meromorphic functions such that $E_f(S) = E_g(S)$. Represent $f = \frac{f_1}{f_2}$ and $g = \frac{l_1}{l_2}$, where (f_1, f_2) and (l_1, l_2) are some pairs of entire functions without common factors. Then there exists a constant $\beta \neq 0$ such that

$$(f_1 - a_1 f_2)(f_1 - a_2 f_2) \cdots (f_1 - a_n f_2) = \beta(l_1 - a_1 l_2)(l_1 - a_2 l_2) \cdots (l_1 - a_n l_2).$$

Put $g_1 = \lambda l_1, g_2 = \lambda l_2$ (where $\lambda^n = \beta$). We have

$$f_1^{n-2m}(f_1^{2m} + af_1^m f_2^m + bf_2^{2m}) + cf_2^n - g_1^{n-2m}(g_1^{2m} + ag_1^m g_2^m + bg_2^{2m}) - cg_2^n = 0.$$
(2)

Since $n \ge 8 + 4m$, the hypothesis of Theorem 2.2 is satisfied (with $n = 3, \delta_0 = \delta_2 = 2m, \delta_1 = \delta_3 = 0$). Without loss of generality we can suppose that there are numbers $\alpha_1, \alpha_2, \alpha_3$, not all are zero, such that

$$\alpha_1 f_1^{n-2m} (f_1^{2m} + a f_1^m f_2^m + b f_2^{2m}) + \alpha_2 f_2^n - \alpha_3 g_2^n = 0.$$

We consider the possible cases:

Case 1. $\alpha_1\alpha_2\alpha_3 \neq 0$.

Using again Theorem 2.2 (with n=2, $\delta_0=2m$, $\delta_1=\delta_2=0$), we obtain

$$\alpha_1' f_1^{n-2m} (f_1^{2m} + a f_1^m f_2^m + b f_2^{2m}) + \alpha_2' f_2^n = 0,$$

where not all α'_i are zeros. This implies that f is constant.

Case 2. $\alpha_3 = 0$. It is clear that f is constant.

Case 3. $\alpha_2 = 0$. Clearly, $\alpha_1 \alpha_3 \neq 0$. Then

$$f_1^n + af_1^{n-m}f_2^m + bf_1^{n-2m}f_2^{2m} = \gamma g_2^n,$$

where $\gamma = \frac{\alpha_3}{\alpha_1}$. Therefore

$$1 + a \left(\frac{f_2}{f_1}\right)^m + b \left(\frac{f_2}{f_1}\right)^{2m} = \gamma \left(\frac{g_2}{f_1}\right)^n.$$

Put
$$f_3 = \left(\frac{f_2}{f_1}\right)^m + \frac{a}{2b}$$
, and $g_3 = \frac{g_2}{f_1}$, we have
$$bf_3^2 - \frac{a^2 - 4b}{4b} = \gamma g_3^n. \tag{3}$$

If g_3 is constant then by the equation (3), we obtain f_3 is also constant. From this it follows that the function $f = \frac{f_1}{f_2}$ is constant and we have a contradiction. So g_3 is a non-constant meromorphic function.

Now from (3), we have

$$2T(r, f_3) = nT(r, g_3) + 0(1).$$

By Lemma 3.1 we have

$$nT(r,g_3) = T(r,\gamma g_3^n) + 0(1)$$

$$\leq \overline{N}(r,g_3^n) + \overline{N}\left(r,\frac{1}{g_3^n}\right) + \overline{N}\left(r,\frac{1}{\gamma g_3^n + \frac{a^2 - 4b}{4b}}\right) - \log r + 0(1)$$

$$= \overline{N}(r,g_3) + \overline{N}\left(r,\frac{1}{g_3}\right) + \overline{N}\left(r,\frac{1}{f_3^2}\right) - \log r + 0(1)$$

$$\leq T(r,g_3) + T(r,g_3) + T(r,f_3) - \log r + 0(1)$$

$$= \left(2 + \frac{n}{2}\right)T(r,g_3) - \log r + 0(1).$$

Hence

$$\frac{n-4}{2}T(r,g_3) \le -\log r + 0(1).$$

This is a contradiction.

Case 4. $\alpha_1 = 0$. It is clear that $\alpha_2 \alpha_3 \neq 0$. Furthermore,

$$\alpha f_2^n = g_2^n,$$

where $\alpha = \frac{\alpha_1}{\alpha_2}$. From (2) we obtain

$$f_1^{n-2m}(f_1^{2m} + af_1^m f_2^m + bf_2^{2m}) + c(1-\alpha)f_2^n - g_1^{n-2m}(g_1^{2m} + a\epsilon^m g_1^m f_2^m + b\epsilon^{2m} f_2^{2m}) = 0,$$

where $\epsilon^n = \alpha$.

We claim that $\alpha=1$. Indeed, if $\alpha\neq 1$, then using Theorem 2.1 (with $n=2, \delta_0=\delta_2=2m, \delta_1=0$) we obtain that $f_1^{n-2m}(f_1^{2m}+\alpha f_1^m f_2^m+b f_2^{2m})$ and f_2^n are linearly dependent, and then $\frac{f_1}{f_2}=$ constant. This is a contradiction. Hence $f_2^n=g_2^n$.

Putting $h = \frac{f}{g}$, we conclude from (2) that

$$(h^{n} - 1)g^{2m} + a(h^{n-m} - 1)g^{m} + b(h^{n-2m} - 1) = 0.$$
(4)

We prove that h is constant. In fact, if it is not the case, we write (4) in the form

$$\left[(h^n - 1)g^m + \frac{a}{2}(h^{n-m} - 1) \right]^2 = \Psi(h), \tag{5}$$

where $\Psi(z)$ is defined by

$$\Psi(z) = -b(z^{n} - 1)(z^{n-2m} - 1) + \frac{a^{2}}{4}(z^{n-m} - 1)^{2}.$$

Since

$$\Psi'(z) = z^{n-2m-1} \left[(n-m) \frac{a^2 - 4b}{2} z^n + bnz^{2m} - \frac{a^2(n-m)}{2} z^m + b(n-2m) \right],$$

and $\Psi(0) \neq 0$, the polynomial Ψ has at least (2n-2m)-n=n-2m distinct zeros. From (5), we obtain that the roots of $\Psi(h)=0$ have multiplicity at least 2. From Lemma 3.1, we have $\frac{n-2m}{2} < 2$, which contracdicts the condition $n \geq 8+4m$. Hence h is constant.

On the other hand, since g is not constant, equation (3) give $h^n - 1 = 0$ and $h^{n-1} - 1 = 0$. This implies h = 1 and hence $f \equiv g$. So S is a unique range set for p-adic meromorphic functions.

References

- 1. Ta Thi Hoai An, A new class of unique range sets for meromorphic functions on \mathbb{C} , Acta Math. Vietnam. 27 (2002) 251–256.
- P. C. Hu and C. C. Yang, Value distribution theory of p-adic meromorphic functions, Izv. Natts. Acad. Nauk Armenii Nat. 32 (1997) 46-67.
- 3. P. C. Hu and C. C. Yang, A unique range set of *p*-adic meromorphic function with 10 elements, Acta Math. Vietnam. **24** (1999) 95–108.
- 4. Ha Huy Khoai and My Vinh Quang, On p-adic Nevanlinna theory, Lect. Notes. Math. 1351, Springer-Verlag, 1988, 146–158.
- 5. Ha Huy Khoai and Mai Van Tu, p-adic Nevalinna-Cartan theorem, Inter. J. Math 6 (1995) 719–731.
- Ha Huy Khoai, A survey on the p-adic Nevanlinna theory and recent articles, Acta Math. Vietnam. 27 (2002) 321–332.
- 7. Nguyen Thanh Quang, Borel's lemma in the *p*-adic case, *Vietnam J. Math.* **26** (1998) 311–313.
- 8. Nguyen Thanh Quang, p-adic hyperbolicity of the complement of hyperplanes in $\mathbb{P}^n(\mathbb{C}_p)$, $Acta\ Math.\ Vietnam.\ 23\ (1998)\ 143–149.$
- 9. Y. T. Siu and S. K. Yeung, Defects for ample divisors of Abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees, *Amer. J. Math.* **119** (1997) 1139–1172.